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Mesenchymal stromal cells, commonly referred to as MSCs, are a type of 
multipotent stem cells that are typically extracted from adipose tissue and bone 
marrow. In the field of tissue engineering and regenerative medicine, MSCs 
and their exosomes have emerged as revolutionary tools. Researchers are now 
devoting greater attention to MSCs because of their ability to generate skin cells 
like fibroblasts and keratinocytes, as well as their distinctive potential to decrease 
inflammation and emit pro-angiogenic molecules at the site of wounds. More 
recent investigations revealed that MSCs can exert numerous direct and indirect 
antimicrobial effects that are immunologically mediated. Collectively, these 
antimicrobial properties can remove bacterial infections when the MSCs are 
delivered in a therapeutic setting. Regardless of the positive therapeutic potential 
of MSCs for a multitude of conditions, transplanted MSC cell retention continues 
to be  a major challenge. Since MSCs are typically administered into naturally 
hypoxic tissues, understanding the impact of hypoxia on the functioning of MSCs 
is crucial. Hypoxia has been postulated to be among the factors determining the 
differentiation of MSCs, resulting in the production of inflammatory cytokines 
throughout the process of tissue regeneration and wound repair. This has opened 
new horizons in developing MSC-based systems as a potent therapeutic tool in 
oxygen-deprived regions, including anaerobic wound infection sites. This review 
sheds light on the role of hypoxia-MSCs in the treatment of anaerobic bacterial 
wound infection in terms of both their regenerative and antimicrobial activities.
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Introduction

Mesenchymal stem cells (MSCs) are described as stromal cells 
that possess multipotent, immune-regulatory, and regenerative 
characteristics. MSCs may originate from bone marrow (BM), adipose 
tissue, skeletal muscle, dental pulp, and amniotic fluid (Xu et al., 2019; 
Mahjoor et al., 2021; Nowak-Stępniowska et al., 2022). As a result of 
the possible therapeutic qualities they offer, MSCs have lately attracted 
a lot of interest and are increasingly being employed as a therapeutic 
option for a broad variety of inflammatory immune system disorders 
(Mahjoor et  al., 2023; Wang et  al., 2023). In particular, they have 
emerged as a valuable approach for promoting the healing process of 
skin wounds (Pulido-Escribano et al., 2023). MSCs have the potential 
to transform into skin substitutes, thereby acting as a viable alternative 
to dermal fibroblasts in the process of epidermis generation and skin 
wound healing. They are capable of differentiating into several cell 
types in injured areas, including dermal fibroblasts, keratinocytes, and 
endothelial cells (Hermann et al., 2023; Mahmoudvand et al., 2023; 
Nilforoushzadeh et al., 2023). Apart from their differential ability, 
MSCs have additional characteristics, such as being easily harvested 
and showing minimal immunogenicity. These characteristics, together 
with their inevitable involvement in the physiology of wound repair, 
present MSCs as a safe and practical therapeutic method. At the site 
of injury, MSCs promote the migration of cutaneous cells, 
angiogenesis, and re-epithelialization, as well as the establishment of 
granulation tissue, all of which facilitate the process of wound healing 
(Azari et al., 2022; Bian et al., 2022). The latest evidence confirmed 
that MSCs can hinder the growth of microorganisms. To provide their 

profound antibacterial properties, these cells take advantage of both 
direct and indirect signaling pathways. Directly by constitutively 
secreted factors and Indirect pathways form by activating the host’s 
innate immune cells. MSCs can also produce antimicrobial peptides 
(Leroux et al., 2010). AMPs annihilate bacteria directly by disrupting 
the integrity of their membrane, or alternatively by inducing the 
release of proinflammatory cytokines (Leroux et al., 2010; Mahlapuu 
et al., 2016). A variety of AMPs are released by MSCs, including the 
cathelicidin peptide LL-37 (Krasnodembskaya et al., 2010), hepcidin 
(Alcayaga-Miranda et al., 2015), β-defensin 2, and lipocalin 2 (Gupta 
et  al., 2012). These AMPs are regarded as a vital regulator of the 
capacity of MSCs administered therapeutically to eliminate bacterial 
infections. MSCs can directly influence the immunological properties 
of neutrophils and macrophages by secreting PGE2 (Vasandan et al., 
2016) IL-6, IL-8, and IFN-β, among other factors (Maqbool et al., 
2011). Following the exposure to MSC-secreted factors, macrophages 
acquire an enhanced capacity of phagocytosis, mediated in part by 
NADPH oxidase activation (Rabani et al., 2018). Neutrophils exposed 
to MSC conditioned medium are resistant to apoptosis and exhibit a 
propagated ability of migration (Raffaghello et al., 2008). Studies in 
animal models of infection have shown that MSCs can increase 
monocyte recruitment and decrease excessive neutrophil influx as well 
as neutrophil elastase generation, particularly in mouse models of 
pulmonary Pseudomonas aeruginosa infection and cystic fibrosis 
(Sutton et al., 2017). Indirect mechanisms involve the recruitment of 
immune cells and stimulation of macrophages (Chauhan et al., 2023). 
Macrophages as major parts of the immune system, are implicated in 
bacterial autophagy and tissue repair (Wang et  al., 2023). Under 
different circumstances, they can develop the anti-inflammatory M2 

GRAPHICAL ABSTRACT

Brief explanations regarding the effective role of MSCs in wound healing, the resulting infection, and existing therapeutic strategies.

https://doi.org/10.3389/fmicb.2023.1251956
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Andalib et al. 10.3389/fmicb.2023.1251956

Frontiers in Microbiology 03 frontiersin.org

or the pro-inflammatory M1 phenotypes. Evidence points to the 
induction of the M2 phenotype by activated allogeneic murine MSCs 
in infected tissues, while untreated infected areas possess an M1 
dominant population. The ability of MSCs to induce the M1 
macrophage phenotype is implicated in their anti-bacterial properties. 
M2 macrophages are assumed to ameliorate the process of wound 
healing, confirmed by the improved physical and histological 
appearance of the group that received activated MSCs compared to 
the other groups (Johnson et al., 2017). MSCs may also propagate 
alveolar macrophage phagocytosis as shown in a recent in-vivo study 
(Morrison et  al., 2017). In a similar way, MSCs promote the 
recruitment of neutrophils and increase their inflammatory responses 
in the early stages of bacterial challenge (Brandau et al., 2010). MSCs 
have emerged as appealing mediators in the treatment of wound 
infections as a result of these features (Mirshekar et al., 2023).

Notwithstanding the therapeutic advantages of MSCs for wound 
healing, the cell retention of MSCs after transplantation continues to 
be exceedingly challenging. MSCs naturally inhabit BM, which has a 
hypoxic habitat. In addition, the therapeutic delivery of MSCs is often 
performed in tissues that are hypoxic under normal circumstances. 
Therefore, several investigations on in-vitro cell cultures and 
subsequent therapeutic applications proposed the cultivation of MSCs 
under hypoxic conditions (1–10% oxygen; Beegle et  al., 2015; 
Ejtehadifar et  al., 2015). Hypoxia is an important factor in the 
coordination of cell functions, notably controlling the generation of 
stem cells (Li et al., 2021). Hypoxia-inducing factors (HIFs), which are 
highly expressed in the presence of diminished oxygen levels, exert 
different effects on cellular contexts by influencing diverse components 
of cell biology. Akin to other cell types, activation of HIF-1 elicits a 
multifaceted response in MSCs within their microenvironment, 
including alterations in growth, proliferation, differentiation, and gene 
expression patterns. These effects are mediated by a network of 
signaling pathways, including Notch and Oct4 (Keith and Simon, 
2007; Ejtehadifar et al., 2015).

The normal regenerative process of stem cells is crucial for the 
replacement of compromised or aging cells with differentiated cells, 

assisting the proper functioning of various body tissues. Nevertheless, 
the complete capabilities of these cells have yet to be  thoroughly 
investigated. Several experiments have been conducted to enhance the 
efficacy of MSCs in promoting therapeutic benefits. Various 
techniques, including the implementation of hypoxic environments 
and the isolation of exosomes, were explored. According to a study, 
MSCs may exhibit resistance to oxygen limitation. Furthermore, 
hypoxia has the potential to trigger a multitude of stress and survival 
signaling pathways in MSCs. The research conducted revealed that 
subjecting MSCs to a hypoxic setting can trigger pathways associated 
with cellular survival, such as glucose and glutamine metabolism 
pathways, as well as pathways related to differentiation, growth, and 
migration (Leroux et al., 2010; Ahmed et al., 2016; Antebi et al., 2018; 
Lin et al., 2021; Yusoff et al., 2022).

This paper presents a review of the utilization of hypoxia-MSCs 
(hi-MSCs) for the treatment of anaerobic bacterial wound infections, 
focusing on both regenerative and antimicrobial mechanisms.

Anaerobic bacteria

Anaerobic microorganisms are the primary constituents of the 
indigenous bacterial flora of human mucous membranes and skin and 
are commonly implicated in endogenous microbial infections 
(SaiKiran et  al., 2022). Anaerobes are challenging to isolate and 
frequently go unnoticed due to their fastidious nature. Anaerobic 
microorganisms are frequently detected in mixed infections of both 
aerobic and anaerobic nature. After the establishment of anaerobic 
species, there appears to be a phagocytosis obstruction to prevent the 
decomposition of coexisting microorganisms. Moreover, the transfer 
of nutrients from one bacterium tends to support the development 
and spread of another (Negut et  al., 2018; Eberly et  al., 2022). 
Infections caused by anaerobic bacteria can arise in sterile areas of the 
body and pose a significant risk to an individual’s health and well-
being (Tjampakasari et al., 2022). Anaerobic infections might appear 
across many anatomical regions of the body, including but not limited 

TABLE 1 Anaerobic bacterial pathogens affecting the wound-healing process.

Bacteria species Mechanism/effector Effects on wounds References

Prevotella Possessing a membrane protein that is negatively correlated with 

cornified envelope (INVO, SPR1A) factors

Disruption of epithelial barrier 

protein levels

Zevin et al. (2016)

Bacteroides Ovatus Up-regulation of IL-22 expression Promotion of wound healing Ihekweazu et al. (2021)

Fragilis Together with Escherichia coli, caused a severe inflammation with 

massive pus formation in wound

Disrupting the wound healing via a 

synergistic pathway

Kelly (1978)

Peptostreptococcus

 − ECM degradation via the production of proteolytic enzymes 

including collagenases and aminopeptidases

 − Inhibition of fibroblast and keratinocyte proliferation, repopulation, 

and endothelial tubule formation by bacterial supernatant

Prevention of wound healing Krepel et al. (1992) and 

Stephens et al. (2003)

Actinomyces Suppression of lymphocyte and fibroblast proliferation through cyclo-

oxygenase pathway of arachidonic acid metabolism

Suppression of wound healing Metzger et al. (1987)

Clostridium Stimulation of keratinocyte cellular responses to injury via collagenase Suppression of wound healing Riley and Herman (2005)

Fusobacterium Arresting fibroblast growth Prevention of wound healing Kapatral et al. (2002)

Finegoldia Resistance to AMPs via SufA Promotion of wound chronicity Murphy et al. (2014)

IL, interleukin, ECM, extracellular matrix, AMPs, antimicrobial peptides.
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to the central nervous system, oral cavity, chest, abdomen, pelvis, soft 
tissues, and cutaneous tissue (Brook, 2016).

In regards to wound infections, the existing literature primarily 
concentrates on facultative or aerobic organisms that are linked to the 
wound bacterial flora. In contrast, there is limited research that has 
examined the involvement of anaerobes in chronic wounds (Cheong 
et al., 2022). The cause of this phenomenon could be attributed to the 
fact that in the majority of research studies, wounds have been observed 
over a limited duration, during which anaerobic microorganisms tend 
to exhibit a slower rate of proliferation compared to their aerobic 
counterparts (Verbanic et  al., 2020). The part played by anaerobic 
bacteria in wound infection sites is intricate and differs from that of 
aerobic pathogens. Prolonged surface bacterial colonization may result 
in venous insufficiency and subsequent colonization of deep tissue 
layers by anaerobic microorganisms. The probable cause of this 
condition is the lower oxygen levels in the underlying tissue, which 
creates a favorable environment for the proliferation of both facultative 
and obligate anaerobic microorganisms (Finegold, 1993).

The predominant anaerobic bacterial species identified in chronic 
wounds are Actinomyces species, Bacteroides species, and Clostridium 
species. In addition, Peptostreptococcus species, Fusobacterium species, 
Finegoldia species, Prevotella species, and Porphyromonas species can 
contribute to wound infection. These organisms usually emerge on the 
15th day of the infection process and subsequently exhibit a decline in 
frequency as time progresses (Nahid et al., 2021). Although particular 
anaerobic bacteria have been acknowledged for their positive 
contribution to wound repair, various species have been found to 
impede the wound-healing process. This is primarily exerted by the 
production of proteolytic enzymes, stimulation of immune factor 
release, or suppression of fibroblast and keratinocyte growth (Lindsay 
et al., 2017; Luqman and Götz, 2021). Table 1 lists anaerobic bacteria 
that have been found to affect the wound-healing process.

Mesenchymal stem cells

The BM stroma exhibits a structured arrangement of diverse cell 
types, encompassing stem cells, endothelial cells, adipocytes, 
fibroblasts, and osteocytes, among others. The two distinct categories 
of BM stem cells are hematopoietic stem cells and MSCs. Mesenchymal 
cells can preserve, repair, and restore impaired tissues (Xu et al., 2019). 
MSCs possess a unique capacity for self-renewing and differentiation. 
These cells might be  extracted from various sources such as the 
umbilical cord, BM, adipose tissue, endometrial polyps, and menstrual 
blood (Ding et al., 2011).

MSCs are characterized by the presence of specific markers, 
including a cluster of differentiation (Vusirikala et al., 2022)73, CD90, 
and CD105, whereas they lack proteins such as CD11b, CD14, CD34, 
CD45, and CD79a (Andrzejewska et al., 2019). MSCs are capable of 
generating an abundance of cytokines, including those that facilitate 
the maintenance of hematopoietic stem cells in their silent phase or 
promote their self-renewal, such as oncostatin (OSM), stem cell 
factor (SCF), leukemia inhibitory factor (LIF; Ratcliffe, 2013), 
stromal cell-derived factor1 (SDF-1), transforming growth factor 
beta (TGF-β), bone morphogenetic protein4 (BMP-4), and Fms 
related receptor tyrosine kinase3 (FLT-3). Besides, MSCs release 
interleukins (IL)-1, 1L-6, IL-7, IL-8, IL-11, IL-12, IL-14, IL-15 
(Dazzi et al., 2006).

MSCs generate an extensive list of growth factors, chemokines, 
and hormones that are involved in various biological processes such 
as blood vessel formation, immune regulation, and anti-apoptotic 
functions. MSCs have been observed to augment the process of tissue 
reconstruction via paracrine mechanisms after their transplantation. 
The protein known as versican plays an integral part in the mechanism 
of repair. The utilization of MSCs conditioned medium in the 
cultivation of monocytes can enhance the synthesis of versican protein 
and may serve as an acceptable substitute for the transplantation of 
MSCs (Brennan et al., 2020).

What is a hypoxia condition?

Adenosine 5’triphosphate is synthesized by mammalian cells using 
the utilization of oxygen and nutrients. The significance of oxygen in 
numerous biochemical reactions necessitates the preservation the 
maintenance of oxygen balance. In the presence of hypoxia, cells 
initiate multiple subsequent cascades, including autophagy, cell stress 
pathways (e.g., endoplasmic reticulum stress), and energy metabolic 
pathways [e.g., mTOR complex1 (mTORC1) and HIF-1]. The 
aforementioned pathways are responsible for the maintenance of 
homeostasis during periods of hypoxic stress (Ratcliffe, 2013; 
Nakazawa et al., 2016; Tirpe et al., 2019; Lee et al., 2020). HIFs are a 
group of heterodimeric factors, comprising HIF-1, HIF-2, and HIF-3 
(Tirpe et al., 2019). The mentioned factors consist of a stable β-subunit 
and an oxygen-sensitive α-subunit. Under normoxic conditions, the 
separation of the heterodimer results in the hydroxylation of proline 
residues (proline-402 and proline-564) in the α subunit by prolyl 
hydroxylases (PHDs; Eales et  al., 2016; Dabral et  al., 2019), then 
HIF-1α is ubiquitinated by von-Hippel-Lindau protein (pVHL) 
enzyme and degraded by the proteasome (Tirpe et al., 2019).

HIFs regulate the transcriptional activation of a multitude of 
genes that participate in biological processes, including but not 
confined to cellular growth and proliferation, programmed cell death, 
cellular metabolism, glycolysis, bacterial infection, and immune 
system response, as well as tumor formation and spread (Luo 
et al., 2022).

The normal oxygen concentration in arterial blood is 
approximately 12%, while its concentration in tissues is 3%. 
Embryonic stem cells are known to exist under hypoxic conditions, 
from the point of implantation to fetal growth. In general, during the 
initial stages of pregnancy, the level of oxygen concentration on the 
surface of the uterus is in proximity to 2%. Following the development 
of the placenta, there is a notable elevation in the concentration of 
oxygen to approximately 8%. Adult stem cells also reside in hypoxic 
environments in their natural setting. The available evidence indicates 
that hematopoietic stem cells and BM-derived MSCs (BM-MSCs) 
coexist within a shared environment (Abdollahi et al., 2011).

Mesenchymal cells can exhibit varying responses to differing 
concentrations of oxygen, contingent upon their specific 
microenvironment. For example, the oxygen pressure levels in BM 
range from 1 to 7%, while in umbilical cord blood and amniotic fluid, 
they range from 1.5 to 8%. Adipose tissue, on the other hand, exhibits 
oxygen pressure levels of 10–15%. Under normoxic conditions, it has 
been predicted that a greater quantity of free radicals is generated, 
thereby causing interference with the operation of mesenchymal cells. 
The colony-forming capacity and proliferation rate of MSCs display 
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an augmentation under hypoxic conditions with low oxygen pressure 
ranging from 1 to 5% (Samal et al., 2021).

Effects of MSCs on the homeostasis 
phase of wound healing

Many research projects present evidence that MSCs can boost the 
coagulation process. It has been revealed that a correlation exists between 
procoagulant activities and the expression of tissue factors (Mansori et al., 
2020), a transmembrane protein that upregulates the production of the 
thrombin-antithrombin complex (Rangasami et  al., 2021). It is 
noteworthy that extended culture of MSCs results in a boosted expression 
of TF on the surface of these cells. This may potentially heighten the 
likelihood of thrombosis (Silachev et al., 2019).

Besides TFs, phosphatidylserine is a pro-coagulation factor that 
facilitates the synthesis of the thrombin-activating complex by 
translocating from the inner to the outer layer of the cell membrane. 
It may be postulated that extracellular vesicles (EVs) obtained from an 
MSCs-conditioned medium may harbor TF and/or external 
phosphatidylserine, thereby exerting an influence on blood hemostasis 
(Silachev et al., 2019). Moreover, the expression of Annexin V on the 
cellular membrane conduces to the buildup of phosphatidylserine and 
enhances the process of coagulation (Chance et al., 2019).

MSCs amend the inflammatory phase

MSCs present at the site of injury determine the immune response 
of macrophages, neutrophils, and lymphocytes through the secretion 
of various factors and cytokines. Among these are chemokines (C-C 
motif) ligand 2 (CCL-2), vascular endothelial growth factor (VEGF), 
LIF, IL-10, and hepatocyte growth factor (HGF), all of which possess 
immunosuppressive and regenerative properties. As a result, MSCs 
enhance the immune system’s defenses against potential infections in 
wounded tissues (Zhang et al., 2010; Hoang et al., 2020; Silva et al., 
2020; Camões et al., 2022).

Besides, MSCs can induce a shift in macrophage polarization from 
a pro-inflammatory M1 state to an anti-inflammatory M2 state (Ulivi 
et  al., 2014). MSCs have been noted to impede the generation of 
inflammatory agents from M1 macrophage, including tumor necrosis 
factor (TNF)-α, while concurrently elevating the levels of TGF-β1 
from myofibroblasts (Jiang et al., 2013).

Likewise, MSCs regulate the equilibrium of T helper (Th)1-Th2 
cytokines, inducing the synthesis of anti-inflammatory cytokines, 
among them IL4, while reducing the secretion of the pro-inflammatory 
interferon-gamma (IFN-γ; Zanone et al., 2010). Finally, MSCs exhibit 
a suppressive impact on the activity and cytotoxicity of natural killer 
(NK) cells. The inquiry into the subject reveals that the presence of 
MSCs results in major alterations in both ligands and receptors that 
have been proven to facilitate NK cell interactions, along with a 
reduction in the number of NK cells (Najar et al., 2019).

Effects of MSCs on the proliferative phase

During the third stage of wound healing, fibroblasts and 
myofibroblasts play a pivotal role. At this stage, epithelial cells undergo 

proliferation and restoration, and collagen and other ECM proteins 
are synthesized. MSCs have been noticed to encourage the growth, 
migration, and secretion of fibroblasts primarily through the action of 
platelet-derived growth factor BB (Liu et al., 2022). The utilization of 
EVs derived from MSCs in a mouse skin burn model resulted in an 
augmentation of epithelial cell proliferation, thereby promoting 
wound healing (Zhang et al., 2015; Yates et al., 2017).

MSCs enhance tissue repair by regulating the release of effector 
T-cell cytokines and switching macrophage polarization to an anti-
inflammatory M2 state (Di et al., 2017). In-vivo, the expression of 
CK19, PCNA, and collagen I was all boosted by MSCs. In-vitro, 
exosomes derived from human umbilical cord MSCs triggered the 
growth of skin cells while protecting them from undergoing 
apoptosis after heat stress. Exosomes have been confirmed to 
be enriched in Wnt4, which raises β-catenin nuclear translocation 
and functioning, thereby promoting skin cell proliferation and 
migration. This effect could be inhibited by the β-catenin inhibitor 
ICG001 (Zhang et  al., 2015). By manufacturing pro-angiogenic 
substances, especially VEGFs, epidermal growth factor, C-X-C Motif 
Chemokine Ligand 12 and HIF-1, MSCs can contribute to the 
angiogenesis process (Yang et al., 2005; Zhang et al., 2006; Li et al., 
2008; Guillamat-Prats, 2021).

Effects of MSCs on the remodeling phase

The remodeling process is the final stage of wound healing, during 
which MSCs help coordinate any last-minute changes in the ECM, 
blood vessels, and resident cells. In particular, MSCs can accelerate 
wound healing through the secretion of factors related to cell 
proliferation and differentiation, angiogenic mechanisms, immune 
suppression, and anti-apoptotic factors (Willer et al., 2022). During 
this phase, the tissue is subject to regeneration and the collagen fibers 
undergo organization. MSCs play an active part in the process of 
matrix remodeling by releasing matrix metalloproteinases (MMPs) to 
promote the deposition of matrix and secreting tissue inhibitors of 
metalloproteinases to prevent the deposition of ECM proteins. 
Evidence confirms that inflammatory cytokines, namely TNF-α, 
IL-1β, and TGF-β1, propagate MSCs to synthesize MMPs, which in 
turn triggers the chemotactic migration of MSCs across the 
extracellular matrix.

It has been found that IL-1β can induce the expression of matrix 
metalloproteinase-3 (MMP-3) in BM-MSCs. IL-1β can trigger MMP-3 
expression via ERK1/2, JNK, MAPK p38, and Akt signaling cascades, 
thereby promoting the migration of MSCs. Stromal cell-derived factor 
1 (SDF-1) expressed by MSCs is attributed to the homing ability of 
MSCs towards the ischemia-induced deteriorated heart muscle tissue. 
TGF-β1, monocyte chemotactic protein (MCP)-1, TNF-α, and ILs are 
also believed to boost the migration of MSCs to the injured tissues 
(Chang et al., 2021).

MSCs are also recognized to emit growth factors and cytokines, 
including HGF, IL-10, and adrenomedullin, which possess anti-
fibrotic traits and aid in the healing of wounds without scarring. HGF 
and prostaglandin (Arron et al., 2021) E2 generated by MSCs at the 
site of injury, hinder fibroblast differentiation and help MSCs evade 
the epithelial-mesenchymal switch. Moreover, classical growth factors 
and cytokines, such as VEGF, CNTF, GDNF, TGF-β, IL-1β, IL-6, and 
IL-8, act as paracrine control molecules secreted to extracellular 
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vesicles or exosomes. Recent evidence also insinuates the role of 
signaling by microRNAs in MSC-derived exosomes (Hofer and Tuan, 
2016; Lan et al., 2017).

MSCs and healing of anaerobic 
bacterial wound infection in hypoxia 
condition

Since they were initially identified by Friedenstein et al. (1968) as 
plastic adherent cells capable of differentiating into different cell lines, 
MSCs have been broadly investigated for their regenerative 
characteristics. MSCs exhibit noteworthy regenerative capabilities 
attributed to their inherent ability to self-renew and differentiate into 
various tissue types. Recently, there has been a lot of focus on the 
impact of MSCs on the process of wound repair (Liu et al., 2021). As 
previously stated, the healing process of skin wounds is intricate and 
involves various phases, namely homeostasis, inflammation, 
proliferation, and remodeling. MSCs are known to participate in all 
phases of the wound-healing process, thereby exerting therapeutic 
benefits (Mahmoudvand et al., 2023).

On top of that, MSCs have demonstrated robust antimicrobial 
characteristics via both direct and indirect mechanisms (Alcayaga-
Miranda et al., 2017).

AMPs are effective in eliminating microbes by disrupting 
membrane integrity, preventing binding to DNA, and disrupting 
protein synthesis. AMPs secreted from MSCs can act on fungi, yeasts, 
and viruses (Mirshekar et al., 2023).

Moreover, MSCs-derived exosomes, which possess antibacterial 
characteristics, expedite the healing process of diabetic foot ulcers. 
The exosomes are comprised of biologically active molecules (e.g., 
nucleic acids, growth factors, and proteins), as well as inactive 
substances (e.g., antibiotics; Raghav et al., 2021).

Collectively, they alleviate bacterial removal by enhancing the 
migratory and phagocytic capabilities of neutrophils, which is 
achieved through the upregulation of IL-6, IL-8, and granulocyte-
macrophage colony-stimulating factor levels. These molecules 
ultimately contribute to the elimination of the infection and promote 
tissue regeneration, as evidenced in the process of wound healing (Joel 
et al., 2019). Studies conducted in-vivo regarding the antimicrobial 
properties of MSCs have demonstrated that their transplantation in 
mice results in the suppression of inflammatory response and the 
facilitation of bacterial elimination.

The defensin family of AMPs consists of alpha-defensins, 
β-defensins, and θ-defensins. Defensins are highly implicated in 
innate and adaptive immunity against microbial and viral pathogens 
and also contribute to wound healing by upregulating the expression 
of cytokines and chemokines, producing histamine, and boosting 
antibody responses. β-Defensins, hBD-1, hBD-2, and hBD-3 are the 
main functional peptides in humans expressed by many epithelial 
cells, granulocytes, and MSCs. To date, only one cathelicidin (CAMP) 
gene has been detected in mice and humans. This gene expresses a 
protein known as CRAMP, which exhibits a wide spectrum of 
antimicrobial and anticancer activities as well as chemotactic and 
antiangiogenic features. It can be detected in several cell types and 
plays a central part in mucosal defense (Sung et al., 2016).

MSCs also play a crucial role in regulating the immune response 
and combatting pathogenic microorganisms. This is achieved via the 

production of AMPs that specifically target a range of microorganisms 
including yeasts, fungi, bacteria, and viruses. MSCs are known to 
produce several noteworthy AMPs, including LL-37, β-defensin-2, 
cathelicidin, hepcidin, and lipocalin-2. These peptides are involved in 
the processes of regeneration, control of proliferation, and migration 
of MSCs (Gupta et al., 2012; Silva-Carvalho et al., 2022). Similarly, 
IL-17 and indoleamine-2,3-dioxygenase (Pulido-Escribano et  al., 
2023) are overexpressed in MSCs. IDO exhibits potent antimicrobial 
activity against a broad spectrum of bacteria (e.g., S. aureus, 
S. epidermidis, Group B streptococci, and E. faecium), viral pathogens 
(Cytomegalovirus, Herpes simplex virus), and parasitic infections 
(Toxoplasma gondii; Alcayaga-Miranda et al., 2017). The results of an 
experiment suggested that MSCs can enhance the anti-microbial 
capacity of equine keratocytes by promoting the expression of AMPs 
through the secretion of CCL2 (Marx et al., 2021).

The functions of MSCs could potentially be impacted by various 
environmental factors, including hypoxic conditions. One potential 
approach to improve the survival of MSCs is to subject them to 
hypoxic conditions (1–4% oxygen) for a period of 24–48 h before their 
implantation, which may represent a significant and feasible strategy. 
MSCs exhibit an up-regulation of HIF-1α in response to pre-exposure 
to hypoxic conditions (Palomäki et al., 2013). Under the influence of 
hypoxia, MSCs employ HIF-1α to trigger the AKT signaling cascade, 
thereby augmenting their growth and survival (Lee et al., 2017). Data 
from experiments imply that hypoxia preconditioning amplifies the 
paracrine capacities of MSCs in the context of vascular renewal (Han 
et al., 2020; Yusoff et al., 2022). The expression of various angiogenic 
factors, such as VEGF and HGF, is enhanced under hypoxic 
conditions of 1% oxygen during in-vitro culture (Ishiuchi et al., 2020). 
Hypoxic preconditioning has the potential for amplifying additional 
traits in MSCs, which may include heightened immunosuppressive 
properties (Roemeling-van Rhijn et al., 2013), or the synthesis of 
regenerative growth factors (Chang et al., 2013). Chen et al. (2014) 
established that under hypoxic conditions, BM-MSCs exhibited 
elevated expression and secretion levels of basic fibroblast growth 
factor (bFGF), VEGF-A, IL-6, and IL-8. In addition, the utilization of 
hypoxic BM-MSCs-derived conditioned medium (hypoCM) in 
comparison to normoxic BM-MSCs-derived conditioned medium 
(norCM) resulted in a noteworthy increase in the proliferation of 
keratinocytes, fibroblasts, and endothelial cells. It also facilitated the 
migration of keratinocytes, fibroblasts, endothelial cells, and 
monocytes, along with the production of tubular structures by 
endothelial cells. The findings of this study indicate that the 
application of topical hypoCM resulted in a notable acceleration of 
cutaneous wound contraction in Balb/c nude mice, which is in 
agreement with the in-vitro results. In contrast, the application of 
norCM or the vesicle control did not produce a similar effect. In-vivo, 
the subjects subjected to hypoCM exhibited a noticeable rise in cell 
proliferation, neovascularization, and recruitment of inflammatory 
macrophages. Additionally, a notable decrease in collagen I  and 
collagen III was observed in this group. Similarly, Jun et al. (2014) the 
study demonstrated that hypoxia had a dual effect on amniotic fluid 
MSCs (AF-MSCs), as it not only stimulated their proliferation but 
additionally preserved their inherent features, including surface 
marker expression and differentiation abilities. It is worth noting that 
AF-MSCs released a higher number of paracrine factors, specifically 
VEGF and TGF-β1, into AF-MSCs-hypoCM as compared to 
AF-MSCs-norCM. The potential of AF-MSCs-hypoCM to improve 
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wound repair has been attributed to its ability to stimulate the 
production of hypoxia-induced paracrine factors by activating the 
TGF-β/SMAD2 and PI3K/AKT pathways. The available evidence 
suggests that hi-MSCs possess augmented capabilities for the process 
of wound repair (Han et al., 2020).

In a study by Diniz et  al. (2016), the utilization of an alginate 
hydrogel-based delivery system for gingival MSCs exhibited notable 
antimicrobial efficacy against Aggregatibacter actinomycetemcomitans, a 
type of gram-negative anaerobic bacteria. The antimicrobial activity was 
dose-dependent, with the highest antimicrobial efficacy being observed 
at a concentration of 0.50 mg/mL, while concurrently preserving cellular 
viability. On the contrary, data point to the reciprocal effect of bacterial 
pathogens on the activities of MSCs. Recent research has shown that the 
management of the microbiome in wounds can facilitate wound healing 
(Tang et al., 2023). The analysis of the impact of cell balance between 
anaerobic bacteria and probiotics on the regenerative properties of MSCs 
has shown that the simulation of the equilibrium between oral pathogenic 
bacteria and probiotics using an extract of Limosilactobacillus reuteri and 
Porphyromonas gingivalis bacteria can result in bone differentiation and 
migration of MSCs in controlled laboratory settings. The present study 
revealed that the combination of L. reuteri and P. gingivalis has the 
potential to induce the wound-healing cascade via the activation of MSCs 
(Osakabe et  al., 2017; Han et  al., 2020). The findings indicate that 
co-culturing MSCs with anaerobic pathogens in an anaerobic 
environment provokes the induction of cytokine secretion in the former 
by the latter, specifically in the anaerobic bacterium F. nucleatum (Kriebel 
et al., 2013). After being co-cultured with F. nucleatum, BM-MSCs were 
found to have the greatest level of IL-8 production, as shown by the 
results of Biedermann and colleagues. In general, it seems reasonable to 
depend on hiMSCs in the treatment of anaerobic bacterial wound 
infection (Han et al., 2020).

Conclusion

Briefly, MSCs are key cells that mainly originate from BM and 
adipose tissue. These cells have qualities that are essential for the body, 
such as the capability of self-regeneration and differentiation. MSCs 
generate a variety of cytokines, including those that maintain 
hematopoietic stem cells in the latent phase or drive their self-renewal, 
such as SCF, OSM, SDF-1, LIF, and BMP-4. TGF-β, which in this 
manner plays a substantial part in the repair of injuries.

In addition to playing a role in all phases of wound healing, 
MSCs exhibit strong antimicrobial features. These qualities are 
manifested in MSCs’ ability to stimulate host innate immune cells 
and produce AMPs. Because of this, MSCs have shown to be  a 

reliable tool in the fight against bacterial wound infections. MSCs 
have been proven to be resistant to bacterial infection in anoxic 
areas because they normally live in a hypoxic microenvironment in 
the BM. This highlights their potential applicability as an exciting 
tool in the field of regenerative medicine in areas of the human 
body that are in contact with anaerobic bacteria. MSCs produced 
under hypoxia were emphasized in a wide variety of papers for 
in-vitro cell cultures and subsequent therapeutic applications. 
According to the findings of these investigations, MSCs and 
anaerobic bacteria have a symbiotic interaction. Delivery systems 
based on MSCs possess antibacterial characteristics that are 
effective against anaerobic bacteria. On the other hand, anaerobic 
bacteria, namely F. nucleatum, can cause MSCs to secrete cytokines. 
When taken together, these results introduce MSCs as a potentially 
useful tool for wound healing. Nevertheless, despite these 
advancements, the application of MSCs as a useful instrument in 
the battle against anaerobic bacterial infections is still in its infancy 
stage. Subsequent measures needed to be taken to obtain a risk-free 
MSCs-based strategy for the treatment of wound infections. In this 
case, verifying the batch release of MSCs-based systems by in-vitro 
assays and assessing their biodistribution and potential adverse 
effects in pre-clinical studies are of great importance.
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