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Introduction: The accelerated aging of the global population has emerged as a 
critical public health concern, with increasing recognition of the influential role 
played by the microbiome in shaping host well-being. Nonetheless, there remains 
a dearth of understanding regarding the functional alterations occurring within 
the microbiota and their intricate interactions with metabolic pathways across 
various stages of aging.

Methods: This study employed a comprehensive metagenomic analysis 
encompassing saliva and stool samples obtained from 45 pigs representing three 
distinct age groups, alongside serum metabolomics and lipidomics profiling.

Results: Our findings unveiled discernible modifications in the gut and oral 
microbiomes, serum metabolome, and lipidome at each age stage. Specifically, 
we  identified 87 microbial species in stool samples and 68  in saliva samples 
that demonstrated significant age-related changes. Notably, 13 species in stool, 
including Clostridiales bacterium, Lactobacillus johnsonii, and Oscillibacter 
spp., exhibited age-dependent alterations, while 15 salivary species, such as 
Corynebacterium xerosis, Staphylococcus sciuri, and Prevotella intermedia, 
displayed an increase with senescence, accompanied by a notable enrichment 
of pathogenic organisms. Concomitant with these gut-oral microbiota changes 
were functional modifications observed in pathways such as cell growth and 
death (necroptosis), bacterial infection disease, and aging (longevity regulating 
pathway) throughout the aging process. Moreover, our metabolomics and 
lipidomics analyses unveiled the accumulation of inflammatory metabolites or the 
depletion of beneficial metabolites and lipids as aging progressed. Furthermore, 
we  unraveled a complex interplay linking the oral-gut microbiota with serum 
metabolites and lipids.

Discussion: Collectively, our findings illuminate novel insights into the potential 
contributions of the oral-gut microbiome and systemic circulating metabolites 
and lipids to host lifespan and healthy aging.

KEYWORDS

swine, aging, oral-gut axis, multi-omics, inflammation

OPEN ACCESS

EDITED BY

Lifeng Zhu,  
Nanjing University of Chinese Medicine, China

REVIEWED BY

Zunji Shi,  
Lanzhou University, China  
Lenan Zhuang,  
Zhejiang University, China  
Xuguang Du,  
China Agricultural University, China

*CORRESPONDENCE

Jianguo Zhao  
 zhaojg@ioz.ac.cn  

Guangliang Liu  
 LiuGuangLiang01@caas.cn

†These authors have contributed equally to this 
work

RECEIVED 30 June 2023
ACCEPTED 17 August 2023
PUBLISHED 15 September 2023

CITATION

Qiao C, He M, Wang S, Jiang X, Wang F, Li X, 
Tan S, Chao Z, Xin W, Gao S, Yuan J, Li Q, Xu Z, 
Zheng X, Zhao J and Liu G (2023) Multi-omics 
analysis reveals substantial linkages between 
the oral-gut microbiomes and inflamm-aging 
molecules in elderly pigs.
Front. Microbiol. 14:1250891.
doi: 10.3389/fmicb.2023.1250891

COPYRIGHT

© 2023 Qiao, He, Wang, Jiang, Wang, Li, Tan, 
Chao, Xin, Gao, Yuan, Li, Xu, Zheng, Zhao and 
Liu. This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 15 September 2023
DOI 10.3389/fmicb.2023.1250891

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1250891﻿&domain=pdf&date_stamp=2023-09-15
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1250891/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1250891/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1250891/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1250891/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1250891/full
mailto:zhaojg@ioz.ac.cn
mailto:LiuGuangLiang01@caas.cn
https://doi.org/10.3389/fmicb.2023.1250891
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1250891


Qiao et al. 10.3389/fmicb.2023.1250891

Frontiers in Microbiology 02 frontiersin.org

1. Introduction

The escalating number of elderly individuals is an escalating 
public health concern globally, with a particular emphasis on China, 
where it is estimated that there will be around 402 million older adults 
by 2040 (Wang and Chen, 2022). The swift aging of the population, 
stimulated by recent declines in fertility and mortality rates, spark 
concerns regarding the health and quality of life of elderly individuals, 
and will pose significant challenges for the healthcare system. The 
process of aging is intricate and dynamic, involving the restructuring 
of various physiological systems that are intricately associated with 
systemic inflammation, metabolism, and immunity across diverse 
cells and tissues (Fulop et al., 2017; Finger et al., 2022). However, the 
process of aging and lifespan is tremendously influenced by host 
genetics and environmental factors. The symbiotic commensal 
microbiota has been recognized as an influential environmental factor 
in the development of aging-related metabolic and immune diseases. 
Accumulating evidence supports the role of microbiota in the 
development of these diseases (Belkaid and Hand, 2014; Thaiss et al., 
2016; Zheng et al., 2020; Ansaldo et al., 2021), and further research is 
needed to better understand the relationship between the microbiome 
and aging.

Altered gut microbiome and host metabolism have been 
implicated in the process of aging (Cruz-Pereira et al., 2022; Ghosh 
et al., 2022). Aging is associated with changes in the gut microbiota, 
which in turn can affect host metabolism (Gao et al., 2018). The gut 
microbiota is a complex community of microorganisms that live in the 
gastrointestinal tract and play an important role in maintaining 
human health (Thursby and Juge, 2017; Gomaa, 2020). As we age, the 
diversity and composition of the gut microbiota can change, with a 
decrease in beneficial bacteria and an increase in harmful bacteria. 
These changes in the gut microbiota can contribute to a number of 
age-related health problems, such as impaired immune function, 
inflammation, and metabolic dysfunction (Kong et al., 2019; Badal 
et  al., 2020; Ghosh et  al., 2022; Yin et  al., 2023). For example, 
alterations in the gut microbiota have been linked to age-related 
diseases such as type 2 diabetes, cardiovascular disease, and cognitive 
decline (Pascale et al., 2019; Ghosh et al., 2020; Pellanda et al., 2021). 
The gut microbiome plays a critical role in host metabolism through 
a variety of mechanisms, including fermentation of dietary fibers, 
regulation of intestinal barrier function, regulation of immune 
function and bile acid metabolism, for instance, microbial derived 
SCFAs can modulate various metabolic pathways in the host, 
including glucose and lipid metabolism, and can also affect immune 
function and inflammation (Gasaly et al., 2021; Ohtani and Hara, 
2021; Zhang, 2022). Overall, the relationship between the gut 
microbiota and host metabolism is complex and their joint action on 
aging still not fully understood. However, there is growing evidence 
to suggest that interventions aimed at modulating the gut microbiota, 
such as dietary changes or probiotics, may have potential therapeutic 
benefits for age-related metabolic disorders.

The study of aging and the host microbiome is a relatively new field 
of research. Though there have been many studies of the human 
microbiome and aging, there are still several deficiencies that need to 
be  addressed since human gut microbiota extremely dynamic and 
influenced by a number of confounding factors, such as diet, 
medications, lifestyle factors, which can make it difficult to isolate the 
effects of aging on the gut microbiota (Bana and Cabreiro, 2019; Manor 

et al., 2020; Molinero et al., 2023). Further, many studies of the human, 
and others animal microbiome and aging focus on taxonomic changes, 
but do not investigate functional changes in the microbiome. Functional 
studies are needed to better understand the mechanisms by which the 
human microbiome influences aging-related processes. Besides, scarce 
researches investigate the process of aging using multi-omics, which 
involved metagenomics, metabolomics, lipidomics, and transcriptomics 
to provide a more comprehensive understanding of biological systems 
that are involved in the aging process. By integrating these different 
types of data, researchers can identify key molecular and cellular changes 
that occur during aging, and can use this information to develop new 
approaches for preventing or treating age-related diseases. In addition, 
previous researches mainly focus on the role of gut microbiota in the 
host aging. However, the importance of the oral microbiome in the aging 
process is increasingly recognized, as the oral microbiome plays a key 
role in maintaining oral health and is also implicated in various systemic 
diseases (Sedghi et al., 2021; Peng et al., 2022).

Hence, a well-controlled model system that reproduces faithfully 
the trajectories in the oral and gut microbiota with age is warranted 
and will provide a better understanding of the role played by them in 
the healthy development and aging of the host. Pigs are used as an 
excellent model to study the interaction between host microbiome and 
aging by combining multi-omics, because pigs share many similarities 
with humans in terms of their anatomy, physiology, and nutritional 
requirements. For example, the structure and function of the pig gut is 
similar to that of humans, as well as in organ development and disease 
progression (Lunney et al., 2021; Rose et al., 2022). In addition, swine 
can be raised in a controlled environment and are readily available and 
relatively inexpensive compared to other animal models, which allows 
researchers to manipulate their diet and other environmental factors 
that may influence the host microbiome and aging process. Previous 
research has also been identified that pigs have a gut microbiome that 
is similar in composition to that of humans, with a high degree of 
microbial diversity and similar microbial taxa (Lim et al., 2019; Yang 
et  al., 2022). Overall, the use of pigs as a model for studying the 
interaction between host microbiome and aging provides a valuable 
tool for understanding the complex interplay between these factors, 
and for developing interventions and therapies that can improve 
healthspan and reduce the burden of age-related diseases in humans.

To date, there is a paucity of data investigating the progression of 
aging through the integration of metagenomics analyses of oral and gut 
microbial species, with metabolomics and lipidomics profiling of blood 
molecules. In this study, we recruited a cohort of 45 pigs and collected 
45 fecal and 45 salivary samples, as well as 30 blood samples at three 
different age points: (1) 1 year old, (2) 4 years old, and (3) 8 years old 
(Tohyama and Kobayashi, 2019). The use of this animal model allowed 
us to explore the potential correlations among these factors and their 
possible roles in the observed changes associated with aging (Figure 1A). 
Our primary objective was to determine the complex molecular changes 
that occur at different stages of age in pigs, and how they contribute to 
age-related alteration in host metabolism and decline in physiological 
functions. Multi-omics approaches can provide a more comprehensive 
understanding of the aging process, as different types of molecules are 
interconnected and influence each other in complex ways. By analyzing 
multiple omics data sets, we can identify molecular signatures and 
pathways that are associated with aging and age-related diseases. This 
can lead to the development of new biomarkers and therapeutic targets 
for age-related conditions, as well as strategies for promoting healthy 
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aging and extending lifespan. In general, the study of aging by multi-
omics is an important and rapidly growing field that has the potential 
to revolutionize our understanding of aging and age-related diseases, 
and ultimately improve human health and well-being.

2. Materials and methods

2.1. Study design and sample collection

A cohort of 45 pigs was enrolled in this study, and fecal and 
salivary samples were collected from each pig. The pigs were 
categorized into three age groups, with 15 pigs in each group: 

one-year-old pigs, those approximately 4  years old, and those 
approximately 8 years old. Additionally, serum samples were randomly 
collected from 10 pigs in each age group. This study design allowed 
for the collection of comprehensive and representative biological 
samples across different age points, which is essential for investigating 
the complexities of the aging process.

2.2. Shotgun metagenomic sequencing 
and analysis

In this study, the microbial alterations induced by age were 
determined by extracting DNA from saliva and fecal samples using 

FIGURE 1

Alterations of gut microbial composition in relation to aging in pigs. (A) Workflow overview of the metagenomic, metabolomic, and lipidomics 
strategies used in this study. Comparison of α-diversity by (B) richness and (C) Shannon indices using Wilcoxon rank sum test in pigs at adult (Ad), 
middle age (Ma), and old age (Oa). (D,E) Principal coordinate analysis (PCoA) based on the Bray–Curtis dissimilarity metric derived from feces and saliva 
showed a significant difference in gut and salivary microbial composition among Ad, Ma, and Oa groups. Statistical significance and variance of Bray–
Curtis dissimilarity data were assessed using PERMANOVA. (F,G) Relative abundance of bacterial phyla in gut and oral microbiotas of individuals with 
Ad, Ma, and Oa. (H) Log2 Firmicutes/Bacteroidota ratios in gut samples from individuals in Ad, Ma, and Oa groups (Wilcoxon rank-sum test).
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QIAamp DNA mini kit (QIAGEN, Germany). Shotgun metagenomic 
sequencing of porcine saliva and fecal DNA was performed on an 
Illumina HiSeq 2000 platform (Illumina, United States). To process 
the raw sequence reads, Trimmomatic (version 0.39) (Bolger et al., 
2014) was used to remove low-quality reads and adaptors. The 
resulting trimmed reads were aligned to the porcine genome (sus 
scrofa, Sscrofa11.1) using Bowtie 2 (version 2.4.4) (Langmead and 
Salzberg, 2012) to remove host reads. The non-swine reads were 
assembled using MEGAHIT (v.1.1.3) with default parameters (Li 
et  al., 2015), and taxonomy classification was performed using 
Kraken2 (version 2.0.8). Bracken was utilized to improve species-level 
abundance estimation based on Kraken2 results (Wood et al., 2019). 
Functional annotation of genes was performed by aligning to KEGG 
database using DIAMOND (v.0.9.32.133) (Buchfink et al., 2015), and 
the best-hit with identity ≥30% and coverage ≥70% was selected. The 
Chao1 and Shannon indices were calculated using the R packages 
picante and vegan based on the microbial abundance matrix at the 
species level. The dissimilarity matrix constructed using the Bray–
Curtis method was employed to visualize the differences in microbiota 
composition between different groups.

2.3. Chemicals and regents

Sigma Aldrich provided Ammonium acetate (NH4AC), Merck 
provided Acetonitrile, and Fisher provided ammonium hydroxide 
(NH4OH) and methanol. Thermo Fisher provided MS-grade 
methanol, MS-grade acetonitrile, and HPLC-grade 2-propanol. Sigma 
provided HPLC-grade formic acid and HPLC-grade ammonium 
formate. All chemicals used in this study were of high purity and 
quality, ensuring the reliability and reproducibility of the results.

2.4. Analysis of plasma metabolomics

Untargeted metabolomic and lipidomic profiles of fasting serum 
and stool samples were measured by combining two UHPLC-MS/MS 
methods, including metabolites in both positive and negative ionization 
modes. The raw data files were processed using Compound Discoverer 
3.1 (CD3.1, Thermo Fisher) to perform peak alignment, peak picking, 
and metabolite quantitation. The main parameters included: a retention 
time tolerance of 0.2 min; actual mass tolerance, 5 ppm; signal intensity 
tolerance of 30%; signal/noise ratio of 3; and minimum intensity of 
100,000. Peak intensities were normalized to the total spectral intensity 
and used to predict the molecular formula based on additive ions, 
molecular ion peaks and fragment ions. Peaks were then matched with 
the mzCloud,1 HMDB, mzVault and MassList databases for untargeted 
metabolomic analysis, and with the Lipidmaps and Lipidblast databases 
for lipidomic analysis. Accurate qualitative and relative quantitative 
results were thus obtained. Partial least squares discriminant analysis 
(PLS-DA) was used to reveal the metabolites changes in groups by R 
package ropls (Thevenot et al., 2015) and the abundance of significant 
metabolites with variable important in projection (VIP) >1 and with 
corrected p-value (Wilcoxon test) <0.05 were selected for enrichment 

1 https://www.mzcloud.org/

analysis. The enrichment pathway of differential plasma metabolite 
profile between any two groups in pigs was analyzed by MetaboAnalyst 
5.02 (Pang et al., 2022), respectively.

2.5. Sample preparation for lipidomics 
analyses

For the purpose of non-targeted lipid profiling, lipids were isolated 
from plasma samples using established techniques, as described 
previously (Zhou et al., 2017). Briefly, a 200 μL volume of water was 
added to sample and vortexed for 5 s. Subsequently, 240 μL of precooling 
methanol was added and the mixture vortexed for 30 s. After that, 
800 μL of MTBE was added and the mixture was ultrasound 20 min at 
4°C followed by sitting still for 30 min at room temperature. The 
solution was centrifuged at 14,000 g for 15 min at 10°C and the upper 
organic solvent layer was obtained and dried under nitrogen. Reverse 
phase chromatography was selected for LC separation using CSH C18 
column (1.7 μm, 2.1 mm × 100 mm, Waters). The lipid extracts were 
re-dissolved in 200 μL 90% isopropanol/acetonitrile, centrifuged at 
14,000 g for 15 min, finally 3 μL of sample was injected. Solvent A was 
acetonitrile–water (6:4, v/v) with 0.1% formic acid and 0.1 mM 
ammonium formate and solvent B was acetonitrile–isopropanol (1,9, 
v/v) with 0.1% formic acid and 0.1 mM ammonium formate. The initial 
mobile phase was 30% solvent B at a flow rate of 300 μL/min. It was held 
for 2 min, and then linearly increased to 100% solvent B in 23 min, 
followed by equilibrating at 5% solvent B for 10 min. Mass spectra was 
acquired by Q-Exactive Plus in positive and negative mode, respectively. 
ESI parameters were optimized and preset for all measurements as 
follows: source temperature, 300°C; capillary temperature, 350°C, the 
ion spray voltage was set at 3000 V, S-Lens RF Level was set at 50% and 
the scan range of the instruments was set at m/z 200–1800. “Lipid 
Search” is a search engine for the identification of lipid species based on 
MS/MS math. Lipid Search contains more than 30 lipid classes and 
more than 1,500,000 fragment ions in the database. Both mass tolerance 
for precursor and fragment were set to 5 ppm.

2.6. Statistical analysis

All statistical analyses were conducted in R platform (version 4.0). 
For statistic in multiple groups, we utilized Kruskal–Wallis one-way 
ANOVA to evaluate the difference among three groups. Only the 
remarkably different indices in three groups were evaluated by further 
Mann–Whitney U test with Bonferroni correction as post-hoc test 
between each of two groups. Values of adjusted p-value less than 0.05 
were considered statistically significant. Error bars indicate 
mean ± standard error (se). The Mfuzz package in R to conduct the 
cluster analysis. Spearman’s rank correlation coefficients were 
calculated and corrected for multiple testing using the Benjamini–
Hochberg method. For the correlations between differentially 
microbial species, KO genes, metabolites, and lipidomics, a 
significance threshold of 0.05 and an absolute correlation threshold of 
0.6 were applied.

2 http://www.metaboanalyst.ca
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3. Results

3.1. Description of the study

In the present research, we performed a multi-omic oral and gut 
microbiome study of pigs at 1 year old, 4 years old, and 8 years old. This 
extended previous studies that based on 16S rRNA gene sequencing 
and limited in gut region. This study additionally includes 
metagenomics analyses of the oral cavity, metabolomics, and 
lipidomics of serum in tested subjects (Figure 1A). We generated 
metagenomic data for 45 faeces and 45 saliva, while metabolomics, 
and lipidomics data for 30 serum samples, respectively. In sum, a total 
of 575.6 Gbp of DNA sequencing data was acquired.

Across all samples with available metagenomic data, the total 
clean DNA sequencing data amounted to 292.0096 Gbp for fecal 
specimens and 282.64 Gbp for sputum samples. Each sample yielded 
an average of 6.49 Gbp for feces and 6.28 Gbp for saliva. For serum 
samples, we identified 1,150 metabolites in positive ion mode and 
496 in negative ion mode, and 2,402 lipids through lipidomics. By 
integrating these multi-omics datasets, we provide a comprehensive 
analysis of the changing trajectory of aging-related gut-oral microbial 
species, functional genes, and pathways, along with their intimate 
correlations with serum metabolites and lipids.

3.2. Increased alpha-diversity and altered 
overall saliva-faeces microbial composition 
in swine across different stages of age

We performed metagenomic analyses in pigs with nearly 1 year 
old (adult, Ad group), 4 years old (middle age, Ma) and 8 years old (old 
age, Oa) to explore the link between the oral-gut microbiome and 
different stage of ages. In faeces, Chao1 index showed significant 
difference among the porcine age groups, while there was no 
significant alteration in Shannon’s diversity index between Ma and Oa 
groups except between Ad and Ma groups. However, in saliva samples, 
both alpha diversity indexes showed no statistical difference among 
these three groups, though consistently exhibited higher alpha 
diversity from Ad to Oa stage (Figures 1B,C). Furthermore, principal 
coordinate analysis (PCoA) based on Bray–Curtis distances from gut 
and oral microbiota at species showed significant separation among 
the three groups (p < 0.05; Figures 1D,E). These results all suggested 
that age played a great role in the composition of oral and gut 
microbiota of swine.

At the phylum level, we observed considerable differences in the 
oral and gut microbial profiles among the Ad, Ma and Oa groups. In 
the stool sample, the relative abundance of Firmicutes was increased 
in parallel with age, whereas Bacteroidetes was more abundant in the 
Ad group and Actinobacteria was more abundant in the Ma group 
(Figure 1F). In the saliva sample, we observed the relative abundance 
of Bacteroidetes decreased with aging. Inversely, Proteobacteria and 
Actinobacteria increased in the Ma and Oa groups as compared with 
Ad group (Figure 1G). In addition, the Firmicutes/Bacteroidetes (F/B) 
ratio was a measure of the relative abundance of Firmicutes and 
Bacteroidetes bacteria in the gut microbiome. It has been suggested 
that this ratio may be a useful indicator of overall gut health and may 
also be associated with various health conditions, we compared the 
ratio in the three groups. The relative abundance of Firmicute was 

higher in subjects of Ma and Oa groups than in the Ad group, whereas 
the proportion of Bacteroidetes was lower in Ma group, accordingly, 
we found a higher Firmicutes/Bacteroidetes ratio in the pigs of Ma 
group than in the Oa and Ad groups (Figure 1H).

3.3. Age-dependent taxonomic signatures 
of oral and gut microbial species

Previous investigations have primarily relied on 16S rDNA 
microbiome profiling, which has imposed limitations on the 
comprehensive assessment of age-related variations in the abundance 
of microbial species and their functional capacities within the 
microbial community. In the present study, our objective was to 
investigate the alterations in compositions and functions of the 
oral-gut axis microbiota associated with age. To achieve this, 
we employed shotgun metagenomics to analyze sputum and fecal 
specimens obtained from swine, enabling a more in-depth exploration 
of the microbial community. Furthermore, we  conducted a 
comparative analysis of microbial abundance across different age 
groups to elucidate the potential impact of age on the oral-gut axis 
microbiota. Among the top 10 species in the Ad, Ma, and Oa groups, 
the most abundant in the gut were Lactobacillus reuteri, Lactobacillus 
johnsonii, Lactobacillus amylovorus (each belonging to the genus 
Lactobacillus), Ruminococcus flavefaciens, Bacteroides fragilis, and 
Corynebacterium xerosis (Figure  2A). Next, we  determined 
differentially abundant species among the three groups and between 
any two groups by using Kruskal–Wallis and Wilcoxon rank-sum test 
analyses, respectively. Furthermore, we only considered those species 
that make up at least 0.05% of the relative abundance of the entire 
community and have adjusted p-values <0.05. Examination of the 
microbiota at the species level identified a consortium of bacteria that 
were significantly altered by the effect of age. When comparing the 
top  30 different species in each group, the majority of only 
Ad-enriched bacteria were from genus Bacteroides, including 
Bacteroides fragilis, Bacteroides plebeius CAG:211, and Bacteroides 
plebeius. On the other hand, the abundances of several species from 
genus Clostridium, comprising Clostridium perfringens, Clostridium 
celatum, Clostridium disporicum, as well as Bifidobacterium 
pseudolongum were notably enhanced in Ma group. What’s more, the 
abundances of Oscillibacter sp. 57_20 s, Oscillibacter sp. CAG:155, and 
Oscillibacter sp. 1–3 were also found increased with age (Figure 2B and 
Supplementary Table S1). Further, pairwise comparisons identified 62 
microbial species that showed differential expression between Ma and 
Ad groups, 36 species between Oa and Ad groups, and 43 species 
between Oa and Ma groups (Supplementary Figures S1A–C and 
Supplementary Table S2).

We next investigated which salivary microbes show 
significant differences across age. We observed Chryseobacterium 
taklimakanense, Moraxella pluranimalium, Flavobacterium 
ummariense, and Moraxella porci were the top abundant species 
in the saliva samples of pigs in Ad, Ma, and Oa groups 
(Figures 2C). In particular, our results show a number of taxa that 
increase with age, including the species Corynebacterium xerosis, 
Staphylococcus sciuri, Actinobacillus seminis, Escherichia coli, and 
Corynebacterium pollutisoli, or decrease with age, including the 
species Flavobacterium marinum, Flavobacterium ummariense, 
Chryseobacterium bovis, and Chryseobacterium hominis 
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(Figure  2D; Supplementary Figures S1D–F and 
Supplementary Table S3). In addition, a total of 66 salivary 
microbes were found as significantly different between Ma and 
Ad groups, 66 species between Oa and Ad groups, and 8 microbes 
between Oa and Ma groups (Supplementary Figures S1D–F and 
Supplementary Table S4).

3.4. Age-specific serum metabolomic and 
lipidomic features in domestic pigs

Serum metabolites and lipids are known to play a key role in 
mediating the metabolic and immune interactions between the 
microbiome and its host, thus providing a fundamental view into the 
complex dynamics of host age and physiology. To refine the 
metabolomic and lipidomic features across age, we  performed 
untargeted metabolomic and lipidomic profiling by UHPLC-MS/MS 
analysis. A subset of 30 participants (each 10 pigs from Ad, Ma, and 
Oa groups) from this study was included in the serum metabonomic 
and lipidomic study. In serum samples, 1,646 known metabolites and 
2,402 lipids were yielded. Both qualitative PCA and PLS-DA analyses 
were performed to evaluate metabolomic and lipidomic composition. 
From the prospective of serum metabolites, overall metabolic 
abundance of swine at different stages of age was different from that 
of each other as indicated by PCA analysis (Figures  3A p  < 0.05, 
PERMANOVA test) and PLS-DA analysis (Supplementary Figure S2A). 
To identify significantly altered metabolites that may be important 
across the stages of age, we performed pairwise comparisons between 

groups. When Ma was compared with Ad, a sum of 121 
metabolites were significantly altered (Figure 3B). These include the 
enrichment of deoxycholic acid, 1-palmitoylphosphatidylcholine, 
1-methylhistidine, lipoxin a4, phenaceturic acid, and 1h-indole-3-
propanoic acid. In contrast, succinate, taurine, leucine, L-isoleucine, 
and glutamic acid was depleted in Ma pigs compared with Ad 
(Supplementary Figure S2B and Supplementary Table S5). With the 
comparison of Oa with Ad, 113 metabolites were detected differentially 
abundant (Figure 3C), including the depletion of taurine, succinate, 
phenylalanine, glutamic acid and folinic acid in Oa. Particularly, 
deoxycholic acid, salicylic acid, phenaceturic acid, chenodeoxycholate, 
1-palmitoyllysophosphatidylcholine, hippuric acid, and valine betaine 
were enriched in Oa and Ma when both compared to Ad subjects 
(Supplementary Figure S2C and Supplementary Table S6). Moreover, 
40 metabolites were identified with differential expression in Oa and 
Ma groups. Notably, sarcosine, 1-palmitoyl-lysophosphatidylcholine 
and histamine were found to show increasing trends from Ad, 
through  Ma, to Oa (Figure  3D; Supplementary Figure S2D and 
Supplementary Table S7). Among them, four metabolites 
(5-methoxymethylone, pro-hyp, 1-palmitoyl-lysophosphatidylcholine, 
and 17,20-dimethyl prostaglandin F1alpha) overlapped with those of 
aging correlations (Figures  3E,F), suggesting their potential 
contribution to the progression of different stages of age. Furthermore, 
MetaboAnalyst was used for searching KEGG database to explore the 
most relevant metabolic pathways based on differential metabolites 
from each pair of inter-group differential analyses. Valine, leucine and 
isoleucine biosynthesis, and Histidine metabolism were significantly 
influenced by age (Figure 3G).

FIGURE 2

Taxonomic signatures of oral and gut microbial species showed age-dependent. (A) Stacked bar chart displays the top 10 most abundant microbes at 
species level in stool sample among the three groups. (B) The Kruskal–Wallis test was employed to identify microbes that differed significantly among 
three groups (with corrected p-value <0.05). The grouping error bar plot displays the top 30 microbes with the largest differences in stool samples. 
(C) The stacked bar chart displays the top 10 most abundant microbes in different groups of saliva samples, ranked by their relative abundances. 
(D) The Kruskal–Wallis test was employed to identify microbes that differed significantly among three groups (with corrected p-value <0.05). The 
grouping error bar plot displays the top 30 microbes with the largest differences in salivary samples.
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Next, among these lipids detected in different stages of pigs, 
the top 5 classes were represented as following: triacylglycerols 
(TGs), phosphatidlycholines (PCs), sphingomyelins (SMs), (DG), 
and (ChE) (Supplementary Figures S2A–C). PLS-DA analysis of 
differentially altered lipids (DALs) indicated that serum lipid 
profiles were dramatically shifted from Ad, through Ma to Oa 
pigs (Supplementary Figure S2D). To determine the temporal 
characteristics of the complete lipidomic dataset, Mfuzz was used 

for clustering analysis of 1,087 DALs across different stages of 
age, which divided all the DALs into 4 clusters (Figure 4A and 
Supplementary Table S8). As shown in Figure 4B, Cluster 1 and 
Cluster 4 were presented with an increasing trend in Ma and Oa 
groups when compared to the Ad group. We next found the DALs 
in Cluster 2 were exhibited a progressively declined in over the 
course of aging. However, it is also noteworthy that the levels of 
DALs in Cluster 3 were all dramatically decreased in Ma group. 

FIGURE 3

Aging altered the overall serum metabolites composition. (A) Principal component analysis (PCA) of serum metabolomics data revealed a significant 
deviation in metabolite composition among different age groups. (B) Compared Ma with Ad group, scatter plot showed that 44 metabolites with 
significantly higher abundance in Ma group are indicated with purple, while the 77 metabolites with significantly higher abundance in Ad group are in 
cyan. (C) Scatter plot showed that 48 metabolites with significantly higher abundance in Oa group are indicated with brown, while the 65 metabolites 
with significantly higher abundance in Ad group are in cyan. (D) Scatter plot showed that 22 metabolites with significantly higher abundance in Oa 
group are indicated with brown, while the 18 metabolites with significantly higher abundance in Ma group are in purple. (E) The Venn diagram 
illustrated the intersection based on significant differential metabolites derived from any two groups, and revealing that 4 metabolites were present in 
the differential results of all 3 pairwise comparisons. (F) The box plot displays the relative abundances of intersecting 4 metabolites across different age 
groups, with letters above the plot indicating significant differences between groups. Different letters between two groups indicate significant 
differences. (G) A metabolic pathway analysis was performed based on metabolites showing differences between pairwise groups. The size of the 
circles represents the degree of pathway enrichment, while the color of the circles indicates the significance of the pathway.
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We then found that 35.98, 14.29, and 12.17% of DALs in Cluster 
1 belongs to the lipid classes of triglyceride (TG), 
phosphatidylcholine (PC), and diradylglycerols (DG), 
respectively (Figure 4C). Within Cluster 2, 9.13% of DALs are 
TG, 19.8% are sphingomyelins (SM), 16.89% are ceramide (Cer), 
and 6.59% are PC (Figure  4D). These DALs were gradually 
decreased over age, suggesting that these DALs were specific 
diminished in response to the physiological alteration in relating 
to aging. The lipidomic analysis also showed that 20.82% of DALs 
in Cluster 3 were TG, and 17.14% were SM (Figure  4E). 
Additionally, when compared to pigs in Ad and Ma groups, swine 
in Oa was more profoundly in increasing the abundances of DALs 
in Cluster 4, in which 18.89% were TG, 27.42% were PC, and 
13.13% were DG (Figure 4F). Furthermore, paired comparisons 
revealed 32 lipids exhibited significant differences between the 
Oa and Ma group, whereas 82 and 67 features showed obvious 
differences between the Ad versus the Ma and the Oa group, 
respectively (FDR <0.05, Supplementary Table S9). Of these 
significantly changed lipids, we screened out three lipids with 
significant differences in expression among the three groups 
(Figure 4G). The abundance of these three lipids were displayed 
in Figures 4H–J.

3.5. Summary of age-associated changes in 
microbial genes through KO genes and 
KEGG pathway modules

Considering the multi-omics shift of the gut microbiome and 
metabolome with age, we  hypothesized that metabolite and lipid 
differences might reflect differences in microbial enzyme gene 
expression. To further determine the microbial metabolic processes 
occurring in swine at different stages of age, we  annotated 
metagenome-analysed microbial genes in the KEGG orthology (KO) 
database. Firstly, PCA analyses based on KO genes and functional ko 
pathways in faeces and saliva samples displayed a significantly 
different distribution of KO genes among three groups (Figures 5A,B; 
Supplementary Figures S3A,B). To examine the effect of age on 
influencing the prevalence of microbial enzymatic genes, we compared 
the relative abundance of KO genes among the three groups and 
between each of two groups. Notably, we observed a sum of 99 KO 
genes within the intestinal microbiota were showed significantly 
different in abundance in swine among three groups (Figure 5C and 
Supplementary Table S10). Among the differentially abundant genes, 
gluA and pgm gene abundance showed a tendency to rise gradually 
with increasing age. In the saliva samples of swine, 35 differentially 

FIGURE 4

Significant differences in lipid profiles among different age groups. (A) The differentially altered lipids (DALs) that showed significant changes were 
clustered and represented in a heatmap. (B) Four clusters (Clusters 1–4) were highlighted, and the trend lines indicating the change in serum levels of 
these differentially altered lipids (DALs) were displayed. (C–F) The differentially altered lipids (DALs) in each cluster were further subcategorized based 
on their lipid classes. (G) The Venn diagram illustrated the intersection based on significant differential lipids derived from any two groups, and 
revealing that 3 lipids were present in the differential results of all 3 pairwise comparisons. (H–J) The box plot displays the relative abundances of 
intersecting 3 lipids across different age groups, with letters above the plot indicating significant differences between groups. Different letters between 
two groups indicate significant differences.
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expressed KO genes encoded by oral microbiota were detected 
(Supplementary Figure S3C and Supplementary Table S11), such as 
glnA, which dominant in Oa group, but had the lowest abundance in 
Ma group. Intriguingly, we found 13 discrepant KO genes that were 
intersected in the intestinal and salivary microbiota (Figure 5D). For 
instance, K03496 and K06180 were simultaneously enriched in the gut 
and salivary microbiome of Ad group. Overall, these intersecting 
differential genes are not similarly enriched across groups 
(Figures 5E,F). In the KO map analyses of gut microbial metabolism 
in the three stages of age, which revealed that the abundance of 
ko04217 (cell growth and death; necroptosis), ko05152 (infection 
disease; bacterial; tuberculosis) and ko04727 (nervous system; 
GABAergic synapse) were progressively increased from Ad group, 
through Ma group, to Oa group (Figure  5G and 
Supplementary Table S12). Among the differentially abundant 
pathways in salivary microbiota, we identified the dominant KEGG 
pathways that were enriched in the Oa group as the following, 
including ko01523 (drug resistance: antineoplastic; antifolate 
resistance), ko04211 and ko04213 (aging: longevity regulating 
pathway), and ko05134 (infectious diseases: bacterial; legionellosis), 
while amino acid metabolism (ko00200, ko00430, ko00471), cofactors 
and vitamins (ko00670), as well as Carbohydrate metabolism 
(ko00053, ko00520, ko00052) were mainly increased in Ma group 
(Supplementary Figure S3D and Supplementary Table S13). 
Furthermore, Venn diagram analysis revealed that 26 discriminatorily 
abundant ko maps that were present in both the oral and gut 
microbiota (Supplementary Figure S3E), of which the Pyruvate 

metabolism (ko00620) was increased progressively, and Peroxisome 
(ko04146) was declined gradually from Ad to Ma and then to Oa 
group (Supplementary Figures S3F,G).

3.6. The association between metabolites, 
lipids, and oral-gut microbiome in swine at 
different stages of age

The present investigation employed an intrinsic multi-omics 
analysis to elucidate the microbial features present in saliva, stool, 
serum metabolites, and lipids, demonstrating varied expression 
patterns among pigs at different age stages. Moreover, an association 
analysis was performed to comprehend the interplay between the 
altered oral-gut microbiota and the differentially abundant serum 
metabolites and lipids, utilizing Spearman rank correlation analysis. 
This analytical strategy facilitated the identification of co-varying 
features that relied on their mutual covariation with the ageing 
process. These findings provide valuable insights into the intricate 
interactions among diverse biological systems while highlighting 
potential avenues for further research in this domain. Notably, 
we observed significant disparities in the distribution of associations 
between paired microbial species and serum metabolites and lipids 
across various age stages. Specifically, when initially correlating these 
paired features to distinguish between pigs in the Ad group and Ma 
group, a multitude of positively and negatively associated features 
were detected (absolute coefficients >0.7 and FDR <0.05) (Figure 6A 

FIGURE 5

The alterations in the KO functional genes and pathways of the oral-gut microbiome that occur with aging. (A,B) Principal component analysis (PCA) 
based on KO genes and pathways of the microbiome in stool revealed a distinct separation trend between different groups. (C) The heatmap displays 
the abundance of differentially expressed KO genes in the microbiome of fecal samples across three groups. The abundance of each KO gene is 
represented by the mean value of the samples in each group. (D) A Venn diagram illustrates the intersection of differentially expressed KO genes in 
fecal samples across three groups and differentially expressed KO genes in saliva samples across three groups. (E,F) The bar chart (with error bars) 
displays the abundance of 13 differentially expressed KO genes that are present in both fecal (E) and saliva samples (F). (G) The heatmap displays the 
abundance of differentially expressed KO pathways in the microbiome of fecal samples across three groups. The abundance of each KO pathways is 
represented by the mean value of the samples in each group.
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and Supplementary Table S14). Among the four metabolites that 
significantly discriminate between any two comparisons, it was 
observed that the abundance of several microbial species, such as 
Bacteroides fragilis, Bacteroides plebeius CAG:211, Enterococcus 
cecorum, Oscillibacter sp. CAG:241, Oscillibacter sp. CAG:241_62_21, 
Firmicutes bacterium CAG:83, Fusobacterium mortiferum, and 
Fusobacterium necrophorum, exhibited a negative correlation with 
1-palmitoyl-lysophosphatidylcholine (Figures 6B–I). Similarly, species 
of Clostridium botulinum, Clostridium celatum, and Clostridium 
disporicum also exhibited an anticorrelation with the serum level of 
pro-hyp (Figures  6K,L). Additionally, a total of 161 associations 
between stool microbial species and serum lipids were identified 
(Supplementary Figure S4A and Supplementary Table S15). 
We further examined the association patterns between two lipids that 
significantly decreased from Ad, through Ma, to Oa, and stool 
microbes. It was observed that Bacteroides fragilis, Bacteroides plebeius 
CAG:211, and Fusobacterium mortiferum were positively associated 
with SM(d36:1) + HCOO (Supplementary Figures S4B,D). 
Interestingly, we  also observed that the relative abundance of 

Bacteroides fragilis, Bacteroides plebeius CAG:211, and Fusobacterium 
mortiferum were positively correlated with SM(d38:4) + H 
(Supplementary Figures S4E–G). We also evaluated the associations 
between salivary microbes and serum metabolites and lipids, as 
described above. The number of correlations reached 301 and 476, 
respectively, by the time the association analysis was conducted 
between salivary microbes and serum metabolites and lipids 
(Supplementary Figures S5A, S6A and Supplementary Tables S16, S17). 
As shown in Supplementary Figures S5B–D, 1-palmitoyl-
lysophosphatidylcholine was positively correlated with salivary 
Kocuria sp. ZOR0020, Nigerium massiliense, and Staphylococcus sciuri. 
Additionally, pro-hyp exhibited a positive association with 
Flavobacterium columnare and Flavobacterium marinum 
(Supplementary Figures S5E,F). Additionally, our investigation 
revealed that SM(d36:1) + HCOO declined with age and exhibited a 
negative correlation with eight salivary microbes. Notably, 
we observed a positive association between SM(d36:1) + HCOO and 
Pelistega sp. MC2 (Supplementary Figures S6B–J). Besides, 
we observed that SM(d38:4) + H exhibited an inverse correlation with 

FIGURE 6

Association between metabolites, and gut microbiome of the swine in Ad and Ma groups. (A) The correlations between fecal microbes and serum 
metabolites were calculated. The absolute correlation coefficient (|r|) is represented by the size of the circle, and the adjusted p-value is indicated by 
an asterisk (“*”, p  <  0.05, “**”, p  <  0.01, “***”, p  <  0.001). (B–I) Scatter plot representing the relationship between 1-palmitoyl-lysophosphatidylcholine and 
Bacteroides fragilis, Bacteroides plebeius CAG:211, Enterococcus cecorum, Oscillibacter sp. CAG:241, Oscillibacter sp. CAG:241_62_21, Firmicutes 
bacterium CAG:83, Fusobacterium mortiferum, and Fusobacterium necrophorum, respectively, by using Spearman rank sum test. (J–L) The 
relationship between pro-hyp and Clostridium botulinum, Clostridium celatum, and Clostridium disporicum was analyzed using a scatter plot and 
Spearman rank sum test.
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four salivary microbes and a positive association with one salivary 
microbe (Supplementary Figures S6K–O). Furthermore, the results of 
the association analysis for paired microbiome, metabolites, and lipids 
in others any two groups are presented in Supplementary Tables 
S18–S25.

4. Discussion

Ageing is a significant risk factor for several age-related diseases, 
such as non-alcoholic fatty liver disease (NAFLD), type 2 diabetes 
mellitus, cardiovascular disease, neurodegenerative diseases, and 
cancer (Guo et al., 2022). To gain a better understanding of the ageing 
process, researchers have identified twelve hallmarks that contribute 
to this process. These hallmarks encompass genomic instability, 
telomere attrition, epigenetic alterations, loss of proteostasis, disabled 
macroautophagy, deregulated nutrient sensing, mitochondrial 
dysfunction, cellular senescence, stem cell exhaustion, altered 
intercellular communication, chronic inflammation, and dysbiosis. By 
comprehending these hallmarks and their underlying mechanisms, 
strategies can be developed to promote healthy ageing and, potentially, 
prevent or treat age-related diseases (Lopez-Otin et al., 2023). While 
the significant role of gut microbiota in influencing host health and 
disease has been well-established (Lynch and Pedersen, 2016), a 
comprehensive understanding of the intricate structure of the gut 
microbiome and the underlying mechanisms that interact with host 
aging in domestic pigs is still lacking. Therefore, the primary aim of 
this investigation is to discern the age-related alterations in both the 
oral and gut microbiome, as well as blood metabolites and lipids. By 
conducting this study under relatively uniform conditions, we seek to 
unravel the inter-relationships among these factors and shed light on 
the complex dynamics of host-microbiota interactions during the 
aging process.

In the current study, we  investigated the effects of aging on 
oral-gut microbiome by utilizing multi-omics approaches, including 
shotgun metagenomics, LC-MS untargeted metabolomics and 
lipidomics analysis, and proteomics. In summary, our findings 
demonstrate that the elderly swine, particularly the Oa group, 
exhibited higher gut microbial diversity in both saliva and stool 
samples compared to the younger group living in the same farm, 
which in accordance with previous studies. Nevertheless, recent 
studies have revealed that centenarians are commonly associated with 
lower alpha diversity in their gut microbiome, as well as a decrease in 
butyrate-producing bacteria such as Faecalibacterium, Roseburia, and 
Eubacterium, instead with increased opportunistic pathogens (Biagi 
et al., 2017). Additionally, it is common for individuals to experience 
an upsurge in opportunistic pathogens within their gut microbiome, 
potentially due to a reduction in immune system function that results 
in a decrease in the population of beneficial gut bacteria. This decline 
in beneficial bacteria can lead to an amplification of opportunistic 
bacteria that may exert detrimental effects on health (Bosco and Noti, 
2021). The observed increase in microbial diversity may signify a 
compensatory mechanism in response to the decline in beneficial gut 
bacteria, as the body endeavors to maintain a microbial equilibrium 
within the gut. Moreover, the greater alpha diversity observed in 
elderly individuals may be linked to longer colonic transit times and 
heightened exposure to environmental influences relative to younger 
individuals (Graff et al., 2001; Roager et al., 2016). Our research has 

revealed distinctive structural and functional traits of the gut 
microbiome in Oa pigs, highlighting an elevated abundance of specific 
beneficial bacterial species, including Akkermansia, in elderly swine. 
On the other hand, our study has demonstrated that aging is correlated 
with an increasing prevalence of pathogenic bacteria in the salivary 
microbiome, suggesting that alterations in the salivary microbiome 
may serve as a more precise indicator of the aging process within the 
body. Despite the clinical significance of gut microbiota composition, 
there is a paucity of research investigating the age-related dynamics of 
the microbiota, including changes in the F/B ratio. Only a limited 
number of researches have focused on examining the age-related 
changes in the F/B ratio in swine. This highlights the need for further 
research to better understand the dynamics of the gut microbiota 
throughout the aging process and its impact on host health and 
diseases. In this research, the F/B ratio was found to sharply increase 
from Ad to Ma, and then just as slightly decreased from Ma to Oa 
group, which exhibited controversy against previous reports 
(Makivuokko et al., 2010; Claesson et al., 2011; Kim et al., 2019). 
Research has shown that individuals with obesity and metabolic 
diseases typically have a higher F/B ratio, whereas those who are 
healthy have a lower ratio (Crovesy et al., 2020; Magne et al., 2020). 
Pigs belonging to the Oa group exhibited a higher F/B ratio compared 
to adult pigs, indicating dysbiosis in the gut microbiota of elderly 
swine, which may be linked to age-related diseases in pigs. Moreover, 
some studies have suggested that a higher F/B ratio could lead to 
increased energy harvest from the diet, subsequently resulting in 
weight gain, which may explain why pigs in the Ma group in the 
production phase require more energy to support their reproductive 
performance. During this period, sows generally gain weight and 
participate in reproductive and lactation activities, which necessitate 
greater nutrient intake, particularly energy. Therefore, further research 
is required to fully comprehend the intricate relationship between the 
F/B ratio and host aging.

Notably, it has been documented that aging is accompanied 
with chronic inflammation and inflamm-aging provided the 
possibility of studying aging-related diseases from a promising 
viewpoint (Kovtonyuk et  al., 2016). 1-palmitoyl-
lysophosphatidylcholine (1-PC) is reported as a bioactive lipid 
molecule that has been shown to play a role in inflammation (Hung 
et al., 2012; Liu et al., 2020). It is a type of lysophosphatidylcholine 
(LPC), which is a class of phospholipids that are involved in 
various physiological processes (Schmitz and Ruebsaamen, 2010; 
Law et al., 2019; Liu et al., 2020). Studies have found that 1-PC can 
activate immune cells such as macrophages and neutrophils, 
leading to the production of pro-inflammatory cytokines and 
chemokines (Liu et al., 2020). In addition, 1-PC has been shown to 
stimulate the production of reactive oxygen species (ROS), which 
can contribute to inflammation and tissue damage (Yoder et al., 
2014). Furthermore, elevated levels of 1-PC have been observed in 
various inflammatory conditions such as atherosclerosis, and joint 
pain (Liu et al., 2020; Jacquot et al., 2022). In these conditions, 
1-PC is thought to contribute to the pathogenesis of the disease by 
promoting inflammation and tissue damage. Overall, the available 
evidence suggests that 1-PC is involved in the regulation of 
inflammation and may contribute to the development and 
progression of various inflammatory conditions. The present study 
identified that the abundance of 1-PC was increased progressively 
with porcine age and negatively associated with gut Bacteroides 
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fragilis, Bacteroides plebeius CAG:211, Enterococcus cecorum, but 
positively correlated with oral pathogenic Staphylococcus sciuri, 
and Nigerium massiliense. The observed increase in 1-PC levels in 
the bloodstream of elderly pigs may signify the manifestation of 
inflammaging, a chronic low-grade inflammatory state that is 
linked to aging. The upsurge in 1-PC may trigger the recruitment 
of lymphocytes and macrophages, resulting in the production of 
multiple inflammatory factors that can induce oxidative stress, 
amplify the level of inflammation in the body, and potentially fuel 
the onset of various age-related ailments. The correlation analyses 
revealed that there may be  a complex interplay between these 
microbial species and this particular serum metabolite, which 
could potentially have implications for pig health and well-being. 
However, further research is needed to fully understand the 
mechanisms underlying these associations and their potential 
impact on pig health.

Pro-hyp is a dipeptide composed of proline and hydroxyproline 
that is found in collagen, a major component of connective tissues such 
as skin, tendons, and cartilage (Ohara et al., 2010; Ide et al., 2021). 
Collagen is produced by fibroblasts in various tissues throughout the 
body and is subsequently broken down into smaller peptides, 
predominantly pro-hyp, through various enzymatic processes (Ohara 
et al., 2007). Pro-hyp could be absorbed into circulation and transported 
to other tissues, where it exerts various beneficial effects, including anti-
inflammatory, improve skin anti-decrepitude function and ameliorated 
joint condition (Zhang et al., 2010; Sontakke et al., 2016; Lee et al., 2019; 
Aguirre-Cruz et al., 2020). Osteoporosis is a disease characterized by 
low bone mass and structural deterioration of bone tissue, leading to 
increased bone fragility and a higher risk of fractures. Aging is a major 
risk factor for osteoporosis, as bone mass tends to decline with age. This 
is due to a combination of factors, including hormonal changes, 
decreased physical activity, and altered microbial composition. Studies 
have found that changes in the gut microbiota composition are 
associated with changes in bone density and structure. For example, 
some studies have found that the presence of certain bacterial species, 
such as Lactobacillus, is associated with increased bone density, while 
other species, such as Prevotella, are associated with decreased bone 
density. In our study, we discovered the declined level of pro-hyp in pigs 
progressively with age. In addition, we also found a significant negative 
correlation between decreased levels of pro-hyp and the abundance of 
gut Clostridium botulinum, Clostridium disporicum and Clostridium 
celatum, while showed a significant positive association with salivary 
Flavobacterium columnare, and Flavobacterium marinum. This could 
be due to the fact that gut bacteria, which are significantly negatively 
correlated with pro-hyp levels, increase in abundance with age, while 
oral microbiota, which are positively correlated with pro-hyp levels, 
decrease with age. In summary, the findings of this study suggest that 
supplementation with pro-hyp and probiotics that have the capacity to 
produce or process pro-hyp may represent a potential strategy for 
ameliorating age-related skeletal and skin aging. Notably, the interaction 
between pro-hyp and host microbiota shows promise as a novel avenue 
for the development of therapeutic interventions for aging-related 
disorders, including improved joint health and skin elasticity. These 
results have implications for the development of targeted therapies 
aimed at mitigating the negative effects of aging on the musculoskeletal 
and integumentary systems.

In summary, this investigation employed a unique approach by 
utilizing pigs residing in a controlled farm environment to mitigate 
confounding variables. The study revealed notable age-dependent 
modifications in both the structure and function of the oral and 
gut microbiota, as well as alterations in circulating levels of 
metabolites and lipids. Furthermore, we  identified numerous 
interrelationships between perturbed microbial species and serum 
molecules, potentially influencing the maintenance of health and 
the development of diseases throughout different stages of host 
development and aging. However, the challenge of mitigating 
harmful inflamm-aging factors to promote healthy aging remains 
a significant obstacle. These findings hold significant implications 
for the advancement of therapeutic interventions and the progress 
of clinical applications targeting age-related diseases, utilizing pigs 
as a naturally aging animal model.
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