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A highly complex, diverse, and dense community of more than 1,000 different 
gut bacterial species constitutes the human gut microbiome that harbours 
vast metabolic capabilities encoded by more than 300,000 bacterial enzymes 
to metabolise complex polysaccharides, orally administered drugs/xenobiotics, 
nutraceuticals, or prebiotics. One of the implications of gut microbiome 
mediated biotransformation is the metabolism of xenobiotics such as medicinal 
drugs, which lead to alteration in their pharmacological properties, loss of drug 
efficacy, bioavailability, may generate toxic byproducts and sometimes also help 
in conversion of a prodrug into its active metabolite. Given the diversity of gut 
microbiome and the complex interplay of the metabolic enzymes and their diverse 
substrates, the traditional experimental methods have limited ability to identify 
the gut bacterial species involved in such biotransformation, and to study the 
bacterial species-metabolite interactions in gut. In this scenario, computational 
approaches such as machine learning-based tools presents unprecedented 
opportunities and ability to predict the gut bacteria and enzymes that can 
potentially metabolise a candidate drug. Here, we  have reviewed the need to 
identify the gut microbiome-based metabolism of xenobiotics and have provided 
comprehensive information on the available methods, tools, and databases to 
address it along with their scope and limitations.
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Introduction

Human gut microbiome (HGM) constitutes a community of more than 1,000 different 
bacterial species that colonise the human gut. HGM is majorly influenced by diet as well as 
various other factors like host genetics, geography, lifestyle habits, etc. As compared to the other 
body sites such as skin, scalp, oral and nasal cavities, and urogenital tract, human gut microbiome 
is highly diverse, dynamic with high density of bacteria belonging to various phyla like 
Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria and numerous other bacterial species. 
This community of gut bacteria contribute more than 3.3 million unique genes that provide the 
human host with several folds higher metabolic capabilities than contributed by its own genome 
(Guinane and Cotter, 2013; Jethwani and Grover, 2019).
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Gut microbiota derived secondary metabolites like vitamin B12, 
thiamine, riboflavin, biotin etc. have beneficial effects on the host 
(Gomaa, 2020). The commensal gut bacteria can metabolise 
indigestible dietary fibres and other dietary bioactive molecules such 
as polyphenols, oligosaccharides, pigments, etc. to produce important 
secondary metabolites such as short chain fatty acids like butyric acid 
and propionic acid that have anti-carcinogenic, anti-inflammatory 
properties as well as act as energy source for intestinal cells (Cencic 
and Chingwaru, 2010). As a result, HGM have crucial effect on human 
health and physiology through their multifaceted influence on 
metabolic and immunological systems. On the other hand, dysbiosis 
or alteration in abundance of commensal gut bacteria can lead to 
various inflammatory disorders like IBD, Crohn’s disease, colon 
cancer and metabolic disorders like obesity and diabetes (Blandino 
et al., 2016). As a result, several recent studies are now focusing on 
exploiting the metabolic capabilities of gut microbiome as 
therapeutical target to modulate human health (Brandt, 2013; Suez 
et al., 2018; Sokol et al., 2020).

The extensive metabolic capabilities also allow gut bacteria to 
metabolise orally administered drugs and other pharmaceutical and 
nutraceutical xenobiotics. This direct gut bacterial biotransformation 
of drugs and other xenobiotics are known to alter the pharmacological 
properties and intended effect on the human host, as well as cause loss 
of bioavailability due to depletion (Ilett et  al., 1990; Wilson and 
Nicholson, 2017). During drug development stages, susceptibility of 
the drugs to gut microbial metabolism is often overlooked (Wilson 
and Nicholson, 2017). This results in unresponsiveness to drug 
therapy, unintended toxic effects and in dose formulation due to 
microbial depletion of drugs.

For example, digoxin, a cardiac glycoside is reduced to its inactive 
form dihydrodigoxin by Eggerthella lenta (Haiser et  al., 2013). 
Similarly, gut bacteria mediated biotransformation can also lead to 
increased toxicity of certain drugs like irinotecan (Brandi et al., 2006). 
This issue is further exacerbated by enzyme promiscuity, where certain 
enzymes can metabolise substrates that are structurally similar to their 
natural substrate (Khersonsky et  al., 2006). In fact, the 
biotransformation of digoxin is an example of enzyme promiscuity. 
Fumarate is the natural substrate for Cgr reductase present in 
Eggerthella lenta. However, it can also metabolise digoxin due to the 
partial structural similarity between digoxin and fumarate (Haiser 
et al., 2014).

Gut bacteria can perform various kinds of biotransformation 
such as reduction, demethylation, hydrolysis, deamination etc. that 
can potentially alter the efficacy of xenobiotics (Wilson and 
Nicholson, 2017). Traditionally, Nuclear Magnetic Resonance 
(NMR) and Liquid Chromatography-Mass Spectrometry (LC–MS) 
are used for metabolic profiling followed by metagenomic and 
microbiological experiments for identification of gut bacterial 
species involved in such biotransformation. However, owing to the 
complex and dynamic gut microbial interactions and vast array of 
metabolic enzymes that can biotransform xenobiotics, employing 

such experimental methods create a bottleneck for studying bacterial 
species-metabolite interactions in gut. Thus, computational 
approaches and machine learning-based tools are now preferred to 
predict gut bacteria that can potentially metabolise a candidate drug. 
In this review, we highlight the complexity and mechanistic insights 
into the different computational approaches to predict the 
biotransformation of xenobiotic molecules by human gut 
microbiome while focusing more on artificial intelligence (AI) and 
machine learning (ML)-based approaches, and also discussing the 
existing resources and databases that can be used to develop new 
prediction tools.

Gut microbiome mediated metabolic 
reactions

Typically, there are three common and key components of any 
xenobiotic biotransformation in the human gut. One component is 
the enzyme, i.e., the gut bacterial enzyme that can catalyse the said 
biotransformation or the reaction. Another is the gut bacterial species 
harbouring the metabolic enzyme, and the third one is any orally 
ingested biotic or xenobiotic molecules that could be  a potential 
substrate for the gut bacterial enzyme.

At the structural level, biotic and xenobiotic molecules possess 
multiple functional groups or structural moieties that can serve as 
potential sites for enzymatic actions (Hult and Berglund, 2007; Li 
et al., 2011). Thus, a major fraction of all existing orally administered 
drugs/xenobiotics may be  subjected to gut bacterial metabolism. 
However, the presence or absence of certain functional groups could 
make them more prone to biotransformation (Zimmermann et al., 
2019; Javdan et  al., 2020). As a result, a single substrate can 
be metabolised by different types of enzymes leading to a variety of 
products arising from a single substrate (Figure 1B). Depending on 
the type of enzyme involved in the biochemical process, different 
reactions can occur through variety of mechanisms, thus enzymes are 
categorized into different groups based on the type of reaction they 
catalyse, as discussed in the following text.

Different classes of metabolic 
enzymes

Enzymes are biochemical agents that catalyse the conversion of a 
biochemical substrate into a product. Enzymes are broadly classified 
into six reaction classes system devised by International Union of 
Biochemistry and Molecular Biology (IUBMB) i.e., 1. Oxidoreductase, 
2. Transferase, 3. Hydrolase, 4. Lyase, 5. Isomerase, and 6. Ligase. They 
are classified by a unique Enzyme Commission number (EC number) 
containing four digits that identifies the complete reaction performed 
by an enzyme. The first digit of the EC number identifies the reaction 
class of an enzyme (type of reaction), the second digit identifies 
reaction subclass within the reaction class of an enzyme (type of 
substrate or nature of functional group), the third digit identifies the 
reaction sub-subclass within the reaction subclass, and the fourth digit 
identifies the name of the substrate (Cornish-Bowden, 2014). The gut 
microbiome harbours a diversity of metabolic enzymes, which are 
primarily dominated by EC1 and EC2 class of enzymes, and the least 
abundant enzyme classes are EC5 and EC6.

Abbreviations: AI, Artificial Intelligence; ML, Machine Learning; HGM, Human Gut 

Microbiome; NMR, Nuclear Magnetic Resonance; LC–MS, Liquid Chromatography-

Mass Spectrometry; dfdU, difluorodeoxyuridine; 5-ASA, 5-aminosalicylic acid; RF, 

Random forest; SVM, Support Vector Machine; ANN, Artificial Neural Network; 

KNN, k-nearest neighbours.
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Metabolic complexity of human gut 
microbiome

Taken together, the presence of more than 4,500 gut bacterial 
species harbouring more than 350,000 metabolic enzymes from the 
six different enzymatic classes provides an enormous functional 
diversity in HGM to biotransform a vast and diverse array of 
xenobiotics through various mechanisms (Almeida et al., 2021). The 
most prevalent enzymatic biotransformations by gut bacteria are 
carried out by EC1 (oxidoreductase) class, followed by EC2 
(Transferase) and EC3 (Hydrolase) (Jourova et al., 2016) that aligns 
well with the fact that the gut environment provides optimum 
conditions for reductive reactions (Guo et al., 2020).

Though the reduction reactions are the most common type of 
reactions carried out by gut bacteria, various other reactions across 
different reaction classes such as deacylation, demethylation, 
hydrolysis, dehydroxylation etc. are also involved in the 
biotransformation of xenobiotics (Wilson and Nicholson, 2017; Guo 
et al., 2020).

Gut microbial cross-feeding 
interactions

Another level of metabolic complexity in human gut emerges 
from the positive and negative interactions of microbial communities 
via sharing of metabolites among them. This phenomenon, referred 
as metabolite cross-feeding helps in funnelling nutrients and 
metabolites across the community as well as to the host (Culp and 
Goodman, 2023). This metabolite cross-feeding also applies to 

xenobiotic biotransformation via which a metabolite may undergo a 
cascade of biochemical reactions where the product from a given 
reaction can be used as a substrate for the next set of reaction by 
various gut bacteria. As a result, xenobiotic biotransformation often 
leads to pharmacological alterations of drugs efficacy as well as affects 
gut bacterial communities and host health by selecting gut bacteria 
capable of biotransforming xenobiotics such as complex prebiotics or 
nutraceuticals. Further to the above complexity, a given molecule 
contains multiple functional groups that may serve as multiple sites 
for diverse enzyme catalysed biochemical conversions. Thus, a single 
molecule can undergo biotransformation through diverse reaction 
mechanisms (Figure 2). Enzyme promiscuity further amplifies the 
metabolic capabilities of gut microbiome to perform the unintended 
metabolism of xenobiotics such as the cases of drugs like digoxin, 
levodopa (Zhu et  al., 2016), gemcitabine (Geller et  al., 2017) and 
sulfasalazine (Collins and Patterson, 2020).

Enzyme-substrate interactions: 
specificity and promiscuity

It is important to understand and examine how an enzyme binds 
to a substrate during the catalytic conversion to their corresponding 
biological products for which various models have been proposed. The 
lock-and-key model (Eschenmoser, 1995) was one of the earliest 
models that proposed strict and rigid structural specificity between 
enzyme and substrate. This notion was challenged by Koshland’s 
induced fit hypothesis (Koshland, 2004) postulating that enzyme 
structure is flexible and specific substrates can induce structural 
changes in enzyme structure thus enabling optimal enzyme-substrate 

FIGURE 1

(A) Representation of different types of features generated for molecular/substrate data. (B) Overview of multi-site metabolism of xenobiotics along 
with enzymes and gut bacteria harbouring them.
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interactions leading to catalysis (Babtie et al., 2010). The interaction 
between functional groups of the substrates and those found in the 
active site of enzyme are presumed to be optimised for a specific 
biochemical mechanism based on the stereochemistry of substrate-
enzyme complex.

However, molecules with a structure similar to the native substrate 
can also occupy the active site of that enzyme leading to 
biotransformation of the non-native substrate. This phenomenon is 
known as enzyme promiscuity (Khersonsky et al., 2006; Babtie et al., 
2010). There are several known examples of enzyme promiscuity 
where the mechanism of biotransformation of a native and a 
non-native substrate is similar. A widely studied example of enzyme 
promiscuity in gut bacterial biotransformation of xenobiotics is that 
of digoxin (Haiser et  al., 2013). Digoxin is a cardiac glycoside 
consisting of glycon (composed of carbohydrate) and aglycon 
(composed of steroid) moieties. Cgr reductase, also known as 
fumarate reductase present in gut bacterial species Eggerthella lenta 
can reduce the lactone ring present in digoxin’s aglycon moiety, thus 
biotransforming digoxin into its therapeutically inactive form 
dihydrodigoxin (Haiser et al., 2014). A part of digoxin drug structure 
is similar to fumarate, which is the native substrate of Cgr reductase. 
Thus, digoxin is capable of occupying the active site of Cgr reductase 
with a lower affinity leading to the reduction of digoxin’s lactone ring 
(Kumar et al., 2018). Besides digoxin, almost 150 drugs are recently 
found to be influenced by gut bacterial xenobiotic metabolism due to 
promiscuous enzyme activities (Zimmermann et  al., 2019). Such 
metabolisms can lead to various unintended effects such as increased 

toxicity, loss of drug efficiency as well as increased efficiency in 
some cases.

Other examples such as inulin or lactulose are prominent 
nutraceuticals prescribed as prebiotics that undergo metabolism by 
phosphorylase and hydrolases present in Bifidobacterium and 
Lactobacillus and promotes the growth of these probiotic species 
(Roberfroid et al., 1998; Thompson, 2002). Thus, the prediction of the 
exact metabolic reaction for a candidate prebiotic or nutraceutical 
substrate, the enzyme carrying out the reaction and the bacteria 
harbouring it, is crucial to identify and develop efficient prebiotics/
nutraceuticals and probiotics.

Identification of promiscuous 
substrates by molecular similarity

In an enzyme catalysed promiscuous reaction, a molecule with 
close structural similarity to the native substrate of an enzyme can fit 
into the active site of enzyme and undergo biotransformation. Thus, 
it is desired to identify and cluster the biomolecules that are 
structurally similar to enzyme substrates to predict the promiscuous 
metabolic reactions. Various structural similarity metrics such as 
Tanimoto similarity coefficient (Bajusz et al., 2015), cosine coefficient, 
Euclidean distance, substructure and superstructure similarity search 
(Yan et al., 2005; Klinger and Austin, 2006) etc. can be used to calculate 
the structural similarity between two molecules. Of these, Tanimoto 
similarity coefficient is a widely used metric to measure the similarity 

FIGURE 2

(A) Single substrate can be metabolised by multiple gut bacterial species into different products. (B) Within a bacterial cell, enzymes act on the 
xenobiotic substrate which is metabolised and converted to another metabolite. This metabolite is released into the gut lumen and is available for 
other bacteria. (C) Secondary metabolites generated after biotransformation of xenobiotic are used by other gut bacterial species that again metabolise 
them into new products. Thus, a cascade of reactions occurs, the products of which are made available for other members of gut microbial 
community as well as colonocytes.
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between molecules, and is defined as ratio of intersection between two 
sets of elements in molecules and can be calculated as follows:

	
TC =

+ −
z

x y z.

where, x is the number of bits obtained from fingerprints of 
molecule A, y is the number of bits obtained from fingerprints of 
molecule B, and z is the union of bits obtained from fingerprints of 
both molecules A and B.

Using structural similarity coefficients, the degree of overlap 
between two molecules or between a molecule and the native substrate 
of an enzyme can be  determined. A higher value of Tanimoto 
coefficient equates to a higher degree of structural resemblance 
between a molecule and native substrate and increases the possibility 
of a promiscuous metabolism. In some recent works, a value of 0.8 has 
been used as the threshold value to determine optimal structural 
overlap between two molecules (Jaiswal et al., 2021).

Population and individual specific 
xenobiotic biotransformation

Another key factor in gut microbiome mediated xenobiotic 
metabolism arises from the noteworthy differences in the gut 
microbiome compositions of different populations due to the 
differences in the diets, lifestyles and geographical locations. As a 
result, the possible biotransformation of a given xenobiotics may vary 
between different populations. The earlier cited example of the 
promiscuous metabolism of Digoxin is also an example of population-
specific metabolism, where the prevalence of digoxin 
biotransformation was significantly higher in American patients as 
compared to healthy south Indian and Bangladeshi patients (Alam 
et al., 1988; Mathan et al., 1989). Thus environment, lifestyle, dietary 
habits, and other factors that shape the gut microbiome in different 
populations also defines the gut-microbiome mediated metabolic 
capabilities and the resultant differences in gut microbe-mediated 
xenobiotic biotransformation. This also applies to the gut microbiome 
variations between different individuals belonging to the same or a 
different population. Such examples highlight that xenobiotic 
biotransformation, and its subsequent effects can vary from person to 
person and more individual and population centric approaches for 
studying gut microbe-mediated biotransformation are required.

Consequences of xenobiotic 
biotransformation

To summarize the above, it is apparent that human gut bacteria 
can utilise different types of mechanisms to biotransform structurally 
diverse xenobiotics to alter their pharmacological properties. These 
alterations can lead to either inactivation of drugs, conversion of 
prodrug into its active form or increased toxicity of metabolised 
drugs. Nucleoside analogue Gemcitabine (2′,2′-difluorodeoxycytidine) 
is used as chemotherapeutic drug for the treatment of different types 
of cancers including aggressive forms of cancer like pancreatic ductal 
adenocarcinoma (PDA). Various studies have linked gemcitabine 
inactivation by bacteria colonising tumour tissues such as Mycoplasma 

hyorhinis (Vande Voorde et al., 2015; Geller et al., 2017). Deamination 
of gemcitabine by bacterial cytidine deaminase converts gemcitabine 
into its inactive form 2′,2′-difluorodeoxyuridine (dFdU) that is 
excreted out, leading to ineffective antitumour response (Abbruzzese 
et al., 1991; Frese et al., 2012). Another example is the case of digoxin 
that gets inactivated by the reduction of its lactone ring and convert 
to dihydrodigoxin by Cgr reductase in Eggerthella lenta species 
(Haiser et al., 2013).

Likewise, gut microbial biotransformation can also increase the 
efficacy of drugs by converting a prodrug into its active form. An 
example is Sulfasalazine, which is prescribed as an anti-inflammatory 
prodrug for the treatment of ulcerative colitis (Klotz et al., 1980). 
Sulfasalazine contains two structural moieties, 5-aminosalicylic acid 
(5-ASA) and sulfapyridine that are coupled together with diazo 
linkage. Azoreduction performed by gut bacterial azoreductase cleaves 
the diazo coupling to release 5-ASA that has anti-inflammatory 
activity, thus reducing pro-inflammatory conditions associated with 
ulcerative colitis (Carmody and Turnbaugh, 2014; Crouwel et  al., 
2021). Similarly, gut bacteria mediated hydrolysis converts lovastatin 
into its active β-hydroxy acid form (Yoo et  al., 2014; Enright 
et al., 2016).

In a few cases, gut bacterial biotransformation is also found to 
enhance the toxicity of prodrugs such as irinotecan. Prodrug 
irinotecan is a chemotherapeutic drug that is administered for 
treatment of colorectal cancer. Irinotecan (SN-38) is cytotoxic and 
prior to its entry into intestine, hepatic UDP-glucuronosyltransferases 
convert SN-38 into its glucuronidated nontoxic form 
SN-38G. However, β-glucuronidases found in various bacterial genera 
like Clostirdium, Faecalibacterium, Bacteroides etc. reconverts SN-38G 
into its cytotoxic form SN-38 that can cause adverse drug response 
and severe diarrhoea (Guthrie et  al., 2017; Collins and Patterson, 
2020). Various tools such as ToxiM and admetSAR are available for 
toxicity prediction of a molecule (Cheng et al., 2012; Sharma et al., 
2017b). Toxicity prediction tools predict various properties of a 
molecule such as their solubility, absorption, excretion and, 
metabolism by host, and also predict any direct toxic effect on the host 
(Hutchinson et  al., 1979; van Breemen and Li, 2005). ToxiM and 
admetSAR utilise machine learning-based classification and regression 
models to predict toxicity of input molecules (and biomolecules in 
case of admetSAR). Toxicity prediction is an important aspect of 
understanding gut bacteria mediated xenobiotic metabolism as toxic 
byproducts of unintended gut bacterial metabolism may lead to severe 
health complications.

Bioaccumulation of xenobiotics as 
novel mechanism of drug depletion

Recent studies have highlighted bioaccumulation of drugs as 
another mechanism adopted by gut bacteria that can alter availability 
of drugs/xenobiotics (Cohen and Kelly, 2022). Bioaccumulation has a 
direct impact on drug bioavailability as accumulation of drug 
molecules inside gut bacterial cells depletes the drug concentration 
that in turn attenuates drug response in the host. In addition, 
bioaccumulation affects bacterial cell physiology and induces 
metabolic cross-feeding interactions with other bacteria from the gut 
bacterial community. Many xenobiotics such as duloxetine, 
montelukast, roflumilast etc., are accumulated inside bacterial cells 
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without undergoing biotransformation (Klünemann et  al., 2021). 
Metabolic enzymes are involved in this bioaccumulation where such 
enzymes bind to a drug molecule without any biotransformation and 
leads to its unavailability. For example, duloxetine can bind to 
nucleotide biosynthesis pathway enzymes without undergoing 
biotransformation in Clostridium saccharolyticum (Klünemann et al., 
2021). More experimental evidence is required to obtain deeper 
insights into the process and impact of bioaccumulation on host as 
well as to identify the kind of drugs that could be  susceptible 
to bioaccumulation.

Determining xenobiotic metabolism 
by experimental methods

The experimental determination of enzymatic biotransformation 
of a given xenobiotic by a gut bacterium is a challenging task (Koppel 
et al., 2017). To identify the biotransformation/bioaccumulation of 
xenobiotics by human gut microbiome, expensive techniques like 
nuclear magnetic resonance, liquid chromatography-mass 
spectrometry are required along with a library of xenobiotic 
molecules to screen for possible metabolism (Zimmermann et al., 
2019; Javdan et  al., 2020). Further, to identify the gut bacteria 
involved in this biotransformation and the mechanism of 
biotransformation, culture-based analysis and biochemical assays are 
required which are tedious tasks. Furthermore, the dynamic nature 
of human gut microbiome and complexities associated with gut 
microbe-mediated metabolisms makes experimental determination 
of a xenobiotic biotransformation a tough task. In this scenario when 
experimental methods have their own limitations, the various 
computational approaches such as docking, molecular dynamics 
simulations, development of artificial intelligence-based 
computational tools/resources to predict the potential candidate 
molecules that can undergo gut bacteria mediated biotransformation 
are helpful to narrow down the number of molecules to be tested 
experimentally. Such computational tools can thus help in reducing 
the cost and time for experimental validations of potential 
biotransformation of a given candidate molecule.

Computational approaches for 
studying gut bacterial xenobiotic 
biotransformation

Biochemical processes such as xenobiotic biotransformation 
involves enzyme-substrate interactions for which the computational 
methods such as molecular dynamics simulations and molecular 
docking have been widely used. Molecular docking helps to study the 
binding, affinity and optimal conformation for enzyme-substrate 
complex by simulating molecular interactions between substrate and 
active site of the enzyme (Morris and Lim-Wilby, 2008). Molecular 
dynamics simulations study wider details such as protein folding, 
conformational changes, ligand binding, etc. (Hollingsworth and 
Dror, 2018). Both processes have been extensively used to identify 
potential ligands and their target enzymes. A large repertoire of 
software are also available that have implemented docking and 
molecular dynamics simulations for this purpose (Chen et al., 2003; 
Verdonk et al., 2003; Lang et al., 2009) Molecular dynamics simulation 

was successfully applied to study the binding of digoxin and 
amphetamine into the active site pocket of Cgr reductase and tyramine 
oxidase enzymes, respectively (Kumar et al., 2018, 2019). However 
molecular docking and molecular dynamics simulations have 
limitations due to the lack of availability of complete 3D structure for 
many enzymes, thus restraining their application towards deciphering 
novel substrate-enzyme interactions (Fan et al., 2019).

Besides molecular dynamics simulations and docking, 
Quantitative structure–activity relationship (QSAR) modelling is also 
widely used to predict the bioactivity of drugs and xenobiotics based 
on their structure (Cherkasov et al., 2014). QSAR methods identify 
molecules with known properties that are structurally similar to a 
query molecule and extrapolate their properties to the query molecule. 
However, since QSAR models study individual molecules, they have 
limited ability to predict biotransformation (Cherkasov et al., 2014).

The application of AI/ML-based approaches are gaining 
significance due to their ability to predict the possible enzymatic 
reactions and enzyme-substrate interactions. AI/ML-based methods 
involve statistical methods to understand and learn from a dataset and 
make predictions. Usually, supervised learning is implemented that 
uses labelled data and makes predictions as per the available labels. 
Multiple ML-based methods such as random forest (RF) (Ali et al., 
2012), support vector machine (SVM) (Suthaharan, 2016), artificial 
neural networks (ANN) (Krogh, 2008) etc. are available that can 
perform classification as well as regression tasks. Before moving to the 
section “Artificial intelligence and machine learning for predicting 
xenobiotic biotransformation,” which details the methodology used 
in AI/ML-based prediction of xenobiotic metabolism, it is required to 
understand the training datasets and their sources which is discussed 
in the following section.

Databases for gut microbes, 
compounds, and substrates 
information

The application of machine learning or AI-based approaches 
require curated and adequate information for comprehensive training 
for making reliable predictions. For any microbiome-based 
biotransformation of a given molecule, the key input needed are the 
enzymatic reactions in various EC classes, substrate, product, and the 
bacteria that harbour the metabolizing enzymes. The following section 
provides an overview of the available resources to construct a 
comprehensive training dataset.

Various comprehensive databases exist that contain computer 
readable molecular information for diverse array of compounds. 
PubChem (Kim et al., 2023) is an open chemistry database maintained 
by National Institute of Health (NIH) that contains chemical 
information on chemical structure, physical properties and biological 
activities of vast array of small and large molecules. For each molecule, 
chemical information is available in various formats like .sdf, .mol, 
.smi, etc. In addition to PubChem, other databases such as KEGG 
(Kyoto Encyclopaedia of Genes and Genomes) (Kanehisa, 2000), 
UniProt (UniProt Consortium, 2015) and BRENDA (BRaunschweig 
ENzyme DAtabase) (Scheer et al., 2011) contain complete metabolic 
information for all enzyme reactions, including the information 
regarding substrates, products, reaction type and EC number of 
enzymes involved in the reaction.
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KEGG is a collective database for linking genomic information 
with metabolic and functional information on cellular processes, 
enzymes, and enzyme-substrate pairs (Kanehisa, 2000). KEGG also 
provides information on various metabolic pathways along with 
detailed information regarding the participating substrates, cofactors 
and resultant products. KEGG also provides ortholog database that 
links molecular functions with different genes and metabolic pathways 
thus creating functional ortholog database. KEGG orthologs can 
be  used for constructing reference databases for prediction of 
metabolic profiles using microbiome abundance data as used in 
Mangosteen (Yin et al., 2020) and MIMOSA (Noecker et al., 2016). 
For example, KEGG ortholog K00161 provides information about 
pyruvate dehydrogenase E1 subunit that includes it EC number (EC 
1.2.4.1), its reaction involving pyruvate and thiamine diphosphate as 
substrate and 2-alphahydroxyethyl thiamine as its product, along with 
the pathways in which this enzyme participates. Such information can 
be used to retrieve the substrates, products and the corresponding 
reactions, which can be  used for training the prediction models. 
BRENDA is another curated database that provides information on 
functionality, structure, and occurrence of enzymes across biological 
systems (Scheer et al., 2011). Together both these databases include 
comprehensive information on metabolism, pathways and ligands 
involved in biochemical processes.

Using such databases, information regarding enzymes that can 
metabolise xenobiotics can be  obtained. Further, the databases 
containing information on gut bacteria such as Virtual Metabolic 
Human (VMH) (Noronha et al., 2019) provide complete information 
regarding gut bacterial strains colonising the human gut. Human 
Microbiome Project (HMP) also provide consolidated gut microbial 
database as well as raw metagenome reads, along with bioinformatic 
tools for analysis (Turnbaugh et al., 2007; Gevers et al., 2012). Besides 
these databases, NCBI genome browser also maintains genbank and 
refseq sequence databases to provide genomic information for various 
gut bacterial species and strains (Pruitt, 2004). Thus, the information 
on enzymes that can metabolise xenobiotics can be linked to the gut 
bacterial abundance data to estimate the role of different bacterial 
species in different populations in the metabolism of a given 
xenobiotic (Table 1).

Using nucleotide and protein sequences from these databases, 
taxonomic identification of gut bacterial species and their functional 
annotations can be obtained. Bracken (Lu et al., 2017) provides species 
level bacterial abundance from metagenomic datasets. MetaPhlAn2 
(Truong et  al., 2015) is another tool that is useful for accurate 

reconstruction of taxonomic composition from shotgun metagenome 
sequences. MetaBin (Sharma et al., 2012) uses blat for taxonomic 
assignment of short reads whereas 16S classifier (Chaudhary et al., 
2015) is a machine learning-based tool that uses random forest for 
taxonomic identification of bacteria using short hypervariable regions 
of 16S rRNA gene sequence. Similarly, tools such as eggnog-mapper 
(Cantalapiedra et al., 2021), Woods classifier (Sharma et al., 2015) and 
MetaBioME (Sharma et  al., 2010) can be  used for functional 
annotation and identification of enzymes from different 
metagenomic datasets.

Artificial intelligence and machine 
learning-based approaches

Machine learning can be broadly defined as the computational 
process of constructing prediction models using statistical methods 
on the correlated informative groups within the data to predict 
properties of new data points (Tarca et al., 2007; Greener et al., 2022). 
Machine learning-based prediction tools can be  trained for 
classification (predicting discrete categories), regression (predicting 
continuous values) or clustering (predicting groups or clusters within 
the data) problems.

Based on the type of problem, machine learning can be broadly 
classified into supervised learning and unsupervised learning. In 
supervised learning, the training is carried out using labelled data, and 
each data point is annotated with at least one label that represents the 
category to which the data point belongs. The objective of supervised 
learning is to learn patterns within the labelled data and predict a label 
for any new input data (Nasteski, 2017). Supervised machine learning 
deals with classification and regression problems. On the other hand, 
unsupervised machine learning utilises unlabelled data for training, 
and identifies patterns within the data, and groups the data points into 
different clusters (Usama et  al., 2019), making it suitable for 
clustering problems.

For supervised machine learning, different types of methods such 
as decision trees, support vector machine, neural networks are widely 
used. Decision tree (Batra and Agrawal, 2018) involves utilizing tree-
like structure for predicting outcome for any input data. The structure 
of decision tree consists of nodes and edges, with each feature 
representing nodes of the tree. Based on the threshold function of 
input feature, the edges spread into the feature space incorporating 
new features (Tarca et al., 2007). Random forest is a powerful classifier 

TABLE 1  Information regarding different types of databases useful for studying gut bacteria mediated xenobiotic biotransformation.

Databases EC number 
information

Protein 
sequences

Biochemical 
pathways

Molecular data 
files  

(.sdf, .mol,.smi)

Gut bacterial 
abundance 

profiles

BRENDA
✔ ✔

× × ×

KEGG
✔ ✔ ✔ ✔

×

Expasy
✔ ✔ ✔

× ×

Pubchem × × ×
✔

×

HMP ×
✔

× ×
✔

VMH × × × ×
✔

KEGG, Kyoto Encyclopaedia of genes and genomes; HMP, human microbiome project; VMH, virtual metabolic human.
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that involves ensemble of decision trees where collective vote of all the 
trees in the forest becomes the final prediction output of random 
forest (Ali et al., 2012). Support vector machine is another powerful 
algorithm that creates hyperplanes that mark the plane of separation 
and prediction across different labels (Suthaharan, 2016). Hyperplane 
used in SVM is the plane of separation of different types of classes 
present in the high-dimensional dataset (Noble, 2006). This 
hyperplane of separation is selected by maximising margin between 
the hyperplane and the nearest data points and also by utilising kernel 
functions that creates hyperplane at higher dimensions for good 
separation between different classes. SVM can be used for classification 
as well as regression problems. Artificial neural network is a highly 
versatile and customisable algorithm applicable for binary, multiclass 
as well as multilabel classification problems. ANN architecture 
involves nodes arranged in multiple layers where computation, 
processing and analysis is performed (Krogh, 2008).

All machine learning approaches aim to learn from the underlying 
relationship between various features of the dataset while maximising 
the ability of the models to be generalized, i.e., to be able to give 
correct predictions on input data that is not used during training. The 
phenomenon where a machine learning model fails to learn from the 
available features is termed as “underfitting.” Such models fail to 
provide accurate predictions as a result of lack of adequate training. 
Similarly, if a model starts learning from the noise present in the 
training data due to overtraining, it results in “overfitting.” Such 
models perform best on the training data but fail to replicate their 
performance on any data other than the training data. Proportion of 
positive and negative class in the training data can also affect 
performance of the models, and is expected to be  nearly equal 
proportions for optimal training. Underfitting can be  solved by 
diversifying the dataset used for training and increasing the size of the 
dataset. Overfitting can be  solved by simplifying the model by 
reducing the number of parameters used during training (Greener 
et  al., 2022). Addressing the issues of underfitting and overfitting 
improves the accuracy and overall performance of any machine 
learning models. Interestingly, certain methods such as random forest 
are intrinsically resistant to problem of overfitting due to internal 
validation measures such as Out-of-bag error estimation (Cutler et al., 
2012). Method called bootstrapping that uses random sampling of 
data is used to separate a set of random samples from the complete 
dataset during construction of trees in random forest. The unsampled 
data is referred to as out-of-bag data which is used to validate the 
performance of random forest after its training on bootstrapped data. 
This makes random forest resistant to overfitting.

Binary, multiclass and multilabel 
classification

Depending on the number of classes to be predicted, machine 
learning classifiers are termed as binary, multiclass or multilabel 
classifiers. Binary classifiers are simplest form of classifiers involving 
prediction between two mutually exclusive classes, for example to 
predict whether a protein sequence will have proinflammatory effect 
on immune system or not (Gupta et  al., 2016). In multiclass 
classification, more than two mutually exclusive classes are present, 
for example predicting multiple types of cells from a cell population 
seen in a microscopy image (Misselwitz et al., 2010). In both the above 

cases, a single data point exclusively belongs to a single class. On the 
other hand, in case of multilabel classification a single data point can 
belong to multiple classes, for example a single molecule can 
be  metabolised by enzymes from multiple EC classes (Scheer 
et al., 2011).

Random forest is a powerful algorithm that can be used for binary, 
multiclass or multilabel problems whereas SVM is suitable for binary 
and multiclass classification problems but not for multilabel problems. 
Other algorithms such as ANN, Naïve Bayesian (Yang, 2018) and 
K-nearest neighbours (KNN) (Taunk et al., 2019) can also be directly 
used for binary and multiclass classification. However, for proper 
implementation of multilabel classification, two broad categories of 
methods are available; problem transformation and algorithm 
adaptation (Pushpa and Karpagavalli, 2017). Problem transformation 
methods convert the multilabel classification problem into simpler 
binary or multiclass problems by transforming the data labels using 
various methods such as binary relevance, label power set, classifier 
chain etc. are available (Zhang and Zhou, 2014). On the other hand, 
algorithm adaptation involves utilising traditional machine learning 
methods that are modified to deal with multilabel classification such 
as ML-kNN (Zhang and Zhou, 2007), ML-DT (Clare and King, 2001), 
Rank-SVM (Elisseeff and Weston, 2002) etc.

Evaluation metrics for different types 
of classification problems

The performance of various machine learning-based methods can 
be evaluated using different metrics such as accuracy, precision, recall, 
F1-score, hamming loss etc. that highlight different aspects of the 
model. Based on the predictions obtained on test set or validation set, 
confusion matrix consisting of true positive (TP), true negative (TN), 
false positive (FP) and false negative (FN) values is constructed. Using 
these values, different metrics are calculated.

Accuracy is defined as proportion of correctly predicted instances 
out of all instances and is calculated as

	
Accuracy =

+
+ + +
TP TN

TP TN FP FN

Precision is defined as ability of the classifier to differentiate 
between positive and negative instances in the dataset, i.e., out of all 
positive predictions, how many were actually positive and not false 
positive. Precision is calculated as

	
Precision =

+
TP

TP FP

Recall defines the ability of classifier to correctly predict true 
positive instances from the dataset and is calculated as

	
Recall =

+
TP

TP FN

Using precision and recall, another key metric called F1 score can 
be calculated that measures the proportion of correct predictions from 
all the positive predictions. F1-score is harmonic mean of precision 
and recall and is calculated as
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F1 score 2x− =

+
Recall x Precision
Recall Precision

The above-mentioned metrics are routinely used for binary as well 
as multiclass classification problems for evaluating different machine 
learning methods and models (Dalianis, 2018). However, due to 
complexities associated with multilabel classification and problem 
transformation, accuracy alone is not the appropriate metric to assess 
the performance of classification models (Tsoumakas et al., 2006). 
Hamming loss (Wu and Zhu, 2020) and binary accuracy are also 
among the widely used metrics for evaluating performance of 
multilabel classification models (Jaiswal et al., 2021). Hamming loss is 
defined as fraction of incorrectly predicted labels from the complete 
set of available labels in the dataset. Hamming loss thus represents the 
error rate of the multilabel classification models and should be as low 
as possible. Binary accuracy is the accuracy of a single label from the 
complete set of available labels and is calculated for all labels 
independently. Thus, based on the classification problem under focus, 
appropriate evaluation metrics should be  selected to assess the 
performance of the prediction models. To evaluate the performance 
of machine learning models, validation is performed on data 
(validation set) that was not used during the training. Thus, the 
validation set helps in assessing the performance of prediction models 
on real data and also helps in identifying any bias during training of 
the models.

Artificial intelligence and machine 
learning for predicting xenobiotic 
biotransformation

Machine learning-based methods can be used for predicting gut 
bacterial enzymes and complete biochemical reactions involved in 
xenobiotic biotransformation using the available information on 
metabolites, enzymes, and gut bacteria from various publicly available 
databases discussed in the above section (Gupta et al., 2014; Sharma 
et al., 2017b; Srivastava et al., 2020). Basic workflow for developing 
machine learning-based tools involves data collection, generation of 
features for the data and selecting most important features, training 
different machine learning algorithms to identify best performing 
classifier, and optimization of the selected algorithm to further 
improve its performance (Srivastava et al., 2020; Gupta et al., 2022; 
Tomer et al., 2023).

For successful development of AI/ML-based xenobiotic 
metabolism prediction tools, a curated dataset that includes 
substrate information and their labels indicating the EC class of the 
substrate is required. This dataset is generally split into 80:20 ratio 
where training set holds 80% of the data and the remaining 20% 
data is used as the blind set (Joseph, 2022). Training set is used for 
training and comparing the performance of different algorithms to 
select the best performing algorithm, for feature selection and for 
optimization of classifier model, whereas the blind set is used to 
test the performance of optimised models. Model training is 
performed using k-fold cross validation method, where the 
training dataset is split equally into k-folds/parts and training is 
carried out in k-number of iterations (Sechidis et al., 2011; Ali 
et al., 2012). For each iteration, one-fold is kept as testing set while 
the other folds are used for training, and the whole process is 

carried out such that each fold is used as testing set across the 
k-number of iterations.

Finally, to validate the performance of trained models, a validation 
dataset can be used, which has no overlap with the training dataset. 
This step ensures that the developed machine learning model shows 
no bias and can be generalized across different datasets/samples after 
its deployment. To develop ML models for predicting the gut bacteria 
mediated xenobiotic biotransformation, substrate information for 
enzymes can be used for training to predict complete EC number of 
all the gut bacterial enzymes. Prediction of complete EC number helps 
to identify the complete xenobiotic biotransformation reaction and 
the involved gut bacteria (Figure 1B).

Generation of different types of 
features

Features are the set of variables that explain different properties of 
the data and are among the most important aspects for training and 
development of prediction models (Blum and Langley, 1997). In case 
of molecular/substrate data, variables that provide information 
regarding the chemical, physical or structural properties for each 
substrate can be used as features (Figure 1A). Using the chemical 
information for xenobiotic molecules, different types of features can 
be generated that can be used for developing chemoinformatic and 
machine learning-based prediction models (Sharma et  al., 2017a; 
Malwe et al., 2023). Molecular descriptors are set of features generated 
based on the physical and chemical properties like molecular weight, 
charge, valency, etc., for molecules, which can be generated using 
RDKit (RDKit: Open-source cheminformatics; http://www.rdkit.org). 
RDKit is an open source library that is widely used in chemoinformatic 
analysis that can be used to perform different tasks such as feature 
generation, reading various molecule file types (such as .sdf, .mol, 
etc.), interconversion of molecule file types etc. Similarly, fingerprints 
are the set of features that provide structural information for the 
molecules. Fingerprints are set of binary features that describe the 
structure of a molecule including number of atoms, different types of 
bonds etc. Different types of fingerprints such as extended connectivity 
fingerprints, linear and circular fingerprints can be generated using 
PaDeL (Yap, 2011) or RDKit. Recently, neural networks-based 
approach such as directed message passing neural networks 
(DMPNN) was applied to obtain molecular features (Stokes et al., 
2020). Combining the human gut microbiome information and 
chemical information for xenobiotics that are metabolised by gut 
bacteria, computational models can be  developed to predict the 
potential xenobiotic biotransformation and provide lead candidates 
for experimental validations.

Feature selection

Out of all the generated features, it is important to note that not 
all features are relevant for making accurate predictions. Therefore, it 
is important to select the most important features in molecules such 
that the performance of models is enhanced (or not negatively 
affected). This is known as feature selection that helps in selecting the 
most important features as well as in reducing the size of the models, 
which improves their speed and efficiency (Sharma et al., 2015; Jaiswal 
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et al., 2021). There are multiple methods to perform feature selection 
such as Recursive Feature Elimination (RFE) (Chen and Jeong, 2007), 
k-best feature selection and Boruta based feature selection etc. RFE is 
wrapper style feature selection method that can be implemented using 
any supervised learning algorithm. RFE performs successive iterations 
in which it removes the least important features in each iteration till a 
pre-determined number of features remain. RFE is popular for its 
simplicity however it is computationally extensive and requires a 
specified number of features to be  selected which is difficult to 
determine. On the other hand, Boruta based feature selection utilizes 
random forest-based classifier in which Boruta’s feature selection 
algorithm is used as a wrapper (Kursa and Rudnicki, 2010). Boruta 
generates shadow features for each feature present in the dataset and 
trains the RF classifier on it to calculate the feature importance 
measured using mean decrease in accuracy. Shadow feature for a 
particular feature is calculated by randomly shuffling values of the 
feature. Thus, one shadow feature for a real feature is generated. In the 
next step, feature importance for each shadow feature is calculated and 
same process is repeated using real features. After comparing feature 
importance of a real feature against its shadow feature, the feature is 
selected if its importance is higher than its shadow feature. Boruta 
selects any number of features it considers important and does not 
require any pre-determined number of features to be selected.

Since different types of features can be generated for the molecules 
in a dataset (e.g., molecular descriptors, linear and circular fingerprints 
for substrate/molecule data), feature selection can be applied to each 
type of features independently to select most important features from 
each set of features. Combining different types of selected features to 
create a “hybrid features” set helps in combining different aspects for 
each sample in the data thus enhancing and maximising the 
information to be used for training. Such approach has been used for 
developing different types of ML-based classifiers (Sharma et  al., 
2017b; Srivastava et al., 2020).

Parameter optimization and case 
study of amphetamine

Final step in developing AI/ML-based prediction model is 
optimizing the parameters of the best performing algorithm during 
training. Machine learning algorithms can be  customized by 
modifying their parameters. Such customization, termed as parameter 
optimization helps in further improving the performance of the AI/
ML models. Number of parameters and their functions vary among 
different algorithms. For example, in case of random forest, parameters 
determining number of trees in a random forest or number of features 
to be  used during construction a single tree are the most widely 
optimised parameters (Sharma et al., 2017a; Srivastava et al., 2020). 
Similarly, for SVM, parameters such as C, gamma or kernel function 
that determine distance between classes and hyperplane, number of 
points to be classified correctly, and shape of hyperplane are optimized 
to improve performance of SVM classifier (Gupta et al., 2022). Neural 
networks offer a large number of parameters that can be optimized to 
enhance classification accuracy of the prediction model. Using neural 
networks, number of hidden layers, number of nodes in individual 
hidden layers, the weightage for each node in the network can 
be  optimised. Parameter optimization can be  performed using 
GridSearchCV method (Ahmad et al., 2022) available on python as 

well as R, which takes a list of values for each parameter to 
be optimised as an input and can compute any evaluation metric of 
choice. Using the input values, it returns a grid of values based on the 
combination of different values for the parameters, from which the 
best combination of values for parameters can be  selected. Using 
parameter optimization, performance of the models can be enhanced 
further and help overcome issues such as overfitting (Ying, 2019).

One example of a molecule is Amphetamine that highlight the 
application of machine learning in predicting the enzymes that can 
metabolize this drug molecule, followed by validation through 
molecular dynamics approaches. Amphetamine is an FDA-approved 
central nervous system stimulant that is known to be metabolised by 
human gut bacterial tyramine oxidase (Hacisalihoglu et al., 2000). To 
predict gut bacterial enzymes involved in metabolism of amphetamine, 
the first step is to retrieve its .sdf file containing its structural 
information from PubChem (Kim et  al., 2023). In the next step, 
various features such as molecular descriptors specifying its molecular 
properties such as atomic weight, valency, electron distribution, 
number of charged/uncharged functional groups etc. can be generated 
using RDKit. Similarly, various structural features such as linear and 
circular fingerprints of amphetamine can also be  generated using 
PaDeL and RDKit, respectively. Once all the required features are 
generated, this feature table for amphetamine can be provided as input 
into a trained AI/ML classifier that will predict the gut bacterial 
enzymes involved in amphetamine biotransformation or 
bioaccumulation. Some tools that can help a user to perform the above 
steps are DrugBug (Sharma et al., 2017a) and GutBug (Malwe et al., 
2023) and drug depletion predictor developed by McCoubrey et al. 
(2021). The prediction results can be  further confirmed using 
molecular dynamics simulations (Kumar et  al., 2019) and/or 
experimental methods. For example, in the case of Amphetamine, the 
molecular dynamics simulation revealed that it binds to tyramine 
oxidase from the Escherichia coli strain present in the human gut 
microbiome at the binding site that harbour polar and nonpolar 
amino acids, and validated the predicted promiscuous metabolism of 
amphetamine by a gut enzyme. Such validations help to improve the 
efficacy of the drug during the drug design and development process.

Tools to predict 
microbiome-mediated 
biotransformation and 
bioaccumulation of xenobiotics

Using the available biological and chemical data and the various 
computational and AI/ML approaches, multiple predictions tools have 
been developed to predict the xenobiotic molecules prone to gut 
microbial biotransformation, the enzymes involved in 
biotransformation, complete reaction, and the gut bacterial species 
that harbour these xenobiotic metabolising enzymes. In addition, 
paired metagenome and metabolome data can also be  used to 
understand differential metabolite abundance profile for a given 
metagenomic data (Table 2).

Various reference database-based tools such as Mangosteen (Yin 
et al., 2020), MIMOSA (Noecker et al., 2016) and MIMOSA2 (Noecker 
et al., 2022) integrate microbiome and metabolome data to predict 
presence or absence of metabolites for any given microbiome 
taxonomic or functional profile. Mangosteen pipeline uses functional 
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profiles for microbiome that is linked to KEGG orthologs and BioCyc 
reactions (Karp et al., 2019) to predict occurrence of metabolites and 
differential metabolite profiles. Using data from six studies providing 
accessible high-quality data, Mangosteen was able to predict 
occurrence of 3,315 KEGG associated metabolites and 5,957 BioCyc 
associated metabolites which were then linked to their biological roles 
and metabolic pathways. However, Mangosteen performed poorly in 
identifying differentially abundant metabolites (Yin et al., 2020).

Similarly, MIMOSA is another reference database-based 
framework that uses gene abundance data for a microbiome profile to 
predict differential metabolic profiles (Noecker et al., 2016). Gene 
abundance data is mapped to its metabolic reference database that 
links enzymes with substrates and products. Using metabolic network 
model, MIMOSA calculates community-based metabolic potential 
(CMP) scores that measures the relative capacity of a microbial 
community to deplete or synthesize individual metabolites. MIMOSA 
framework was tested on two studies characterizing vaginal 
microbiome of healthy women and women with bacterial vaginosis. 
MIMOSA performed well to identify differentially abundant 
metabolites in healthy and bacterial vaginosis samples, however, for 
other studies that contained linked metabolome-metagenome data, 
MIMOSA performed poorly to identify differential metabolite profiles 
(Yin et al., 2020).

MIMOSA2 (Noecker et al., 2022) is a further improvement of the 
MIMOSA framework. MIMOSA2 assembles taxon-specific 
community metabolic models that is constructed by integrating 
microbiome data with reference databases such as KEGG. Based on 
the abundance profiles for each taxon in the community and genes 
available in the community metabolic models, CMP scores for each 
metabolite is calculated. In the next step, MIMOSA2 utilizes regression 
models to fit calculated CMPs with metabolomics data to infer taxon 
associated with generation or depletion of metabolites. Predictions by 
MIMOSA2 depend on qualitative information provided by reference 
databases and thus in vivo effects such as regulation and selection can 
hamper its performance (Noecker et al., 2022).

MelonnPan (Mallick et al., 2019) is another machine learning-
based tool that predicts metabolomic profile of any input metagenomic 
data for which metabolome data is not yet available. MelonnPan uses 
paired metagenome-metabolome data for training per-metabolite 
elastic net regularized regression model. This regression model 
narrows down to minimal set of microbial features whose abundance 
profiles can be used to predict the particular metabolite. MelonnPan 
was validated on IBD metagenomic dataset and could predict diverse 
groups of metabolites such as sphingolipids, vitamin B-complex and 
bile acid derivatives (Mallick et al., 2019). Even though MelonnPan 
has tremendous applications in understanding metabolite occurrence 

TABLE 2  Principle, advantages and disadvantages of different types of tools covered in this review.

Tools Prediction 
method principle

Type of data used 
for training

Advantages Disadvantages

Drug metabolism 

prediction tool (Mallory 

et al., 2018)

Chemical reaction vector 

embedding method

Biochemical reactions and 

metabolite information

Predicts EC number and gene ontology for 

predicted biochemical reactions

Requires drug and its converted 

metabolite information, thus 

trained on limited data

Mangosteen pipeline Reference database-

based method

KEGG orthologs and 

BioCyc reactions linked to 

microbiome data

Predicts generation or depletion of 

metabolites for given microbiome profile

Lower performance on predicting 

differential metabolite profiles

MIMOSA Reference database-

based method

Gene abundance data linked 

to microbiome abundance 

profiles

Predicts generation or depletion of 

metabolites for given microbiome profile

Performance on predicting 

differential metabolite profiles 

observed to be highly variable

MIMOSA2 Reference database-

based method

Taxon specific metabolic 

models linked to KEGG

Predicts generation or depletion of 

metabolites for given microbiome profile

Predictions observed to 

be hampered due to in vivo effects

DeepEC Convolutional neural 

networks-based 

prediction

Protein sequences Predicts EC number and function for any 

protein sequence

Not trained to predict xenobiotic 

metabolism

MelonPann Machine learning-based 

prediction

Paired metabolome-

metagenome data

Predicts metabolome profile for any 

metagenomic data

Not tested for predicting 

metabolism of specific xenobiotic 

molecules

DrugBug Machine learning-based 

prediction

Substrate and enzyme 

information

Predicts EC numbers for gut bacterial 

enzymes involved in biotransformation of 

xenobiotic molecules

No information regarding products 

of the predicted biotransformation. 

Incomplete EC numbers are 

predicted in some cases

GutBug Machine learning-based 

prediction

Substrate and enzyme 

information

Predicts complete EC numbers for gut 

bacterial enzymes involved in 

biotransformation of biotic and xenobiotic 

molecules

No information regarding products 

of the predicted biotransformation.

Drug depletion 

prediction tool 

(McCoubrey et al., 2021)

Machine learning-based 

prediction

Drug molecule information Predicts drug depletion due to human gut 
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in disease models and to predict metabolomic profiles for 
metagenomic data, direct application of MelonnPan to understand gut 
microbe-mediated metabolism of drugs and xenobiotics is difficult.

Since the annotation or assignment of EC numbers to metabolic 
enzymes is an important task while training the xenobiotic metabolism 
models, one such machine learning based tool to predict EC numbers 
is DeepEC (Ryu et al., 2019) that uses convolutional neural networks 
(CNN) to predict EC numbers for input protein sequences. DeepEC 
also performs homology-based search for predicted EC numbers and 
detects mutated domains in the protein sequence. Since the CNN 
model used in DeepEC is trained using protein sequence, it shows 
high precision and accuracy to predict EC numbers for any given 
protein sequence, however it is not trained to identify substrate-
protein interactions. As a result, to predict and understand 
biotransformation of xenobiotic molecules using machine learning 
and other computational methods, other specialised tools are required 
which are mentioned below.

Using chemical reaction vector embedding method, Mallory et al. 
(2018) developed a pipeline to predict drug metabolism by human gut 
microbiome. In this study, biochemical reactions are treated as 
chemical transformations that are converted to algebraic expressions 
based on the change in chemical structure from conversion of 
substrate to products. This information is then used for predicting 
drug metabolism. Using 11,893 metabolites from 5,241 reactions, 
chemical vector space for each metabolite was calculated using RDKit 
and Tanimoto similarity search. In the next step, this chemical vector 
space is applied for reaction-level analysis to obtain difference vectors 
between various reactants and products. Finally, the drug-metabolite 
pairs were searched against this difference vector to identify the most 
similar reactions that can potentially be involved in conversion of 
queried drug into its metabolite. EC number and gene ontology for 
the predicted reactions were later retrieved to get complete 
information regarding the biochemical process involved in conversion 
of a drug into its metabolite. Using this approach, reactions for digoxin 
reduction and levodopa deamination were validated. This method 
however was developed using a limited number of drug-metabolite 
pairs and require information regarding the drug and its converted 
metabolite, thus not being able to predict potentially novel 
xenobiotic biotransformation.

DrugBug was one of the earliest machine learning-based tool that 
could predict gut bacterial species specific biotransformation of 
xenobiotic molecules (Sharma et al., 2017a). DrugBug utilized 324,697 
metabolic enzymes from 491 human gut bacteria. For these enzymes, 
1,609 substrates were utilized for training the machine learning 
models to predict EC number of the enzymes that can potentially 
metabolise the xenobiotic molecules. DrugBug performs classification 
using reaction class and reaction subclass specific random forest 
models developed in R to predict the EC class and EC subclass of 
enzymes. The substrate dataset used for training was highly diverse, 
thus an option to use two different models trained using up-sampled 
data and without up-sampled data is provided. DrugBug reported 
average 10-fold cross validation accuracy of 0.98 and accuracy of 0.93 
on blind set. Since it was among the early tools, it was trained on a 
considerably lower amount of data since the knowledge of xenobiotics 
undergoing biotransformation was limited.

Another tool named GutBug was later developed that uses an 
improved rationale of predicting EC numbers of gut bacterial 
metabolic enzymes for prediction of EC class and EC subclass, GutBug 

is trained on 3,457 substrates belonging to diverse reaction classes. 
GutBug includes 12 independent random forest and artificial neural 
networks-based binary classifiers and 6 random forest-based 
multilabel models that predict reaction class and subclass for the input 
molecule. Complete reaction is predicted using KNN-based molecular 
similarity search. The gut bacterial enzymes database used in GutBug 
consisted of 363,872 metabolic enzymes from 690 gut bacterial strains. 
GutBug displayed accuracies between 0.78 and 0.97 across different 
reaction class and subclasses. Another key feature of GutBug is the 
identification of reaction centres within the query molecule that are 
prone to metabolism by the predicted enzymes for the RDM patterns 
database available on KEGG was used. In addition, GutBug also 
provides a pipeline for directly identifying predicted enzymes in 
metagenome assembled genomes (MAGs) (Malwe et al., 2023). The 
performance was validated on 27 molecules including xenobiotics/
drugs as well as biotic molecules like bioactive dietary components/
nutraceuticals. Thus, deeper insights into gut bacteria mediated 
biotransformation of xenobiotics and drugs can be obtained using 
chemical reaction vector embedding pipeline, DrugBug and GutBug, 
to get leads on the key gut bacterial enzymes and the species 
harbouring them.

Besides DrugBug and GutBug, a new classifier developed by 
McCoubrey et al., uses a different approach to predict small molecule 
drugs prone to gut microbe-mediated biotransformation. In this 
study, the authors grouped biotransformation and bioaccumulation 
together under the term “depleted” and developed a binary classifier 
(McCoubrey et al., 2021). The classifier was trained on 455 drugs and 
optimised extra trees classifier that provides a binary output on 
whether a drug is predicted to be  depleted or not along with a 
prediction score. This classifier provides information on gut microbe-
mediated biotransformation as well as bioaccumulation, however no 
information regarding specific gut bacteria or enzymes involved in 
depletion of small molecule drugs is provided. Moreover, number of 
known depleted molecules used for the training were limited. Further 
understanding of bioaccumulation process will shed light on newer 
cases of xenobiotics that are bioaccumulated by gut bacteria. As a 
result, by utilising updated databases, more detailed and sophisticated 
models can be  developed to predict gut bacteria 
mediated bioaccumulation.

Discussion

The ability of human gut microbiome to metabolise and 
accumulate xenobiotics have substantial health implications on the 
human host. Drug inactivation and accumulation within bacterial 
cells leads to depletion and loss of bioavailability of drugs whereas 
increased toxicity due to gut microbe-mediated biotransformation of 
xenobiotics can lead to unintended harmful effects on the host. In 
contrast, gut bacterial metabolism of xenobiotics can also lead to 
conversion of prodrug into its active form that could have beneficial 
outcomes. Thus, human gut microbiome mediated biotransformation 
of xenobiotics poses a risk as well as opportunity for drug development 
and modulation of human health. Similarly, AI/ML methods can also 
help in development of novel probiotics and prebiotics by predicting 
prebiotics/nutraceutical metabolising gut bacteria.

Dynamic nature of the gut microbiome and complexity arising 
out of it makes experimental identification of xenobiotic 
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biotransformation/bioaccumulation by gut microbes a difficult task. 
However, using the available novel computational approaches and 
prediction tools, obtaining leads on possible microbial 
biotransformation of any drug under development now appears 
feasible. Such preliminary predictions also provide valuable 
information on exploring the structural changes in a drug molecule 
to protect the biotransformation-prone side group from the 
unintended or promiscuous microbial metabolism. AI-based 
prediction tools can also be useful to identify previously unknown gut 
microbial biotransformation and specific gut bacteria involved in 
depletion or biotransformation of drugs. For example, GutBug was 
able to predict previously unreported hydrolysis of zonisamide, a 
known anticonvulsant, performed by gut bacterial genera like Delftia, 
Lysinibacillus, Cronobacter etc. Similarly, for known bifidogenic 
prebiotics such as Lactosucrose, bifidobacterial enzymes involved in 
lactosucrose metabolism were not known (Ose et al., 2018). GutBug 
predicted sialidase, beta-fructofuranosidase and other hydrolase class 
enzymes that can metabolise lactosucrose (Malwe et al., 2023).

The above examples highlight the importance of the emerging 
computational approaches in obtaining novel insights into the gut 
microbiome mediated biotransformation, bioaccumulation, and 
depletion of orally administered xenobiotics. Employing prediction 
tools for rapid screening of library of candidate drugs molecules can 
help to identify molecules that are more susceptible to microbial 
degradation and depletion. Such insights can help in redesigning the 
structure of susceptible drug molecules to make them resistant to 
promiscuous microbial biotransformation or formulating efficient 
dosage after factoring for drug depletion due to the action of gut 
microbes. Since, the development of drug and bringing it to the 
market is an expensive and time taking process, a prior knowledge of 

the promiscuous metabolism is likely to save cost and time. Another 
key application of using prediction tools would be in personalised 
medication. In addition to the gut bacteria and the metabolic enzyme, 
the information on the populations or individuals that have an 
abundance of such bacteria will be  very much needed and can 
be obtained by the metagenomic profiling of individuals, which can 
be  used to prescribe the medication as per the individual or 
population-specific metagenomic profiles (Figure 3).

Currently, various tools are available that can be used to decipher 
and understand different aspects of xenobiotic metabolism by human 
gut microbiome (Figure 4, Table 2). Reference database-based tools 
such as Mangosteen and MIMOSA that identify depletion or 
occurrence of metabolites based on metagenomic data can help 
potentially help in identifying which drug molecules are prone to 
metabolism. However, since reference databases are not updated to 
accommodate promiscuous metabolism by gut bacterial enzymes, 
there is high probability of missing out on identifying important 
xenobiotic metabolisms. Similarly, ML-based tools such as MelonnPan 
that uses paired metabolome-metagenome data can provide limited 
information for metabolism of specific xenobiotic molecules. Other 
AI/ML-based tools such as DrugBug and GutBug can predict 
promiscuous metabolism that have not been previously identified but 
can only provide qualitative predictions of gut bacterial enzymes 
involved in drug metabolism. Moreover, almost all the available tools 
suffer from unannotated or characterized genes. Available tools need 
to continuously update their training models based on updated 
annotations in reference databases that poses a challenging task. 
Recently, frameworks such as MetaWIBELE (Zhang et al., 2022) that 
predict function for uncharacterized genes in metagenomic datasets 
can be helpful in this regard. Similar frameworks can be integrated 

FIGURE 3

(A) Overview of AI/ML pipeline used for predicting gut bacteria-mediated xenobiotic biotransformation. (B) Applications of AI/ML prediction tools 
candidate drug screening, personalized medicines and drug delivery.
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into current or new tools to account for unannotated proteins. Lastly, 
the use of extensive validation set for validating performance of tools 
predicting xenobiotic metabolism helps in eliminating bias and 
substantiating performance of models obtained during training. 
Validation set also helps in determining how models can perform on 
real data outside of training data and comparing performance against 
other tools.

International efforts to study human gut microbiome at holistic as 
well as at population level will provide further leads into the diverse 
mechanisms and interactions within the gut microbiome community, 
thus providing more information on the xenobiotics undergoing 
biotransformation as well as enzymes harboured by microbes 
(Turnbaugh et al., 2007; Integrative HMP (iHMP) Research Network 
Consortium, 2019). Further improvements in feature generation, 
machine learning and deep learning algorithms along with the 
discovery of new gut bacteria-xenobiotics interactions and reactions 
will provide unprecedented opportunities to develop robust prediction 
models. However, still the experimental validation of the predicted gut 
bacteria-metabolite interactions, and gut bacterial biotransformation 
of specific xenobiotics remains the gold standard and is needed to 
confirm the computational predictions. Therefore, it can be concluded 
that the AI-based computational approaches are promising in 
predicting the gut bacterial biotransformation of xenobiotics and 
provide leads for experimental validations while reducing the gigantic 
effort to experimentally determine all such biotransformation and 
validating only the predicted cases of metabolism. Thus, an integration 
of both computational and experimental approaches will provide 
deeper insights to understand how gut microbiome play an important 
role in xenobiotic metabolism in respect to the human health.
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FIGURE 4

Overview of tools and databases useful for processing and deriving different types of information from human gut microbiome data.
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