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Although metagenomic sequencing is now the preferred technique to study 
microbiome-host interactions, analyzing and interpreting microbiome 
sequencing data presents challenges primarily attributed to the statistical 
specificities of the data (e.g., sparse, over-dispersed, compositional, 
inter-variable dependency). This mini review explores preprocessing and 
transformation methods applied in recent human microbiome studies to 
address microbiome data analysis challenges. Our results indicate a limited 
adoption of transformation methods targeting the statistical characteristics 
of microbiome sequencing data. Instead, there is a prevalent usage of relative 
and normalization-based transformations that do not specifically account for 
the specific attributes of microbiome data. The information on preprocessing 
and transformations applied to the data before analysis was incomplete 
or missing in many publications, leading to reproducibility concerns, 
comparability issues, and questionable results. We  hope this mini review 
will provide researchers and newcomers to the field of human microbiome 
research with an up-to-date point of reference for various data transformation 
tools and assist them in choosing the most suitable transformation method 
based on their research questions, objectives, and data characteristics.
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1. Introduction

In recent decades, next-generation sequencing technologies have 
significantly impacted human microbiome research, allowing for a 
better understanding and characterization of microbiome-host 
interactions (Hadrich, 2020). Numerous 16S rRNA sequencing 
datasets are extended further by metagenomic sequencing of the 
whole microbial genome. The staggering increase in publications and 
datasets with an ever-increasing number of samples increased the 
need for more performant analysis approaches, such as advanced 
statistical methods and machine learning (ML) algorithms that can 
handle large-scale microbiome datasets and extract meaningful 
patterns, relationships, and associations. Before entering ML analysis 
microbiome raw data is preprocessed through several steps shown in 
Supplementary Figure S1.

ML models can be trained to predict the composition of microbial 
communities based on various input factors such as host genetics, diet, 
and environmental factors, which can help us understand the factors 
influencing microbial composition and its relation to human health 
(Gupta and Gupta, 2021; Hernández Medina et al., 2022). Despite the 
advantages, ML analysis of microbiome data is challenging due to 
inherent microbiome data characteristics (i.e., sparsity, 
compositionality, high dimensionality, dispersion), and new 
techniques are requested to address these challenges (Moreno-Indias 
et al., 2021; D’Elia et al., 2023).

Microbiome data is zero-inflated, which can be  due to the 
sequencing depth (i.e., sampling zeros) or the real absence of taxa (i.e., 
true zeros) (Silverman et al., 2020). Furthermore, variations in the 
abundance of one taxon affect all other taxa due to the constraint that 
the total counts equal the library size. Hence, the raw counts observed 
do not directly indicate the absolute abundances of individual taxa 
(Weiss et al., 2017; Lloréns-Rico et al., 2021; Swift et al., 2023), giving 
rise to compositional data. As a result, transforming microbiome 
sequencing data is essential in preparing the data for analysis and 
applying ML algorithms.

This mini review aims to provide a comprehensive overview of the 
preprocessing methods used in recent human microbiome studies to 
transform microbiome sequencing data before ML analysis. To collect 
information, we  conducted a scoping review based on the 
methodology outlined by Arksey and O’Malley (2005), combined with 
manual and automated literature searches following the approach 
outlined by Marcos-Zambrano et al. (2021). Papers included in the 
final review were published in peer-reviewed journals from January 
2011 to January 2022 and specifically analyzed human microbiome 
16S rRNA and shotgun metagenomic data through ML algorithms. 
As of December 2022, 3 reviewers had extracted findings on data 
preprocessing and transformation techniques from 95 published 
studies (Supplementary Table S1). In the subsequent sections, 
we present and discuss the findings and outcomes of our investigation.

2. Sequence preprocessing

Microbiome analysis starts with raw DNA sequencing reads or 
microbial taxa tables at different taxonomic resolutions, from Domain 
(i.e., Bacteria, Archaea, Eucarya) to strain and genome variants. 
Microbial taxa tables are created by processing raw sequences, known 
as sequence preprocessing. Both 16S rRNA sequencing and shotgun 

metagenomic sequencing generally involve preprocessing steps such 
as quality checking, trimming, filtering, removing, and merging 
(Travisany et al., 2015; Ryan et al., 2020). The key differences lie in the 
amplification of specific gene regions for 16S rRNA sequencing and 
the sequencing of entire genomes for shotgun metagenomics. The 
sequence preprocessing steps generally depend on the origin of the 
DNA sequences, sequence orientation, and sequencer type.

Quality scores are used for the recognition and removal of 
low-quality regions of sequence (trimming) or low-quality reads 
(filtration) and the determination of accurate consensus sequences 
(merging) (Bokulich et al., 2013). A widely adopted quality metric is 
the Phred quality score (Q) (Galkin et al., 2020). Then, leading, and 
trailing trimming are applied at the position of the read where the 
average score drastically changes and falls below the given threshold 
(Bolger et al., 2014). Typical sequence preprocessing techniques are: 
(1) reads filtering, if overall quality is very low (Amir et al., 2017); (2) 
minimal length filtering, for reads below a specified length; (3) barcode 
and adapter-trimming (Martin, 2011); (4) chimera filtering (Edgar 
et al., 2011); (5) phiX reads, commonly present in marker gene of 
Illumina sequence data (Callahan et al., 2016). A frequently used tool 
for shotgun aligning and taxonomic profiling is MetaPhlAn (Thomas 
et  al., 2019; Blanco-Míguez et  al., 2023). Shotgun metagenomics 
preprocessing generally requires a complex sequence of programs 
merged into pipelines to be used since there is no one-in-all software 
solution yet. The solution is usually found in automated pre-defined 
bioBakery Workflows (Beghini et  al., 2021) or Bbtools, namely, 
BBMerge and BBDuk (Bushnell et al., 2017; Galkin et al., 2020).

Before entering the feature selection step, additional filtering is 
performed on the raw data to reduce noise while keeping the most 
relevant taxa. In this step, microbiome low abundance features (e.g., 
<500 reads) and/or prevalence (e.g., <10%) per sample group or in the 
entire sample, are filtered out. Based on the resulting count matrix, the 
taxonomic level under consideration (i.e., family, genus, species) can 
be chosen at this stage, considering that going down to the species 
level would lead to strong zero inflation.

Feature selection is approached by many studies through 
predictive feature selection strategies that encompass statistical 
methods for assessing the significance of the associations between the 
microbiome features and the disease condition. These methods 
include univariate and multivariate statistical methods, and different 
ML algorithms (Chen et al., 2021; Jiang et al., 2022). Network-based 
methods have also been employed for selecting hub strains from 
co-occurrence networks before entering the ML task (Xu et al., 2021). 
It is crucial to keep in mind that when using these predictive feature 
selection methods, if the training dataset is not kept distinct from the 
test dataset throughout all preprocessing, modeling, and assessment 
phases, the model gains access to test set information prior to 
performance evaluation, resulting in data leakage (Kapoor and 
Narayanan, 2022). The most common ML solution for this problem is 
applying a cross-validation procedure, where the initial dataset is split 
into several folds, and in each split, different folds are proclaimed as 
learning or testing folds.

3. Transformation techniques

Typically, the ML analysis of microbiome data is performed 
after transformations are applied to raw reads to address statistical 
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challenges mainly associated with sparsity and the proportional 
nature of the generated sequencing data (Lloréns-Rico et al., 2021). 
Based on our review, the most common data transformation 
methods applied in recent human microbiome studies, in both 16 s 
RNA sequences and shotgun data, are the relative and 
normalization-based methods followed by compositional 
transformations such as Centered log-ratio (CLR), and Isometric 
log-ratio (ILR). Many reviewed publications (i.e., 28%) lack 
sufficient details about the data preprocessing techniques that have 
been applied or fail to mention if any preprocessing has been 
carried out leading to reproducibility issues and questionable 
results. In Figure 1, we present a TreeMap chart illustrating the 
frequencies of transformation methods applied across the 
analyzed papers.

Within the reviewed studies, a subset dedicated to problems of 
disease diagnosis and risk prediction (Fabijanić and Vlahoviček, 2016; 
Wu et al., 2020; Ruuskanen et al., 2021; Liu et al., 2022). Data analyzed 
in these studies, 16S rRNA sequencing data and shotgun data, are 
transformed through relative abundance, log transformations, z-score 
normalization, and CLR. In the following subsections, we  briefly 
discuss the normalization-based and compositional methods applied 
to microbiome data before ML analysis across the reviewed papers.

3.1. Normalization methods

Two predominant transformation methods applied to deal with 
uneven library sizes in sequencing microbiome data are relative 
abundance (Statnikov et al., 2013; Ning and Beiko, 2015; Wu et al., 
2018, 2021; Bogart et al., 2019; Gupta et al., 2019; Lo and Marculescu, 
2019; Vangay et al., 2019; Yachida et al., 2019; Fernández-Edreira et al., 
2021; Lloréns-Rico et al., 2021), and rarefaction (Stämmler et al., 2016; 

Weiss et al., 2017; Baksi et al., 2018), used to solve the problem of 
different sequencing depths (Murovec et al., 2021).

Other normalization-based methods applied frequently to 
microbiome data in the reviewed studies are: Log transformation, 
preferred when the data is heavily skewed (Lahti et al., 2013; Fabijanić 
and Vlahoviček, 2016; Eck et al., 2017; Tap et al., 2017; Flemer et al., 
2018; Wirbel et al., 2019; Hughes et al., 2020; Ryan et al., 2020; Fouladi 
et al., 2021; Jiang et al., 2021; Zhu et al., 2022). Total Sum Scaling (TSS) 
(Lê Cao et al., 2016; Lloréns-Rico et al., 2021) which divides each taxa 
count by the total number of counts in each individual sample; 
Minimum-Maximum normalization, used to retain the relationships 
between the original input data (Mulenga et al., 2021; Jiang et al., 
2022); Z-score normalization (Wirbel et al., 2019; Jiang et al., 2021; 
Mulenga et al., 2021) which transforms the data with mean zero and 
unit variance; the Square Root that can be successfully applied to 
count data that follow a Poisson distribution (Liu et al., 2011; Holmes 
et al., 2012); Inverse-Rank normalization used to normalize signals to 
approximate a normal distribution after removing the quality control 
sample (Ni et al., 2021).

3.2. Compositional transformations

Our review reveals a noticeable rise in the utilization of ML 
techniques within human microbiome research over recent years, 
while the adoption of compositional transformations in handling 
microbiome data remains relatively constrained. Nevertheless, an 
encouraging increasing trend in the application of compositional 
approaches between 2016 and 2021 is observed, as visually represented 
in Supplementary Figure S2. The following paragraphs delve into 
compositional transformations that have been employed in recent 
human microbiome studies, while in Table 1 we provide an overview 

FIGURE 1

TreeMap chart illustrating the percentage of reviewed papers that applied normalization-based or compositional transformation methods, as well as 
the papers without clear information on preprocessing or data transformation. The other-normalization category comprises inverse-rank 
normalization, Box-Cox transformation, rarefaction, minimum-maximum transformation, scaling by standard deviation, normalization by total read 
depth, etc.
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of the relevant literature and software tools necessary for the successful 
implementation of these methods.

Compositional data can be represented in a simplex space and 
analyzing them as absolute data with standard statistical techniques 
may lead to inappropriate results (Gloor et al., 2016; Quinn et al., 
2018). Aitchison (1982) first proposed the additive log-ratio 
transformation (ALR), to address compositionality then also the 
centered log-ratio (CLR) (Aitchison, 1986). His followers proposed 
further the isometric log-ratio (ILR) (Egozcue et al., 2003; Pawlowsky-
Glahn et al., 2015) and pivot log-ratio (PLR) (Filzmoser et al., 2018) 
transformations. The CLR transformation is applied more frequently 
in microbiome studies (Fabijanić and Vlahoviček, 2016; Lê Cao et al., 
2016; Wirbel et  al., 2019; Fukui et  al., 2020; Reiman et  al., 2021; 
Ruuskanen et al., 2021; Liu et al., 2022) than the ILR transformation 
(Kubinski et al., 2022), while the ALR was not applied in any of the 
studies included in the review.

Other compositional transformations that can be  applied in 
microbiome data are: Cumulative Sum Scaling (CSS) (Dhungel et al., 
2021; Lloréns-Rico et al., 2021), a particular representation of the 
relative information based on median-like quantiles; the Geometric 
mean of pairwise ratios (GMPR) transformation (Chen et al., 2018); 
the Trimmed mean of M-values (TMM) (Robinson et al., 2010); the 
Relative log expression (RLE) method (Robinson et al., 2010); the 
Variance-stabilizing transformation (VST) (Love et al., 2014).

4. Discussion

Transformations are essential for appropriately handling 
microbiome sequencing data, rectifying compositional issues, 
reducing noise, adhering to statistical assumptions, and enabling 
meaningful analysis and interpretation. The choice of 
transformation should depend on the specific characteristics of 
the data and the goals of the analysis. This mini review revealed 
substantial gaps in the process of microbiome data 
transformation. Relative transformations and other 
normalization-based methods that lead to or do not solve 
compositional issues (Lloréns-Rico et al., 2021) are frequently 
applied in recent human microbiome research.

Unlike compositional approaches (i.e., log ratios), 
normalization-based methods do not retrieve absolute scale from 
the relative data (Quinn et al., 2018). Nevertheless, when the raw 
data contains zero values, like in microbiome data, taking the 
logarithm results in negative infinity, distorting the data, and 
leading to invalid statistical inferences. To mitigate this issue, a 

pseudocount (i.e., small positive constant, ε) can be added to zero 
values before taking the logarithm. Selecting the right 
pseudocount in relation to the data’s scale holds significant 
importance when applying log transformations (Thorsen et al., 
2016). The scale of the ε, relative to the total read counts, should 
remain consistent across different data transformation methods 
applied (McKnight et  al., 2019) and should be  based on the 
context of the research problem and the scale of the data because 
the choice of ε can affect the results (Costea et al., 2014). Thus, it 
is essential to be mindful of the trade-offs between numerical 
stability and introducing additional bias due to the choice of ε.

Compositional transformations, ALR, CLR, and ILR log-ratio 
transformations, have different properties. The ALR 
transformation does not preserve distances because it is not 
isometric (Egozcue and Pawlowsky-Glahn, 2005), while CLR 
transformation keeps the distance, but the covariance and 
correlation matrix are singular because of the zero-sum of the 
transformed vectors (Quinn et al., 2018). In addition, aggregation 
of all components into the geometric mean can, in general, lead 
to the occurrence of false positives (Filzmoser and Walczak, 
2014), so identifying the original components with the 
corresponding CLR variables has some limitations, which could 
possibly be overcome by a proper weighting strategy (Štefelová 
et al., 2021). Recent studies suggest that for high-dimensional 
compositional data, the ALR transformation should be  a 
preferred choice for transforming variables because the 
interpretation of ALRs is easier than the ILR and CLR 
transformations (Greenacre et al., 2021). Besides log ratios, other 
transformations such as VST and ranked-based methods have 
been reported to successfully address microbiome data statistical 
specificities (Jeganathan and Holmes, 2021; Lloréns-Rico et al., 
2021). When working with spatial human microbiome data, 
which can reflect the microbial composition and abundance 
within specific locations in the body (Adade et  al., 2021), 
transformations for compositional spatial data that would 
improve ML techniques’ performance when dealing with this 
data can be considered. Greenacre (2010, 2011) explored a power 
transformation that converges toward the Aitchison log-ratio 
transformation when the power parameter becomes 0, while 
Clarotto et  al. (2022) propose the Isometric α-transformation 
(α-IT), which, unlike the ILR transformation, can successfully 
deal with zeros in the data.

Kubinski et  al. (2022) investigated the impact of various 
transformation techniques on the model’s predictive performance 
using gut microbiome data and highlighted the need to transform 16S 

TABLE 1 Compositional transformations that are applied to human microbiome 16S rRNA and shotgun data.

Method Bioconductor/R package Literature

Additive log-ratio Compositions Aitchison (1982, 1986) and van den Boogaart and Tolosana-Delgado (2008)

Centered log-ratio Compositions Pawlowsky-Glahn et al. (2015) and van den Boogaart and Tolosana-Delgado (2008)

Isometric log-ratio Compositions Egozcue et al. (2003) and van den Boogaart and Tolosana-Delgado (2008)

Geometric mean of pairwise ratios GMPR Chen et al. (2018)

Trimmed mean of M-values edgeR Robinson et al. (2010)

Relative log expression (RLE) edgeR Robinson et al. (2010)

Variance-stabilizing (VST) DESeq2 Love et al. (2014)
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rRNA data using compositional transformation techniques. Among 
the available options, the CLR transformation was identified as the 
most suitable, as it enables the assessment of each feature’s importance 
in the decision-making process of ML models. Another study by 
McKnight et al. (2019) examined the impact of log transformations 
commonly employed in normalization procedures. The authors 
demonstrated that log transformations could distort community 
comparisons by suppressing significant differences in common taxa 
while amplifying subtle differences in rare taxa.

Thus, despite the advantages, log-ratio approaches have their 
limitations and drawbacks and are not the only way to deal with 
compositionality. Quantitative transformations such as 
Quantitative Microbiota Profiling (QMP) (Vandeputte et  al., 
2017) and Absolute Counts Scaling (ACS) (Props et al., 2017; Jian 
et al., 2020) offer experimental approaches to address microbiome 
data proportional nature. QMP involves rarefying samples to 
achieve an even sampling depth and scaling them based on 
estimated microbial loads. On the other hand, ACS directly scales 
the relative sequencing counts using estimated microbial loads. 
Lloréns-Rico et  al. (2021) investigated the impact of 
computational and experimental techniques in addressing the 
issues arising from microbiome data features (i.e., 
compositionality and sparsity). They concluded that quantitative 
approaches outperform computational methods in addressing 
compositionality and sparsity. Authors claim that the quantitative 
approaches improve the identification of true positive 
associations while reducing the occurrence of false positives. The 
same study reports that when adopting quantitative methods is 
not feasible, computational methods that address 
compositionality perform better than relative methods. There are 
other examples in the literature where compositional methods are 
employed to transform microbiome data where the reader can 
find more details (Quinn and Erb, 2020; Yang and Zou, 2020; 
Greenacre et al., 2021; Yang et al., 2021; Papoutsoglou et al., 2023).

It is important to mention that in many cases the analysis of 
microbiome data can be performed on raw read counts rather than in 
transformed data. Zero-inflated negative binomial and Dirichlet-
multinomial models can fit microbiome raw data quite well (Xia et al., 
2018). For example, Zhang et al. (2017) applied on raw read counts a 
negative binomial mixed model that enables the identification of 
connections between the host, environmental variables, and 
the microbiome.

Finally, the lack of adequate information on data preprocessing 
and high reporting heterogeneity among papers highlight the need for 
standardized reporting guidelines, as also suggested by Mirzayi et al. 
(2021), where recommendations and guidelines are provided to help 
microbiome researchers properly report their findings through the 
‘Strengthening The Organization and Reporting of Microbiome 
Studies’ (STORMS), composed of a 17-item checklist each related with 
the typical sections of a scientific paper. The omission of preprocessing 
and transformations applied to the data can have several significant 
consequences such as reproducibility concerns, misinterpretation, 
comparability issues, and questionable results. To mitigate these 
consequences, it is essential for researchers to provide thorough 
documentation of their data preprocessing procedures in publications. 
Researchers should also consider sharing their code, scripts, or 
workflows used for data preprocessing, which can greatly enhance 
transparency and reproducibility.

5. Conclusions and final remarks

Our short review shows that the utilization of data 
transformations that address the proportional nature of 
microbiome sequencing data in human microbiome studies 
remains limited, with many researchers primarily opting for 
relative and normalization-based methods that do not specifically 
address microbiome data characteristics. There is a lack of 
transparency and clear explanations regarding data preprocessing 
and the choice of transformation methods among the reviewed 
papers while it is crucial to adhere to best practices and provide 
a detailed methodology for developing machine learning 
pipelines, particularly regarding data preprocessing.

This mini review does not intend to provide unequivocal 
recommendations in favor of one approach over another, instead, 
we encourage researchers to consider the characteristics of their 
data carefully and whether a particular transformation method is 
suitable for addressing their research questions and 
data characteristics.
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