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Kombucha is a customary tea-based beverage that is produced through the process 
of fermenting a mixture of tea and sugar water with symbiotic culture of bacteria 
and yeast (SCOBY). Traditional kombucha has various beneficial effects and can 
improve immunity. The significant market share of Kombucha can be attributed 
to the growing consumer inclination towards healthy foods within the functional 
beverage industry. The research focus has recently expanded from the probiotics 
of traditional black tea kombucha to encompass other teas, Chinese herbs, plant 
materials, and alternative substrates. There is a lack of comprehensive literature 
reviews focusing on substance transformation, functional, active substances, and 
efficacy mechanisms of alternative kombucha substrates. This article aimed to 
bridge this gap by providing an in-depth review of the biological transformation 
pathways of kombucha metabolites and alternative substrates. The review offers 
valuable insights into kombucha research, including substance metabolism and 
transformation, efficacy, pharmacological mechanism, and the purification of 
active components, offering direction and focus for further studies in this field.
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1. Introduction

Kombucha, a traditional fermented tea beverage rich in probiotics and bio-active factors, is 
generally prepared from sugary tea water fermented with a symbiotic culture of bacteria and 
yeast (SCOBY) (Sinir et al., 2019). The composition of the symbiotic flora of kombucha is 
complex, and the dominant flora are composed of Acetobacter, Saccharomyces, and 
Lactobacillus. Previous studies on the composition of kombucha have predominantly focused 
on kombucha fermented with acetic acid bacteria, such as Acetobacter xylinum, Gluconobacter 
liquefaciens, and Komagataeibacter intermedius, yeast species, such as Saccharomyces cerevisiae, 
Candida tropicalis, and Schizosaccharomyces pombe, and lactic acid bacteria, for instance 
Lactobacillus bulgaricus and Lactobacillus nagelii (Antolak et al., 2021). Kombucha can influence 
various physiological functions, such as lowering blood pressure, reducing inflammation, 
promoting liver function, and enhancing immune resistance. Kombucha products have many 
metabolites, such as organic acids, polyphenols, vitamins, amino acids, protein/enzymes, and 
minerals (Bishop et al., 2022; Kitwetcharoen et al., 2023). The main metabolic components of 
kombucha are organic acids, D-saccharic acid-1,4-lactone (DSL), and tea polyphenols (Jayabalan 
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et  al., 2014). However, the probiotic effects of kombucha are 
independent of its unique metabolites.

Kombucha is composed of a diverse array of organic acids, 
including acetic acid, which can eliminate fatigue, lower blood 
pressure, and improve gastrointestinal health (Sinir et al., 2019). The 
tea polyphenols in kombucha can stabilise blood sugar, promote fat 
oxidation, scavenge free radicals, and delay ageing (Jayabalan et al., 
2014). DSL has been found to be an effective inhibitor of β-glucosidase, 
an enzyme that is closely linked to the process of carcinogenesis and 
plays a crucial role in the prevention of cancer (Taha et al., 2020). The 
selection of different fermentation substrates also produces substances 
different from those produced using traditional kombucha. In 
addition to the fermentation of traditional tea leaves (black and green 
tea), the effects of using new fermentation substrates on the probiotic 
efficacy of kombucha are of growing interest (Wang et al., 2021).

Analysis of the active ingredients of kombucha and the study of 
the probiotic mechanisms are essential prerequisites for the industrial 
manufacturing and commercialization of kombucha. They are also the 
basis for clinical research on probiotic functional flora to prevent and 
treat diseases.

Herein, we  reviewed recent studies on kombucha, including 
fermentation conditions, the composition of raw materials before and 
after fermentation, and the efficacy of active substances after 
fermentation in alternative matrices. This review will facilitate further 
research into the metabolism of kombucha, its efficacy mechanisms, 
and the development of specific kombucha-based products.

2. Alternative kombucha substrates

In recent years, research into alternative substrates for kombucha 
production has increased as most scholars have become dissatisfied 
with the use of tea as a substrate for traditional kombucha 
fermentation. The use of raw materials, such as plant leaves, fruit 
juices, herbs, spices, and flowers, as substitutes for tea or as 
co-fermentation ingredients along with black tea have been reported. 
These alternative substrates can produce novel fermented functional 
products, yield kombucha with improved organoleptic value or health 
properties (Table 1) (Sinir et al., 2019; Emiljanowicz and Malinowska-
Pańczyk, 2020), provide carbon and nitrogen sources for the 
fermentation of kombucha, and alter its fermentation products to 
produce more beneficial and healthy bioactive beverages.

3. Composition of kombucha and 
analogous kombucha

3.1. Composition of traditional kombucha

The chemical composition of kombucha is dependent on different 
substrate compositions, source and microbial community in the 
SCOBY, fermentation methods, and detection methods.

Kombucha is composed of sugars (including sucrose, glucose, and 
fructose), organic acids [including acetic acid, gluconic acid, 
glucuronic acid, lactic acid, DSL, citric acid, oxalic acid, and pyruvic 
acid (Jayabalan et  al., 2007)], B-vitamins and vitamin C (Bauer-
Petrovska and Petrushevska-Tozi, 2000), theophyllines, tea 
polyphenols, flavonoids, various amino acids and proteins, ethanol, 

biogenic amines, purine bases, hydrolytic enzymes, minerals 
(primarily Cu, Fe, Zn, Ni, and Mn), and metabolites secreted by yeast 
and bacteria (Table 2) (Malbaša et al., 2011).

3.2. Material transformation of the main 
metabolites of traditional kombucha

Traditional kombucha fermentation utilises tea and white sugar 
as the main substrates. These substrates are transformed through 
fermentation by microorganisms, such as yeast and bacteria, which 
involves the gradual breakdown of sugar and a metabolic cascade 
that produces CO2 and an acidic, slightly alcoholic beverage 
(Chakravorty et  al., 2016). In a bacteriophage fermentation 
environment, yeasts are the primary ethanol producers, as they 
produce hydrolytic enzymes (of the fructosidase class) that hydrolyse 
sucrose to glucose and fructose, which subsequently undergo 
metabolic processes leading to the production of ethanol, glycerol, 
and carbon dioxide. The involvement of different bacterial strains 
during fermentation leads to metabolic differentiation. The yeast 
genus Saccharomyces spp. can utilise glucose and produce ethanol 
through the glycolytic pathway, whereas the jointed yeast 
Zygosaccharomyces spp. can efficiently ferment fructose to produce 
ethanol. Furthermore, specific yeast strains, such as the corn wine 
fission yeast (Schizosaccharomyces pombe), have the capability to 
generate ethanol from malic acid or Brettanomyces bruxellensis in the 
presence of elevated levels of acetic acid in aerobic environments 
(Villarreal-Soto et al., 2018).

During fermentation, microorganisms interact with each other, 
and the ethanol produced by yeast fermentation can be  used by 
Acetobacter as a metabolic substrate for oxidation to acetic acid. In 
addition to acetic acid, Acetobacter can further metabolise glucose in 
the fermentation broth to produce glucuronic acid, which is later 
metabolised to gluconic acid and converted to glucuronic acid 
(Villarreal-Soto et al., 2019; Martínez-Leal et al., 2020). In addition, 
B. gluconii strains have the capability to enzymatically produce 
L-ascorbic acid, commonly known as vitamin C, utilizing D-sorbitol 
as a precursor compound, which is itself derived from glucose 
(Mamlouk and Gullo, 2013). Depending on the specific strain, certain 
lactic acid bacteria have the capability to utilize glucose in either the 
glycolytic pathway, resulting in the production of lactic acid as the 
primary metabolite, or the pentose phosphate pathway, leading to the 
synthesis of lactic acid, ethanol, and carbon dioxide. However, when 
fructose is present, the production of acetic acid occurs instead of 
ethanol (Laureys et al., 2020).

Bacterial cellulose film is a distinctive byproduct of kombucha 
fermentation, which is generated by acetate bacteria through alcohol 
metabolism and can be removed as waste. Komagataeibacter spp. use 
glucose to synthesise bacterial cellulose, and this anabolic process 
involves sucrose, ethanol, and glycerol (Chawla et al., 2009; Villarreal-
Soto et  al., 2019). The fermentation and metabolic processes of 
kombucha are accomplished through mutual facilitation or constraints 
within each flora. The synergistic effects of the flora allow for the 
synthesis of certain antimicrobial metabolites, the accumulation of 
organic acids leading to low pH, and the production of physical 
barriers (cellulose membranes), and other factors contributed to the 
hindrance of bacterial growth among competitors (Villarreal-Soto 
et al., 2019).
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As depicted in Figure 1, the intricate phenolic compounds present 
in kombucha have the potential to undergo degradation or conversion 
into smaller biological molecules through the process of fermentation 
occurring within an acidic milieu, or through the enzymatic activities 
released by bacteria and yeast. For example, the observed elevation in 

overall catechin content in green and black tea kombucha subsequent 
to fermentation can be  ascribed to the biotransformation process 
wherein epigallocatechin-3-gallate (EGCG) undergoes conversion 
into epigallocatechin gallate (ECG) and epicatechin (EC), by enzymes 
released by microbial communities in an acidic environment. EGCG 

TABLE 1 Alternative raw materials for the production of black tea kombucha.

Category Raw materials Reference Raw materials References

Plant leaves

Yerba mate Lopes et al. (2021) Eucalyptus camaldulensis Gamboa-Gómez et al. (2016)

African mustard (Brassica tournefortii) 

leaves

Rahmani et al. (2019)
Litsea glaucescens

Gamboa-Gómez et al. (2016)

Oak leaves Vázquez-Cabral et al. (2017) Arabica coffee leaves Zubaidah et al. (2021a)

Purple basil (Ocimum basilicum L.) Yıkmış and Tuğgüm (2019) Kitchen mint Tanticharakunsiri et al. (2021)

Soursop leaves (Annona muricata Linn.) Candra et al. (2021)

Fruit and juice

Cactus pear juice Ayed and Hamdi (2015) Blackthorn (Prunus spinosa) Ulusoy and Tamer (2019)

Red grape juice
Ayed et al. (2017) and 

Akbarirad et al. (2017)
Red raspberry (Rubus ideaus)

Ulusoy and Tamer (2019)

Snake fruit (Salacca zalacca (Gaerth.) 

Voss)

Zubaidah et al. (2018) King coconut water (Cocos 

nucifera var. aurantiaca)

Watawana et al. (2016)

Pomegranate juice
Akbarirad et al. (2017) and 

Yavari et al. (2018)
Sourop (Annona muricata. L.)

Tan et al. (2020)

Sour cherry juice Akbarirad et al. (2017) Dragon Li et al. (2022)

Black carrot (Daucus carota L. spp. 

sativus var. atrorubens Alef.)

Xiao et al. (2013)
Guava

Li et al. (2022)

Cherry laurel (Prunus laurocerasus) Ulusoy and Tamer (2019) Indian gooseberry Klawpiyapamornkun et al. (2023)

Herbaceous plants

Goji berry (Lycium barbarum)
Zhang et al. (2022) and 

Abuduaibifu and Tamer (2019)
Foeniculum vulgare

Battikh et al. (2012)

Lemon balm (Melissa officinalis L.) Četojević-Simin et al. (2012) Mentha piperita Battikh et al. (2012)

Winter savoury (Satureja montana) Vitas et al. (2020) Wheatgrass juice Wang et al. (2021)

Peppermint (Mentha × piperita) Vitas et al. (2020) Ginger Salafzoon et al. (2017)

Stinging nettle (Urtica dioica) Vitas et al. (2020) Cinnamon Shahbazi et al. (2018)

Wild thyme (Thymus serpyllum) Vitas et al. (2020) Cardamom Shahbazi et al. (2018)

Elderberry (Sambucus nigra) Vitas et al. (2020) Shirazi thyme Shahbazi et al. (2018)

Quince (Cydonia oblonga) Vitas et al. (2020) Garlic Pure and Pure (2016a)

Satureja montana L. Cetojevic-Simin et al. (2008) Turmeric (Curcuma longa) Zubaidah et al. (2021b)

Thymus vulgaris L. Battikh et al. (2012) Solanum nigrum L. fruits Ziska et al. (2019)

Lippia citriodora Battikh et al. (2012) Butterfly pea flower Permatasari et al. (2022)

Rosmarinus officinalis Battikh et al. (2012)

Dairy products Skim milk Al-Dulaimi et al. (2018) Soy whey Tu et al. (2019)

Grain
Rice Ahmed et al. (2020) Corn Francisco et al. (2021)

Barley Ahmed et al. (2020)

Other

Acerola by-product Leonarski et al. (2021) Maise silk Zhiwen et al. (2021)

Citrus peel Shin et al. (2016) Green coffee Aung and Eun (2021)

Banana peel Pure and Pure (2016b) Butterfly pea Shin et al. (2016)

Common nettles Pure and Pure (2016b) Rose Zhang et al. (2020)

Laver (Porphyra dentata)
Aung and Eun (2021) and Aung 

and Eun (2022)
Jujube kernel

Zhang et al. (2020)

Pollen Uțoiu et al. (2018) Dragon fruit peel Batubara (2022)

Pineapple peels and cores Phung et al. (2023)
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TABLE 2 Biochemical components of kombucha.

Compound Structural formula Fermentation time (d) Content References

Sucrose
13

14

40 g/L

35 g/L
Malbaša et al. (2008)

Glucose
10

60

37.7 g/L

12 g/L

Chen and Liu (2000) and Neffe-

Skocińska et al. (2017)

Fructose
10

60

30.9 g/L

55 g/L

Chen and Liu (2000) and Neffe-

Skocińska et al. (2017)

Gluconic acid
60

21

39.00 g/L

0.016 g/L

Chen and Liu (2000) and Coelho 

et al. (2020)

Acetic acid

18

10

60

8.36 g/L

1.65 g/L

8.00 g/L

Jayabalan et al. (2007), Chen and 

Liu (2000) and Neffe-Skocińska 

et al. (2017)

Glucuronide

18

21

10

1.71 g/L

0.0034 g/L

0.063 g/L

Jayabalan et al. (2007), Neffe-

Skocińska et al. (2017) and 

Petrović et al. (2000)

D-Saccharic acid-1,4-

lactone

4

21

0.39 g/L

2.24 g/L

Chakravorty et al. (2016) and 

Chen and Liu (2000)

Citric acid 3 0.11 g/L Jayabalan et al. (2007)

(Continued)
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is hydrolysed into smaller molecules and converted into 
epigallocatechin (EGC), EGCG, and EC (Jayabalan et  al., 2008). 
Theaflavins and thearubigin are complex polyphenol derivatives found 
in black tea and are associated with colour changes in tea (Martínez-
Leal et al., 2018). The lighter colour of a fully fermented kombucha 
may be attributable to the conversion of theaflavins to theobromine 
(Jayabalan et al., 2007).

3.3. Substance transformation of 
alternative raw materials after fermentation 
by kombucha

Traditional kombucha is prepared from black tea and white sugar, 
which are the primary raw materials used in microbial fermentation. 

However, in the last three decades, considerable research has resulted 
in the replacement of black tea and white sugar with other teas, herbs, 
plant materials, and sugars. The pharmacological products of 
fermentation depend on the active substances and their amount in the 
broth. The metabolites generated during kombucha fermentation of 
alternative substrates exhibit a strong correlation with the 
characteristics of the initial raw materials (Table 3).

3.4. Antibacterial property

Kombucha beverages produced through the fermentation of 
alternative raw material extracts are known to have antibacterial 
potential. The antibacterial profile of various substrates after 
fermentation with kombucha (Table  4) is influenced by different 

FIGURE 1

Material transformation relationship of raw materials and microbiota. Fermentation in an acidic environment or enzyme releases by bacteria and yeast 
may degrade or convert the complex phenolic compounds in kombucha into small biological molecules. EGCG, epigallocatechin-3-gallate; ECG, 
epigallocatechin gallate; EGC, epigallocatechin; EC, epicatechin.

Compound Structural formula Fermentation time (d) Content References

Lactic acid 3 0.44 g/L Jayabalan et al. (2007)

Ethanol
10

20

11 g/L

5.5 g/L

Chen and Liu (2000) and Neffe-

Skocińska et al. (2017)

Tea polyphenols – 14
67.2 mg/g dry 

weight
Gaggìa et al. (2018)

TABLE 2 (Continued)
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TABLE 3 Transformation of the black tea alternative substances after fermentation.

Raw 
materials

Fermentation 
time (d)

Fermentation 
temperature (°C)

Unfermented Fermented References

Green tea
0, 1, 3, 6,7, 9, 12, 14, 

15
25, 28 ± 1

Polyphenolic catechins 

[epigallocatechin gallate (EGCG), 

epigallocatechin (EGC), epicatechin 

gallate (ECG), and epicatechin 

(EC)], polyphenols, flavonoids

Theaflavins, glucuronic acid, 

gluconic acid, DSL, acetic acid↑, 

ascorbic acid, total phenols↑, total 

flavonoids↓, alcohol↑,

Kaewkod et al. (2019); 

Jakubczyk et al. (2020)

Oolong tea 0, 3, 6, 9, 12, 15 25 Catechins

Glucuronic acid, gluconic acid, 

DSL, acetic acid, ascorbic 

acid,total phenols

Kaewkod et al. (2019)

Red tea 1, 7, 14 28 ± 1 Polyphenols, flavonoids
Total flavonoids↓, total phenols, 

alcohol↑,acetic acid↑
Jakubczyk et al. (2020)

White tea 1, 7, 14 28 ± 1 Polyphenols, flavonoids
Total flavonoids↓, total phenols↑, 

alcohol↑
Jakubczyk et al. (2020)

Yerba mate 7, 14, 21, 35 25

Polyphenolic acids [chlorogenic 

acid, caffeic acid, 3, 

4-dicafeoylquinic acid, 3, 

5-dicafeoylquinic acid, xanthines 

(caffeine and theobromine)], 

flavonoids (quercetin, kaempferol, 

and rutin), amino acids, minerals (P, 

Fe, and Ca), vitamins (C, B1, and 

B2), saponins, alkaloids

Caffeic acid, 3-caffeoylquinic acid, 

4-caffeoylquinic acid, 

5-caffeoylquinic acid, 

3,4-dicaffeoylquinic acid, 

3,5-dicaffeoylquinic acid, 

4,5-dicaffeoylquinic acid, 

phenolic acids, theobromine, 

caffeine, rutin

Ziemlewska et al. 

(2021)

Cactus pear 

juice
15 30

Vitamins, amino acids, minerals, 

polyphenols, betalains, 

indicaxanthin, flavonoids

Total phenols↑, betalains 

(betacyanin↑)

Ayed and Hamdi 

(2015)

Red grape 

juice
15 30

Vitamins, minerals, carbohydrates, 

edible fibre, polyphenols [phenolic 

acids, resveratrol, 

proanthocyanidins, 

flavonoids(anthocyanin)]

Organic acids, total phenols, 

anthocyanins

Ayed et al. (2017) and 

Akbarirad et al. (2017)

Snake fruit 14 25 Vitamins, minerals, dietary fibre
Total phenols, tannic acid, total 

flavonoids, organic acids
Zubaidah et al. (2018)

Pomegranate 

juice
14 37

Phenol-carboxylic acids, 

anthoxanthins (flavonoids, 

anthocyanins), astringent-

polyphenolic compounds (tannins), 

antioxidants

Total acidity, glucuronic acid, 

reducing sugars
Yavari et al. (2018)

Cherry laurel 

juice

40 h 28 ± 2

Vitamin C, Phenolic substances 

(anthocyanins)

Total phenols, total monomeric 

anthocyanins, total acidity

Ulusoy and Tamer 

(2019)

Blackthorn 

juice

Polyphenolic compounds, vitamin 

C

Red raspberry 

juice

Polyphenols, anthocyanins, 

ellagitannins

Black carrot 

juice

Phenolic compounds, vitamins C 

and E

King coconut 

water
7 24 ± 3

Sugars, vitamins (vitamin B 

complex, vitamin C), amino acids 

and minerals, carbohydrate

Ethanol, total acid, total phenolic 

(ferulic acid ↑, p-coumaric acid ↑)

Watawana et al. 

(2016)

(Continued)
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TABLE 3 (Continued)

Raw 
materials

Fermentation 
time (d)

Fermentation 
temperature (°C)

Unfermented Fermented References

Goji berry 1–14 28 ± 2

Red goji berry: carotenoids (beta-

carotene, lutein, lycopene, 

zeaxanthin, zeaxanthin dipalmitate), 

polysaccharides, vitamins (ascorbic 

acid tocopherol), minerals, fatty 

acids, betaine, peptidoglycans

Black goji berry: purple 

anthocyanins, proteins, free amino 

acids, essential oils, organic acids, 

carbohydrates, vitamin C, B1, B2, 

minerals, alkaloids

Total acidity ↑, total phenolics ↑
Abuduaibifu and 

Tamer (2019)

Yarrow 7 25

Achilleine, apigenin, luteolin, 

azulene, camphor, coumarin, inulin, 

menthol, quercetin, rutin, succinic, 

salicylic, caffeic acids, thujone

Organic acids (oxalic acid ↑, 

formic acid ↑, acetic acid ↑, 

succinic acid ↑, malic acid ↑, 

citric acid ↑), total phenols ↑, 

flavonoids ↓, vitamin C ↑

Vitas et al. (2018)

Wheatgrass 

juice
12 29 ± 1

Chlorophyll, vitamins (A, C, E), 

bioflavonoids, minerals (iron, 

calcium, magnesium), phenolics 

(ferulic acid, vanillic acid)

Total phenolic, total flavonoids, 

total anthocyanin
Wang et al. (2021)

Ginger 10 25
Gingerols, shogaols, zingerone, 

paradols
– Salafzoon et al. (2017)

Cinnamon

1–16 28

Cinnamaldehyde, eugenol, 

coumarin Organic acid ↑, Total phenolic ↑, 

total flavonoid ↑
Shahbazi et al. (2018)

Cardamom –

Shirazi thyme Carvacrol

Garlic 21 25 Organosulfur compounds Total phenolic ↑ Pure and Pure (2016a)

African 

mustard leaves
14 25–30

Glucosinolates, polyphenols, 

carotenoïds, vitamins

Ethyl acetate ↑, sugar ↓, ethanol 

and acetic acid (↑ then ↓), total 

phenols ↑

Rahmani et al. (2019)

Oak leaves 7 25

Polyphenols (catechin, quercetin, 

kaempferol, naringin, naringenin, 

ellagic acid), tannins (vescalagin, 

castalagin), proanthocyanidins

Polyphenols, organic acids, 

sugars, gluconic acid, glucuronic 

acid

Vázquez-Cabral et al. 

(2017)

Purple basil 10 24 ± 3 Polyphenols, aromatic compounds Polyphenols, flavonoids
Yıkmış and Tuğgüm 

(2019)

Soy whey 7 28
Protein, oligosaccharide, 

isoflavones, organic acid, minerals

Total reducing sugars, total 

flavonoids ↑, glucuronic acid ↑, 

organic acids ↑, isoflavones ↑, 

volatile components

Tu et al. (2019)

Rice
12 28 ± 2

Total acidity, ethanol ↑, total 

protein ↑, total phenol
Ahmed et al. (2020)

Barley

Acerola

by-product
0–15 30 Vitamin C, polyphenols

Total phenolic ↑, ethanol ↑, acetic 

acid ↑, cellulose ↑, vitamin C ↑
Leonarski et al. (2021)

Banana peel

21 25 -
Total phenolic contents ↑, protein 

↑
Pure and Pure (2016b)Common 

nettles

↑ indicates an increase in content and ↓ indicates a decrease in content.
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TABLE 4 Antibacterial effects of alternative raw materials after fermentation.

Raw 
materials

Antibacterial spectrum Detection 
method

Antibacterial ingredients References

Cactus pear juice

Staphylococcus aureus, Bacillus cereus, Staphylococcus 

epidermidis, Enterococcus faecalis, Escherichia coli, 

Klebsiella pneumoniae, Pseudomonas aeruginosa

Agar diffusion method Acetic acid
Ayed and Hamdi 

(2015)

Red grape juice

Escherichia coli, Pseudomonas aeruginosa, Klebsiella 

pneumoniae, Staphylococcus aureus, Enterococcus 

faecalis, Bacillus cereus, Staphylococcus epidermidis

Agar diffusion method Acetic acid, other metabolites Ayed et al. (2017)

Snake fruit Staphylococcus aureus, Escherichia coli Agar diffusion method

Acetic acid, natural bioactive 

compounds of the snake fruit, 

phenolic compounds, flavonoids

Zubaidah et al. (2018)

Lemon balm

Salmonella enteritidis, Escherichia coli, Proteus mirabilis, 

Pseudomonas aeruginosa, Erwinia carotovora, 

Staphylococcus aureus, Bacillus cereus

Agar diffusion method
Acetic acid, thermostable 

antimicrobial components

Četojević-Simin et al. 

(2012)

Yarrow

Staphylococcus aureus Staphylococcus aureus, Klebsiella 

pneumoniae, Escherichia coli-

Bacillus ichia coli, Proteus vulgaris, Proteus mirabilis, 

Bacillus subtilis, Candida albicans, Aspergillus niger

Minimum inhibitory 

concentration

Organic acids, plant-derived phenolic 

compounds, enzymes, proteins, 

bacteriocins

Vitas et al. (2018)

Cinnamon

S. aureus, B. cereus, E. coli, S. typhimurium
Minimum inhibitory 

concentration

Organic acid (mainly acetic acid), 

flavonoid
Chawla et al. (2009)Cardamom

Shirazi thyme

Garlic
S. saprophyticus, S. aureus, S. epidermidi, B. 

stearothermophilus, S. typhimurium, E. coli, P. aeroginosa
Paper diffusion method Active chemicals of garlic Pure and Pure (2016a)

Soy whey Staphylococcus aureus, Bacillus subtilis, Escherichia coli Agar diffusion method

Organic acid (acetic acid), large 

proteins, polyphenols (flavonoids), 

bacteriocins, enzymes

Tu et al. (2019)

Turmeric Escherichia coli Paper diffusion method
Curcuminoids, terpene derivatives 

(sesquiterpenes and monoterpenes)
Zubaidah et al. (2021b)

Lycium barbarum Escherichia coli, Staphylococcus aureus
Agar well diffusion 

method

Organic acids, L. barbarum 

polysaccharides (LBP), metabolites
Zhang et al. (2022)

factors, including fermentation time, raw materials, temperature, and 
kombucha strains. The fermentation of kombucha is often considered 
a key factor contributing to its antibacterial activity. The competitive 
growth advantage of the dominant flora of traditional kombucha and 
the production of secondary metabolites, such as tea polyphenols, 
organic acids, and ethanol, can impede the growth and proliferation 
of pathogenic bacteria and fungi. Ayed et al. found that the growth of 
certain microbes, such as Staphylococcus aureus, Bacillus cereus, and 
Staphylococcus epidermidis, was found to be inhibited by fermented 
cactus pear juice; whereas unfermented pear fruit cactus juice had no 
antibacterial effect, and this inhibitory property was lost when the 
samples were neutralized (Ayed and Hamdi, 2015). The organic acids, 
specifically acetic acid, were identified as the primary contributors to 
the observed antimicrobial activity (Ayed and Hamdi, 2015). 
Četojević-Simin et  al. employed an agar diffusion method to 
investigate the antimicrobial properties of lemon balm tea. The results 
indicated that unfermented lemon balm tea, with a dry weight 
concentration of 5 g/L, did not demonstrate any antimicrobial activity. 
However, the fermented lemon balm tea kombucha exhibited 
significant antimicrobial activity against prokaryotic microorganisms 
(G+ bacteria and G− bacteria) (Četojević-Simin et al., 2012). While 
no inhibitory activity was observed against fungi, yeast, or mould, the 

observed inhibition had similar activity to an acetic acid solution, 
which inferred that acetic acid served as the primary inhibitory agent 
within the kombucha beverage. The presence of other heat-resistant 
antibacterial components was verified by neutralizing with heating 
(Četojević-Simin et al., 2012). Vitas et al. (2018) identified significant 
antimicrobial properties in subcritical aqueous extracts of yarrow after 
fermentation; the potential antimicrobial substances were likely 
organic acids, phenolic compounds of plant origin, enzymes, proteins, 
and bacteriocins produced through fermentation.

The primary antimicrobial agent found in kombucha is acetic 
acid. The phenomenon encompasses the capacity of the undissociated 
acid to undergo unhindered diffusion across the lipid bilayer and 
subsequently release protons from the cytoplasm, thereby reducing 
the pH of the cytoplasm. This process also involves the integration of 
the undissociated acid within the lipid bilayer under conditions of low 
external pH, ultimately resulting in the accumulation of anions. The 
antimicrobial activity of kombucha is primarily attributed to two 
mechanisms: cytoplasmic acidification and the accumulation of free 
acid anions at toxic concentrations (Jayabalan et  al., 2008). The 
acidification of the bacterial cytoplasm can impede bacterial growth 
through the inhibition of glycolysis, hindrance of active transport, or 
disruption of signal transduction (Roe et al., 2002).
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In addition to organic acids, other components introduced by 
alternative raw materials cannot be ignored in bacterial inhibition. 
Some phenolic compounds with antimicrobial activity can affect the 
hyperacidification of the plasma membrane interface.

The integrity of this membrane can be compromised either by 
the H+-ATPase enzyme necessary for ATP production or through 
interaction with bacterial DNA, resulting in modifications to 
bacterial physiology and impeding cellular proliferation. The 
presence of Lycium barbarum polysaccharides in the fermentation 
broth exerted a pronounced inhibitory impact on both gram-
positive and gram-negative bacteria. This effect was attributed to the 
rapid disruption of cellular membranes, thereby impeding the 
passage of essential nutrients and metabolites across the bacterial 
cells, ultimately leading to their inhibition (Zhang et  al., 2022). 
Zubaidah et al. (2021c) revealed that the antibacterial activity of 
turmeric kombucha increased with the turmeric concentration and 
decreased after reaching a certain level. The antibacterial 
components of turmeric kombucha differ from turmeric 
concentrations; the curcuminoid compounds in turmeric and its 
essential oil act as antimicrobial agents by inhibiting the metabolism 
of microorganisms. In addition, terpene derivatives (sesquiterpenes 
and monoterpenes) in essential oils can disrupt the structure of 
bacterial cell membranes (Zubaidah et al., 2021b). Shahbazi et al. 
(2018) observed a notable reduction in the minimal inhibitory 
concentration (MIC) of cinnamon fermentation broth with 
decreasing pH; cinnamon components also disrupted the 
cytoplasmic membranes of gram-positive and gram-negative 
bacteria and reduced intracellular ATP concentrations. Pure and 
Pure (2016b) reported that gram-positive bacteria were more 
sensitive to garlic extracts than gram-negative bacteria. This 
phenomenon can be  attributed to the influence of the lipid 
constituents present in the cell wall, which hinder the penetration of 
garlic’s active compounds into the cells.

In summary, fermented broth often combines the antibacterial 
properties of the raw material and the microbial strain, with organic 
acids being the active components. Fermentation creates an acidic 
environment for drugs and influences the antibacterial properties of 
raw materials, and the active substances of the raw materials also 
contribute to the antibacterial power. However, owing to the 
differences in strains, the intricate composition of strains, and diverse 
culture environments, it is difficult to evaluate the chemical 
composition and core flora associated with the inhibitory effects 
reported in each study, making it difficult to achieve consistent 
inhibitory activity across different studies. Pure and Pure (2016b) 
tested various samples using the disk diffusion method against 
S. typhimurium, S. aureus, E. coli, S. saprophytic, B. saprophyticus, and 
Pseudomonas aeruginosa. The authors found that the infused and 
fermented samples of common nettles, banana peel, and black tea did 
not demonstrate any antibacterial efficacy against the tested bacteria; 
this was thought to be  attributed to the differences in the 
concentration of the aqueous extracts and the assay method (Pure 
and Pure, 2016b). Therefore, the development of kombucha 
fermentation broth as a natural biological preservative requires 
further work. More in-depth research on the antibacterial 
mechanisms of kombucha is required to optimise the strain 
composition, regulate the fermentation process, and actively develop 
kombucha products that are suitable for consumption and have clear 
health benefits.

3.5. Antioxidant effects

The fermentation process can enhance the antioxidant properties 
of Kombucha, thereby rendering it an excellent source of 
antioxidants (Table 5). Gamboa-Gómez et al. (2016) evaluated the 
effect of kombucha fermentation on the antioxidant activities of 
Litsea glaucescens and Eucalyptus camaldulensis, using three 
antioxidant activity indicators, namely thiobarbituric acid reactive 
substances (TBARS), α, α-diphenyl-ß-picrylhydrazyl (DPPH), and 
nitric oxide (NO). The researchers discovered that the process of 
kombucha fermentation enhanced the capacity of natural herbal 
infusions to effectively scavenge free radicals and inhibit lipid 
peroxidation (Gamboa-Gómez et  al., 2016). Sun et  al. used 
traditional kombucha as a control to test against a 1:1 mixture of 
wheatgrass juice and brown sugar tea and found that the modified 
fermentation broth exhibited higher levels of phenolic acid content 
and oxidative radical absorption capacity compared to the traditional 
kombucha. Notably, the DPPH scavenging rate reached 90% (Sun 
et al., 2015).

Polyphenols are the main antioxidants in the kombucha 
fermentation broth, and these entities possess the ability to readily 
donate hydroxyl hydrogen due to their resonance stabilization (Miller 
et al., 1993). This hydrogen supply enhances the DPPH-scavenging 
ability of the phenolic compounds. The increase in antioxidant 
properties of alternative raw materials for fermentation is usually 
associated with increased total phenol content, which is attributable 
to enzymatic synthesis and acid hydrolysis (Ayed et al., 2017). During 
the process of fermentation, microorganisms, specifically Acetobacter 
and Saccharomyces, present in kombucha, secrete enzymes that break 
down polyphenols into smaller compounds possessing potent 
antioxidant properties. Enzymes secreted by the kombucha SCOBY 
cleave flavonoid ring structures and/or phenolic conjugation sites, 
leading to structural rearrangements. Common rearrangements 
include the depolymerisation of theaflavins and theobromine and the 
cleavage of gallic acid into gallic acid (Chen and Liu, 2000). The 
potential outcome of these rearrangements is an enhancement in the 
bioavailability of phenolic compounds, specifically gallic acid, EC, 
and ECG 32.

The antioxidant properties of alternative raw materials stem from 
the differences in their total phenol contents and the specific substrates 
that generate antioxidant components during fermentation. Ayed et al. 
(2017) used red grape juice as an alternative substrate, and the 
fermentation process generated beneficial compounds that enhanced 
the antioxidant properties of the beverage. Ulusoy and Tamer (2019) 
discovered that the predominant contributors to the antioxidant 
activity of raspberries were anthocyanins and ellagitannins, 
accounting for 25% and 52% of the overall antioxidant activity, 
respectively. In addition, Zhang et al. (2022) found that the kombucha 
SCOBY has the potential to alter the composition of polysaccharides 
and the ratio of monosaccharides to polysaccharides after 
fermentation with Lycium barbarum, which affected its 
antioxidant activity.

3.6. Anti-inflammatory effects

As depicted in Figure 2, the anti-inflammatory effect of kombucha 
can be attributed to the beneficial components, including flavonoids 
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TABLE 5 Antioxidant effects of alternative raw materials after fermentation.

Raw material Bioactive compound Experimental method References

Yerba mate Polyphenols, alkaloids, flavonoids
DPPH, ABTS, ROS/fibroblasts, and 

keratinocytes
Chen and Liu (2000)

Cactus pear juice Betalains, polyphenols DPPH, ABTS Ayed and Hamdi (2015)

Red grape juice Total phenols, anthocyanins DPPH, ABTS Ayed et al. (2017)

Snake fruit Phenolics, tannins and flavonoids DPPH Shahbazi et al. (2018)

Cherry laurel juice Total phenolics

DPPH, FRAP, CUPRAC Ulusoy and Tamer (2019)
Blackthorn juice Total phenolics

Red raspberry juice Total phenolics, anthocyanins, ellagitannins

Black carrot juice Total phenolics

King coconut water
Phenolic compounds (ferulic acid, p-coumaric 

acid), Vitamins (vitamin B complex, vitamin C)
DPPH, ABTS, FRAP, ORAC Watawana et al. (2016)

Goji berry Total phenolic DPPH, FRAP, CUPRAC
Abuduaibifu and Tamer 

(2019)

Winter savoury, peppermint, stinging 

nettle, wild thyme, elderberry, quince
Total phenols, total flavonoids, catalase

Catalase activity, reducing power, DPPH, 

hydroxyl radical scavenging ability
Vitas et al. (2020)

Yarrow Phenols, organic acids, vitamin C DPPH, reducing power Vitas et al. (2018)

Wheatgrass juice Phenols, flavonoids DPPH, ABTS, ORAC Wang et al. (2021)

Ginger

Emiljanowicz and Malinowska-Pańczyk 

(2020)-gingerol, Emiljanowicz and Malinowska-

Pańczyk (2020)-shogaol

SOD, catalase activity/breast cancer Salafzoon et al. (2017)

Cinnamon
Cinnamic acid, eugenol, coumarin

Phenols
DPPH Shahbazi et al. (2018)Cardamom

Shirazi thyme

Garlic
Phenols, gluconic acid, glucuronic acid, vitamins, 

amino acids
DPPH Pure and Pure (2016a)

African mustard leaves Total phenolic, vitamin C, vitamin A DPPH Rahmani et al. (2019)

Oak leaves Polyphenols THP-1 cells Vázquez-Cabral et al. (2017)

Purple basil Phenolic compounds, flavonoids DPPH, CUPRAC Yıkmış and Tuğgüm (2019)

Soy whey
Isoflavone aglycones, iron chelated compounds, 

Polyphenols, gluconic acid, glucuronic acid
DPPH, ABTS, FRAP, reducing power Tu et al. (2019)

Rice
Total phenolic compounds DPPH Ahmed et al. (2020)

Barley

Acerola by-product Polyphenols, vitamin C DPPH Leonarski et al. (2021)

Banana peel
Acetic acid, polyphenols DPPH Pure and Pure (2016b)

Common nettles

Pollen Polyphenols, flavonoids DPPH, TEAC Uțoiu et al. (2018)

Green coffee Phenols, flavonoids
DPPH, ROS/keratinocyte (HaCaT), and 

fibroblast (BJ) cells, SOD
Zofia et al. (2020)

Lycium barbarum Phenols, flavonoids, polysaccharides DPPH, reducing power, SOD Zhang et al. (2022)

Butterfly pea
Flavonoids, tannins, saponins, phenols, organic 

acids, DSL
DPPH

Christiani Dwiputri and 

Lauda Feroniasanti (2019)

Rose, jujube kernel Polyphenols, flavonoids, quercetin, gallic acid DPPH, reducing power, SOD Zhang et al. (2020)

Butterfly pea flower
Polyphenolic compounds (kaempferol, rutin, 

quercetin)
ABTS Permatasari et al. (2022)

ABTS, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate); CUPRAC, cupric reducing antioxidant capacity; DSL, D-saccharic acid-1,4-lactone; FRAP, ferric ion reducing antioxidant power; 
ORAC, oxygen radical absorbance capacity; ROS, reactive oxygen species; SOD, superoxide dismutase; TEAC, tetraethylammonium chloride.
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and phenolic acids (gallic acid, catechins, and theaflavins), produced 
by the biotransformation and metabolism of the flora. The 
ameliorating effect of kombucha (15 mg/kg) on gastric ulcers was 
comparable to that of the positive control drug, omeprazole (3 mg/kg). 
Theaflavin was the main anti-inflammatory component, and the 
healing rate of theaflavin (1 mg/kg) in mice over 7 days was 81.4% 
(Banerjee et al., 2010). Many kombucha fermentation broths prepared 
using alternative raw materials exhibit anti-inflammatory properties. 
Kanno et al. (2006) used tea made from oak leaves as a substrate for 
preparing kombucha fermentation broth, and the broth effectively 
downregulated NO production and exhibited a substantial decrease 
in the expression of tumour necrosis factor-alpha (TNF-α) and 
interleukin-6 (IL-6) in lipopolysaccharide (LPS)-stimulated 
macrophages (THP-1). The presence of naringin in oak demonstrated 
a significant inhibition of LPS-induced nitric oxide (NO) production, 
as well as the expression of inflammatory gene products, including 
inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 (Kanno et al., 
2006); moreover, (+)-catechin present in oak inhibited LPS-stimulated 
NO and TNF-α production in macrophages (Guruvayoorappan and 
Kuttan, 2008). The phenolic content of Kombucha, which is produced 
through the fermentation of oak leaf tea, contributes to its notable 
anti-inflammatory and antioxidant properties (Vázquez-Cabral et al., 
2017). Ziemlewska et al. (2021) found that yerba mate extracts used 
as an alternative raw fermentation material showed potent inhibition 
of lipoxygenase (LOX) after 14 and 21 days of fermentation. The 
enzyme LOX plays a crucial role in the synthesis of leukotrienes, 
which are known as mediators of the pro-inflammatory response. 
Therefore, the regulation of LOX activity holds significant importance 
in the treatment of inflammation (Nworu and Akah, 2015; 
Oguntibeju, 2018).

Quercetin and saponins from yerba mate extract are the main 
components responsible for their anti-inflammatory effects, and these 
substances can reduce the production of IL-6, cyclooxygenase-2 

(COX-2), and NO—the main mediators of the inflammatory process. 
Additionally, the tannins in yerba mate extracts have an inhibitory 
effect on LOX activity (Ziemlewska et al., 2021).

3.7. Anti-diabetic effects

Diabetes mellitus is a metabolic disorder characterized by 
inadequate insulin secretion or islet insufficiency. As shown in 
Figure 3, studies on the hypoglycaemic effects of kombucha have 
mainly focused on the analysis and histological observations of the 
biological activities of key enzymes in the glucose metabolic 
pathway; only a few in-depth studies have been reported on the 
associated molecular mechanisms. Zubaidah et  al. (2019) 
demonstrated that the fermentation process of snake fruit extracts 
into kombucha effectively mitigated oxidative stress and provided 
stability to fluctuations in fasting blood glucose levels within a 
streptozotocin-induced diabetic model. This glucose-lowering 
effect was comparable to that of metformin hydrochloride—the 
“king” glucose-lowering drug (Zubaidah et al., 2019). Watawana 
et  al. (2016) found that king coconut water fermented into 
kombucha resulted in the enhanced inhibition of starch hydrolases. 
The inhibitory activity of both α-amylase and glucosidase was 
enhanced by the fermentation process, with a greater enhancement 
observed in α-amylase inhibitory activity compared to 
α-glucosidase inhibitory activity. The enzyme α-amylase exerts its 
action prior to α-glucosidase, thus hindering the reaction rate of 
α-glucosidase and impeding the release of glucose into the 
physiological system. This outcome proves advantageous as it 
demonstrates a beneficial anti-hyperglycemic effect (Watawana 
et al., 2016). Aung and Eun (2021) showed that the fermentation 
broth of laver, as an alternative raw material, inhibited amylase 
activity in vitro. Fermented laver kombucha, which contained 

FIGURE 2

Anti-inflammatory activities of alternative substrates after fermentation. The anti-inflammatory properties of kombucha are attributed to a combination 
of beneficial compounds generated by the flora’s biotransformation and metabolism. NO, nitric oxide; IL-6, interleukin-6; COX-2, cyclooxygenase-2; 
LOX, lipoxygenase; TNF-α, tumour necrosis factor alpha; LPS, lipopolysaccharides.
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important flavonoid compounds, enhanced α-amylase inhibitory 
activity at 25°C (Aung and Eun, 2021). Al-Dulaimi et al. (2018) 
explored the effects of kombucha fermentation with skim milk as a 
substrate on serum glucose concentrations, total lipid profiles, and 
body weight in male rats. Skim milk fermentation reduced blood 
glucose, total lipid, alanine aminotransferase (ALT), aspartate 
transaminase (AST), and alkaline phosphatase (ALP) in the rats and 
exerted beneficial effects on the human liver and overall health. This 
was attributable to the combined effects of polyphenols (such as 
flavonoids and catechins), vitamin E, and organic acids in the 
fermentation broth (Al-Dulaimi et  al., 2018). Permatasari et  al. 
(2022) found that butterfly pea flower kombucha (KBPF) inhibited 
α-amylase and α-glucosidase activities, achieving similar levels of 
inhibition to the acarbose control at concentrations of 50–250 μg/
mL. In vivo, KBPF administration (130 mg/kg BW) significantly 
alleviated the metabolic disturbances induced by a high-fat diet 
through the modulation of glucose level, oxidative stress markers 
(superoxide dismutase), metabolic enzymes (lipases and amylases), 
inflammatory markers (PGC-1α, TNF-α, and IL-10), and lipids, 
such as total cholesterol (TC), triglyceride (TG), low-density 
lipoprotein cholesterol (LDL), and high-density lipoprotein 
cholesterol (HDL). In addition, KBPF had a positive effect on the 
phyla Bacteroidetes and Firmicutes (Permatasari et al., 2022).

3.8. Skincare applications

As shown in Figure 4, Ziemlewska et al. (2021) determined the 
skin care effects of fermented yerba mate kombucha on keratinocytes 
and fibroblast cell lines. They found that fermentation strongly 
inhibited lipoxygenase, collagenase, and elastase activities. 
Furthermore, the researchers noted a sustained moisturizing effect 
subsequent to the topical administration. The fermentation solution 

comprised of phenolic acids, methylxanthines, and flavonoids, which 
actively contributed to the inhibition of enzymatic activity associated 
with skin aging. The primary compounds possessing moisturizing 
properties are antioxidants (polyphenols and flavonoids), proteins, 
amino acids, and carbohydrates, which feature hydroxyl groups 
capable of forming hydrogen bonds with water (Ziemlewska et al., 
2021). Zofia et al. (2020) showed that kombucha with coffee beans as 
a substrate could inhibit collagenase and elastase activities, improve 
skin hydration, and exert sunscreen effects. The concentrations of 
polyphenols, flavonoids, and caffeine in the fermentation broth 
considerably increased the inhibition of collagenase and elastase 
activities. The active ingredients in the coffee fermentation product, 
such as monosaccharides, amino acids, vitamins, polyphenols, and 
flavonoids, showed nourishing and soothing effects. The sunscreen 
properties of fermentates are mainly attributable to substances derived 
from flavonoids, polyphenols, anthocyanins, proteins, amino acids, 
and vitamins (Zofia et al., 2020).

3.9. Anti-cancer effects

The consumption of kombucha can improve the immune system 
and enhance the ability of the body to fight cancer (Figure  5). 
Salafzoon et al. (2017) obtained samples from a 10-day kombucha 
fermentation of ginger infusion containing ginger bioactive 
components, such as gingerol and shogaol, which have anti-
inflammatory and anti-tumour activities. These samples could inhibit 
tumour proliferation and stimulate apoptosis. Fermented ginger 
infusions reduced the activities of peroxidase, glutathione, and 
malondialdehyde in tumours, liver, and kidney homogenates 
(Salafzoon et al., 2017). Vitas et al. (2018) found that the fermentation 
broth of kombucha with yarrow as a substrate has antiproliferative 
activity against human rhabdomyosarcoma cells, human cervical 

FIGURE 3

Sugar-reducing activity of alternative substrates after fermentation. ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate 
transaminase; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; TC, total cholesterol, TG, triglyceride; PGC-1α, 
peroxisome proliferator-activated receptor-γ coactivator 1-α; TNF-α, tumour necrosis factor alpha; IL-10, interleukin-10.
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cancer Hep2 cells (HeLa), murine fibroblasts (L2OB), and other 
tumour cells. Uțoiu et  al. found that the fermentation broth of 
kombucha with bee pollen as a substrate exerted different levels of 
antitumour activity in Hep-2 and Caco-2 cells (Uțoiu et al., 2018). The 
fermented pollen exhibited elevated concentrations of bioactive 
compounds, including polyphenols, soluble silica substances, and 

short-chain fatty acids, thereby augmenting the health-promoting 
properties of pollen through kombucha fermentation (Uțoiu et al., 
2018). Furthermore, the parameters for Kombucha fermentation were 
optimized to enhance the cytotoxic efficacy of the n-hexane fruit 
extract derived from Solanum nigrum L. against MCF-7 breast cancer 
cells (Ziska et al., 2019).

FIGURE 4

Skincare activity of alternative substrates after fermentation. LOX, lipoxygenase.

FIGURE 5

Anti-cancer activity of alternative substrates after fermentation. RD, rhabdomyosarcoma; HeLa, human cervical cancer Hep2c cells; L2OB, murine 
fibroblasts cancer cells; GSH, glutathione; MDA, malondialdehyde.
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FIGURE 6

Pharmacological activity of different substrates in kombucha.

3.10. Other effects

The fermentation process of African mustard leaves by 
kombucha resulted in a notable enhancement in the overall 
phenolic and ethyl acetate levels, as well as the antioxidant capacity, 
when compared to the unfermented samples (Rahmani et  al., 
2019). In addition, kombucha fermentation increased anti-
acetylcholinesterase activity; moreover, it reduced the cytotoxicity 
of Brassica tournefortii leaves and its inhibitory effect on xanthine 
oxidase (Rahmani et al., 2019). Zubaidah et al. conducted a study 
to examine the immunomodulatory properties of turmeric and 
black tea kombucha on BALB/c mice. The results of their 
investigation revealed that turmeric kombucha exhibited a 
significant enhancement in the adaptive immune response, mainly 
in the form of increased expression levels of CD4+, TNF-α, and 
IFN-γ, while enhancing the innate immune response, mainly in the 
form of decreased expression levels of CD68 and IL-6 (Zubaidah 
et al., 2021c). L. barbarum (Zhang et al., 2022), rose, and jujube 
kernels (Zhang et  al., 2020) can contribute to cellulase activity 
when used as alternative fermentation substrates. With the use of 
winter savoury peppermint, stinging nettle, wild thyme, elderberry, 
quince (Vitas et  al., 2020), and milk (Elkhtab et  al., 2017), 
kombucha fermentation broth showed inhibitory activity against 
angiotensin-converting enzyme, and the resulting beverage showed 
antihypertensive potential.

As shown in Figure 6, there have been numerous studies on the 
functions of kombucha. However, most have focused on functional 
efficacy, with minimal investigation into the underlying 
fermentation process.

3.11. Adverse effects

Instances of health issues resulting from the consumption of 
kombucha have been documented in scholarly literature, 
encompassing symptoms such as dizziness, headaches, allergic 
reactions, acidosis, and gastrointestinal ailments (Villarreal-Soto et al., 
2018; Batista et al., 2022). These complications primarily arise from 
various factors, including excessive consumption, inadequate 
sanitation practices at home, contamination by pathogenic 
microorganisms, and susceptibility of immunocompromised 
individuals. For instance, pregnant women are advised against 
consuming kombucha due to its ethanol content, substantial acetic 
acid concentration, and potential presence of substances like heparin 
(Martínez-Leal et al., 2018; de Miranda et al., 2022). The excessive 
ingestion of kombuella in individuals with a history of excessive 
alcohol consumption has the potential to result in significant liver 
necrosis. Findings from pathological examination suggest a 
correlation between kombuella and liver damage in these patients, as 
evidenced by markedly elevated serum levels of aspartate 
aminotransferase and alanine aminotransferase, surpassing what 
would be expected solely from alcohol consumption (Sannapaneni 
et al., 2023).

4. Concluding remarks

We reviewed recent studies on the functional components of 
kombucha produced using alternative raw materials. The antibacterial 
and antioxidant effects of kombucha have been extensively studied. 
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Kombucha contains diverse bioactive constituents, and the 
microorganisms responsible for the fermentation process exhibit 
intricate characteristics. At present, alternative raw materials for 
kombucha fermentation are mostly limited to foodstuffs, mainly for the 
development of beverages. This post-fermentation efficacy investigation 
identified the basic functions of kombucha, such as its antibacterial and 
antioxidant activities and focused on assessing the mixture of total acids, 
total phenols, and total flavonoids that could be beneficial.

Despite the numerous studies on kombucha, several unresolved 
issues remain. First, few studies have reported the inhibitory effects of 
fermentation broths produced from different substrates on drug-
resistant, lethal, pathogenic, and typical inflammatory microbiota. 
Moreover, limited research has been conducted to investigate the 
constituent elements of distinct antibacterial and antioxidant 
compounds subsequent to the process of fermenting alternative raw 
materials. The refinement of its antimicrobial spectrum as well as the 
characterisation and purification of specific antimicrobial and 
antioxidant substances, are of great research significance.

Second, although kombucha has good anti-inflammatory 
properties, the experimental models used have been relatively 
homogeneous; clinical value assessments have not yet been carried 
out, and exploration of the anti-inflammatory mechanisms is still in 
the preliminary stages. Thus, more in vivo and ex vivo experiments are 
required to further elucidate the anti-inflammatory components, 
molecular mechanisms of action, and key functional strains to lay a 
solid theoretical foundation for subsequent clinical trials on the effects 
of kombucha on human health.

Third, insufficient scholarly investigation has been undertaken 
regarding the qualitative and quantitative analyses of particular 
substances, such as polyphenols and terpenoids, or the reaction processes 
of specific substances in mixed strains. The identification and purification 
of active ingredients after the fermentation of alternative raw materials, 
the metabolic pathways in kombucha, and the specific pharmacological 
mechanisms of action have not yet been extensively studied. It may 
be  possible to broaden the range of raw materials for kombucha 
fermentation to traditional Chinese medicines or pure monomeric 
compounds, similar to the development of specific pharmaceutical 
fermenters. The metabolic reaction pathways and products of specific 
substances during strain fermentation could be  supplemented. 
Alternatively, controlling the process to increase the yield of the main 
drug could retain the advantages of kombucha, such as containing many 
beneficial ingredients and natural antibacterial properties, which have 
promising applications in cosmetics and pharmaceuticals.

Future research should focus on the predominant fermentation 
strains and their interactions to develop improved and consistent 
artificial agents that can aid in standardising kombucha production.
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