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Source attribution has traditionally involved combining epidemiological data 
with different pathogen characterisation methods, including 7-gene multi locus 
sequence typing (MLST) or serotyping, however, these approaches have limited 
resolution. In contrast, whole genome sequencing data provide an overview of 
the whole genome that can be used by attribution algorithms. Here, we applied 
a random forest (RF) algorithm to predict the primary sources of human 
clinical Salmonella Typhimurium (S. Typhimurium) and monophasic variants 
(monophasic S. Typhimurium) isolates. To this end, we utilised single nucleotide 
polymorphism diversity in the core genome MLST alleles obtained from 1,061 
laboratory-confirmed human and animal S. Typhimurium and monophasic S. 
Typhimurium isolates as inputs into a RF model. The algorithm was used for 
supervised learning to classify 399 animal S. Typhimurium and monophasic S. 
Typhimurium isolates into one of eight distinct primary source classes comprising 
common livestock and pet animal species: cattle, pigs, sheep, other mammals  
(pets: mostly dogs and horses), broilers, layers, turkeys, and game birds 
(pheasants, quail, and pigeons). When applied to the training set animal isolates, 
model accuracy was 0.929 and kappa 0.905, whereas for the test set animal 
isolates, for which the primary source class information was withheld from the 
model, the accuracy was 0.779 and kappa 0.700. Subsequently, the model was 
applied to assign 662 human clinical cases to the eight primary source classes. 
In the dataset, 60/399 (15.0%) of the animal and 141/662 (21.3%) of the human 
isolates were associated with a known outbreak of S. Typhimurium definitive 
type (DT) 104. All but two of the 141 DT104 outbreak linked human isolates were 
correctly attributed by the model to the primary source classes identified as the 
origin of the DT104 outbreak. A model that was run without the clonal DT104 
animal isolates produced largely congruent outputs (training set accuracy 
0.989 and kappa 0.985; test set accuracy 0.781 and kappa 0.663). Overall, our 
results show that RF offers considerable promise as a suitable methodology for 
epidemiological tracking and source attribution for foodborne pathogens.
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1 Introduction

Salmonellosis, one of the most common food-borne illnesses in 
both, the developed and developing countries (Majowicz et al., 2010; 
Scallan et al., 2011; Pires et al., 2021), is a disease that is associated 
with diarrhoea, fever and abdominal pains that occasionally can lead 
to death (Fabrega and Vila, 2013; Andino and Hanning, 2015). 
Salmonellosis was the second most reported zoonotic disease in the 
EU in 2020 [European Food Safety Authority (EFSA) and European 
Centre for Disease Prevention and Control (ECDC), 2021] and second 
most reported bacterial enteric disease in the US in 2022 [Centers for 
Disease Control and Prevention (CDC), 2023]. The annual costs 
associated with salmonellosis in 2010 in the US were estimated to 
be in excess of 2.5 billion USD for 1.4 million cases (Scallan et al., 
2011; Andino and Hanning, 2015).

Current classification divides the genus Salmonella into two 
species: enterica and bongori. Salmonella enterica is further divided 
into six well defined subspecies that comprise over 2,600 distinct 
serovars (Issenhuth-Jeanjean et  al., 2014). Salmonella enterica 
subspecies enterica (I) is responsible for the majority of Salmonella 
infections in warm blooded animals (Porwollik et al., 2004), although 
S. Enterica subspecies diarizonae (IIIb) serovar 61:k:1,5,(7) is host 
adapted and endemic in Sheep in multiple countries (Davies et al., 
2001; Alvseike et al., 2004; Sörén et al., 2015; Methner and Moog, 
2018) and S. Enterica subspecies arizonae (IIIa) can infect avian and 
mammalian host species (Katribe et al., 2009). The majority of human 
salmonellosis cases are caused by a minority of the described 
Salmonella serovars. For example, in the US in 2016 just 20 serovars 
were reported as a cause of >80% of human infections with over 
one-third of cases due to just three serovars: S. Typhimurium, 
S. Enteritidis, and S. Newport [Centers for Disease Control and 
Prevention (CDC), 2018]. Similarly, in the United Kingdom (UK), 
S. Typhimurium and S. Enteritidis were responsible for approximately 
50% of non-typhoidal Salmonella infections in England in 2019 
(UKHSA, 2021). Worldwide, World Health Organization (WHO) data 
reported that S. Enteritidis and S. Typhimurium are the two serovars 
most frequently isolated in clinical practice (Fabrega and Vila, 2013).

The main cause of human non-typhoidal salmonellosis is the 
ingestion of contaminated food, or, especially in low to middle 
income countries, contaminated water (Fabrega and Vila, 2013). The 
source of such contamination is typically Salmonella in faeces of an 
infected primary animal host (or, more rarely, human host) 
contaminating the water supply or plant based foodstuffs, or food 
products obtained from an infected primary animal host, including 
meat (typically pork, beef, poultry, or mutton/lamb), eggs, or diary 
(Hald, 2013). Cross-contamination at the different stages of the food 
production chain (e.g., at an abattoir or a food processing plant) can 
also be a significant cause of contamination of foodstuffs and hence 
human salmonellosis infection (Andino and Hanning, 2015). 
Additionally, S. Typhimurium and monophasic S. Typhimurium have 
been shown to persist in farm environments for extended periods of 

time and have also been isolated from animal feed and feed 
ingredients (Andino and Hanning, 2015; Gosling et  al., 2018; 
Harrison et al., 2022). Salmonella Typhimurium and monophasic 
variants of S. Typhimurium can infect a wide range of animal species, 
of which the most relevant primary sources in terms of the potential 
for human infection are various livestock animals and poultry, 
companion animals and pets (horses, dogs, and cats), and wild game 
mammals and birds. Whether the primary host displays any 
symptoms of infection is dependent on the host species and the 
Salmonella serovar. Primary host can often act as a reservoir of 
infection where the bacterium lives and multiplies in the large 
intestine and associated lymphoid tissue. Given the diverse range of 
potential primary animal hosts, and thus the numerous and 
complicated transmission pathways of these zoonotic pathogens 
(Hald, 2013), it can be difficult to determine the primary source of the 
S. Typhimurium and monophasic S. Typhimurium human infections 
for both sporadic cases and outbreaks. This information is critical for 
formulating efficient strategies for mitigating S. Typhimurium and 
monophasic S. Typhimurium infection spread in the human 
population. Hence, development of attribution methodologies to 
better understand pathogen transmission to humans is crucial.

Historically, source attribution efforts have relied on frequency-
matching models [e.g., the Dutch and Hald (“Danish”) models], which 
rely on the one-to-one matching of microbial subtypes, defined either 
by phenotyping (e.g., serotyping) or genotyping (e.g., 7-gene MLST), 
in humans and potential sources, or on probabilistic population 
genetics approaches that utilize genetic markers derived from 
genotypic subtyping methods. These methodologies have been 
reviewed in several recent publications (e.g., Pires et al., 2009, 2014; 
Mughini-Gras et al., 2018, 2019). Pires et al. (2014) reviewed the utility 
of these approaches for attribution of human salmonellosis cases. The 
high-throughput sequencing of bacterial strains has been increasingly 
used for routine surveillance and outbreak investigations. Generated 
whole genome sequencing (WGS) data can additionally be of use to 
accurately discriminate between human infecting pathogens 
originating from different primary sources thus allowing for 
development and application of ever more sophisticated attribution 
models (Franz et al., 2016).

Machine learning (ML) models are computer algorithms that 
improve with experience and have been increasingly applied to 
analyse various large and complex genetic and genomic datasets 
(Libbrecht and Noble, 2015). Recently, there has been a proliferation 
of studies applying ML algorithms to WGS data of zoonotic bacterial 
isolates to answer questions related to attribution [e.g., primary host 
species of S. Typhimurium (Zhang et al., 2019, Munck et al., 2020a), 
food source of Listeria monocytogenes (Tanui et al., 2022), geographic 
origin of S. Enteritidis (Bayliss et al., 2023)], disease risk in humans 
(Njage et al., 2019a), or host disease severity (Karanth et al., 2022). RF 
models are widely used supervised classification ML algorithms that 
have been applied in a range of different research fields and are 
particularly useful for making predictions based on the WGS data 
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(Ogutu et al., 2011). A RF algorithm generates multiple decision trees 
and subsequently aggregates the output produced by each individual 
decision tree to arrive at the consensus set of predictions. Importantly, 
the different decision trees are uncorrelated as each tree is exposed to 
a random subset of the data (variables and model features), which 
minimizes bias and error. Using this approach, here we describe an 
application of a supervised classification RF algorithm on a WGS 
derived set of core genome MLST (cgMLST) genetic markers to assign 
the primary sources to 662 S. Typhimurium and monophasic 
S. Typhimurium sporadic and outbreak human clinical cases detected 
between 2012 and 2018 in England and Wales.

2 Materials and methods

2.1 Strains and sequencing

Prior to sequence quality control (QC), the animal isolate dataset 
comprised the WGS data of 463 S. Typhimurium and monophasic 
S. Typhimurium sequence type (ST)19, ST34, ST128, ST313, ST323, 
ST568, and ST2105 isolates. All STs belonged to eBurst group (eBG) 1, 
with the exception of ST2105 that belonged to eBG167. The analysed 
animal isolates were collected by the Animal and Plant Health Agency 
(APHA) between 2012 and 2020 (majority of these isolates were from 
2013–2018) as part of routine surveillance of livestock farms across 
England and Wales, monitoring, control programs, outbreak 
investigations, and for research projects. The isolates originated from 
eight primary source classes (animal species or groups of animal 
species). Grouping of primary hosts into the distinct primary sources 
was performed as described in Munck et al. (2020b) for the UK animal 
isolates: Cattle, Pigs, Sheep, OtherMammals (companion animals that 
were mostly dogs and horses), Broilers, Layers (egg laying hens), 
Turkey, Game (game birds: pheasant, quail, pigeon).

The pre-QC human isolate dataset comprised the WGS data of 
852 S. Typhimurium and monophasic S. Typhimurium ST19, ST34, 
ST213, ST313, ST323, and ST3235 (all eBG1) isolates collected from 
salmonellosis patients in England and Wales between 2012 and 2018. 
Only a few human isolates in this dataset were from prior to 2014. The 
WGS data and the metadata of the human isolates were provided by 
the United Kingdom Health Security Agency (UKHSA).

Animal isolates were sequenced at APHA Weybridge using either 
the MiSeq or NextSeq benchtop Illumina sequencers. Paired-end 
libraries were prepared with the Illumina Nextera XT DNA Library 
Preparation Kit from DNA extracted with the MagMAX CORE 
Nucleic Acid Purification Kit (ThermoFisher Scientific, Applied 
Biosystems, Foster City, CA) following the manufacturer’s instructions. 
Human isolates were sequenced at UKHSA as previously described 
(Chattaway et al., 2019). The fastq files of the 852 human isolates were 
downloaded from the NCBI GenBank Sequence Read Archive 
(BioProject PRJNA248792) using fasterq-dump of SRA Toolkit 
v2.9.61. Both the animal and human isolate datasets included samples 
that were linked with the 2015–2018 S. Typhimurium DT104 outbreak 
in England and Wales [Animal and Plant Health Agency 
(APHA), 2017].

1  https://github.com/ncbi/sra-tools/wiki/HowTo:-fasterq-dump

2.2 Quality control of the WGS data

The whole genome sequences of the 1,315 animal and human 
S. Typhimurium and monophasic S. Typhimurium isolates were 
subjected to rigorous filtering prior to usage in the downstream 
analyses. BBDuk software (Bushnell, 2014) was used for removing 
adapter sequence and terminal bases with PHRED scores below 20 
from each of the reads. Trimmed reads below 50 bases were filtered 
out. If just one of a pair of reads was under 50 bases, the other read in 
the pair was also removed. FastQC (Andrews, 2010) was run on the 
WGS data before and after read trimming to assess improvements in 
sequence quality. De novo genome assemblies were generated from the 
trimmed fastq reads using shovill v0.9.02 and analysed with 
QualiMap 2 (Okonechnikov et al., 2016) and Quast v5.0.2 (Gurevich 
et  al., 2013) to obtain the mean coverage across the genome and 
evaluate the quality metrics (based on contigs of size 500 bases or 
larger). Only isolates with mean depth of sequence data post read 
filtering of at least 30X, genome assembly size between 4,750,000 and 
5,250,000 bases, N50 >30,000, and the number of assembled contigs 
<500, were retained for cgMLST allele calling. The final dataset 
comprised 1,244 isolates, of which 435 were animal and 809 
human isolates.

2.3 Scoring of cgMLST alleles

MentaLiST (Feijao et al., 2018) was used to call the cgMLST alleles 
against the 3,002 locus cgMLST EnteroBase scheme (version from 
September 2019) (Alikhan et al., 2018; Zhou et al., 2020) from the 
trimmed R1 and R2 fastq files of the 1,244 retained isolates. Default 
MentaLiST parameters were used but the minimum kmer depth 
required to call an allele was set to five. Novel alleles detected after the 
first MentaLiST run were introduced into the cgMLST scheme 
following the steps outlined in the MentaLiST manual. The −t 
parameter was set to one, and the –m parameter was set to 10. Second 
MentaLiST run with the updated cgMLST scheme produced several 
novel alleles that were generated from the novel alleles introduced 
after the first MentaLiST run at three different cgMLST loci in 10 
different isolates. Novel alleles identified after the second MentaLiST 
run were treated as missing data.

Where there was an indication of multiple possible alleles (i.e., 
more than one allele with 100% kmer coverage), the allele calls with 
the highest number of votes were accepted and included in the 
downstream analyses. The cgMLST alleles with kmer coverage below 
100% of the minimum kmer depth required to call an allele were 
treated as missing data. If an isolate had missing data at greater than 
5% of the 3,002 cgMLST loci, it was not included in the subsequent 
analyses. Using these criteria, a further 183 isolates were removed 
from the dataset. The 1,061 retained isolates comprised 399 (ST19, 
ST34, ST128, ST313, ST323, ST568—all eBG1) animal and 662 (ST19, 
ST34, ST213, ST313, ST323—all eBG1) human S. Typhimurium and 
monophasic S. Typhimurium isolates (Supplementary Table S1). 
Missing data (1.1% of all allele calls) within the retained dataset was 
imputed utilising an iterative imputation method based on a random 

2  https://github.com/tseemann/shovill
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forest implemented in the missForest R package (Stekhoven and 
Bühlmann, 2012). Imputation was performed on all 1,061 isolates with 
the default parameters.

2.4 Phylogenetic tree construction and 
hierarchical clustering of 399 animal 
isolates

Phylogenetic analyses were carried out to investigate clustering 
according to primary source of the 399 animal isolates originating 
from eight primary source classes: 77 isolates from Cattle, 165 from 
Pigs, 47 from Sheep, 56 from OtherMammals (including 1 from ferret, 
4 from cats, 20 from dogs, 31 from horses), 19 from Broilers, 7 from 
Layers, 11 from Turkey, and 17 from Game (including 4 from pigeon, 
5 from pheasant, 8 from quail) (Supplementary Table S1).

According to the metadata recorded in the APHA LIMS database, 
the host type of the 399 animal isolates was an animal species as 
specified above. However, inspecting the farm sampling sheets 
indicated that 285 isolates were sampled from an actual animal 
(including animal post-mortem samples but also faeces sampled from 
a pen floor or poultry house boot swab samples) and 27 isolates were 
sampled from the farm environment (including samples from mud 
puddle, farm equipment, dust). For 87 isolates there was no data on 
whether these isolates were sampled from animal hosts or farm 
environment although many of the postcodes where these samples 
were obtained from indicated these isolates were sampled from a 
livestock farm (Supplementary Table S1). Six of the unspecified source 
isolates were collected from farms from which one or more of the 
actual animal source isolates were also collected from. For the 46 
unspecified source OtherMammals isolates the sampling locality 
situation was somewhat different as many of the sampling postcodes 
that these isolates were obtained from indicated individual pet owner 
or veterinary surgery addresses but given this class of hosts (i.e., pet 
animals such as dogs or horses) it is highly plausible that all those 
isolates were sampled from individual pets.

A multiple sequence alignment (MSA) was computed with snippy 
v 4.4.53 from the trimmed WGS data of 399 animal isolates and the 
outgroup strain S. Typhimurium eBG138, ST36, SRR8820637 against 
the reference strain S. Typhimurium eBG1, ST19, LT2 AE006468. 
Recombination events were removed using Gubbins (Croucher et al., 
2015), and polymorphic sites were extracted from the filtered MSA 
with SNP-sites (Page et al., 2016). RAxML-NG v0.9.0 (Kozlov et al., 
2019) was used for phylogeny construction based on the resulting core 
single nucleotide polymorphism (SNP) alignment, which comprised 
5,683 sites. RAxML-NG was run with the generalized time-reversible 
(GTR) nucleotide substitution model plus gamma correction, 
searching 100 trees (50 random and 50 parsimony-based starting 
trees) to find a tree with the best scoring topology. Branch support was 
computed via 2,500 bootstrap replicates (Felsenstein’s bootstrap 
proportions). The Newick file of the best scoring maximum likelihood 
tree with the bootstrap support values was imported into iTol (Letunic 
and Bork, 2019) for tree display and annotation. The tree was rooted 
at the SRR8820637 outgroup strain.

3  https://github.com/tseemann/snippy

A Bayesian clustering algorithm (BAPS) that inferred the 
population genetic structure of the 399 animal isolates was 
implemented through the rhierbaps R package (Cheng et al., 2013; 
Tonkin-Hill et al., 2018). The program was run on the SNP alignment 
after removal of the reference and the outgroup strains. The resulting 
alignment comprised 5,336 polymorphic sites. Clustering was 
performed with three hierarchical levels and 40 initial clusters. The 
n.extra.rounds parameter was set to 100,000,000 to ensure 
convergence of the algorithm.

2.5 SNP address

SNP address strain level nomenclature (Dallman et al., 2018) was 
employed to assign a SNP address to the each of the 1,061 retained 
isolates using SnapperDB. The SNP address 60.11.15.16.458.459.x was 
used to define the 201 DT104 outbreak related isolates (eBG1, ST19) 
at the 5 SNP threshold.

A genetic relationship amongst the 60 animal (26 from Cattle, 1 
from Pigs, 20 from Sheep, and 13 from OtherMammals) and 141 
human DT104 outbreak related isolates was explored by computing a 
phylogenetic tree following the steps outlined above. The core SNP 
alignment for this dataset comprised 868 variable sites.

2.6 Feature selection (data pre-processing 
and feature selection algorithms)

Feature selection was performed on the 3,002 cgMLST loci prior 
to their utilization as the predictors or model features to minimize the 
redundancy, and hence model running time, and to avoid overfitting. 
Feature elimination was performed on the 399 animal isolate dataset 
in several steps, by progressively reducing the number of cgMLST loci 
to retain only those that exhibited allele calls that were the most useful 
for distinguishing between isolates from the different primary source 
classes. First, the caret R package (Kuhn, 2008) was used to eliminate 
835 zero variance loci (loci monomorphic within the 399 isolates) and 
333 near zero variance loci (loci with two alleles only, one allele 
appearing in 398 out of 399 isolates). Next, the remaining 1,834 loci 
were checked for correlation with the findCorrelation function of 
caret. Nine hundred and thirty two loci with an absolute correlation 
value of minimum 0.9 were eliminated and 902 loci with an absolute 
correlation below 0.9 were retained.

The 902 remaining cgMLST loci were subjected to two different 
feature selection algorithms: the rfe function of caret and the Boruta 
function of the Boruta R package (Kursa and Rudnicki, 2010), with 
the set of loci retained as model inputs based on the combined outputs 
of both algorithms. Prior to running the feature selection algorithms, 
the 399 animal isolate dataset was split in a randomised manner into 
the model training and test sets, with 80% of the isolates used as the 
training set and 20% as the test set. The 80:20 split ratio was also 
maintained for each of the eight primary source classes. Hence, the 
training set comprised a total of 322 animal isolates: 62 Cattle, 132 
Pigs, 38 Sheep, 45 OtherMammals, 16 Broilers, 6 Layers, 9 Turkey, and 
14 Game isolates; whereas the test set comprised a total of 77 animal 
isolates of which 15 were Cattle, 33 Pigs, 9 Sheep, 11 OtherMammals, 
3 Broilers, 1 Layers, 2 Turkey, and 3 Game isolates (Table 1). Details of 
running the rfe (backwards feature selection) and Boruta (top-down 
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feature selection) algorithms are provided in the 
Supplementary material. The final set of retained features comprised 
130 rfe selected cgMLST loci plus additional 33 Boruta selected 
cgMLST loci for a total set of 163 cgMLST loci used as model features.

Phylogenetic trees were constructed for the 322 training and 77 
test set animal isolates utilising only the variable sites from the 163 
cgMLST loci retained as ML model input. The chimeric reference 
genome for both trees was constructed by concatenating the sequences 
of allele “1,” as per the September 2019 version of the Salmonella 
cgMLST EnteroBase scheme, for each of the 163 retained cgMLST 
loci. Computation of the MSA, the core SNP alignment, and the 
phylogenetic trees was performed as described above. The training set 
core SNP alignment had 678 sites, and the test set core SNP alignment 
had 449 sites. For both trees, branch support was computed via 10,000 
bootstrap replicates.

2.7 Random forest models applied to the 
full dataset

Three RF models differentiated by the model tuning procedure: 
RF1 and RF2 (both ran in randomForest R package; Liaw and Wiener, 
2002) and RF3 (ran in ranger R package; Wright and Ziegler, 2017) 
(Table 2) were applied to predict the primary source classes of the 
training and test set animal isolates (Table  1). Subsequently, the 
outputs of the three models were analysed and compared. Selection 
between the RF1, RF2, and RF3 models was performed by comparing 
the accuracy (percentage of correctly classified isolates) and kappa (a 
measure similar to accuracy that also takes into account the possibility 
of the correct classification occurring by chance) of the training and 
test set predictions obtained for each tuned model (Table 2), and also 
by investigating the incorrectly assigned isolates (such as which 
primary source class an isolate was incorrectly assigned to). The 
selected model (see Results) was then applied to predict the primary 

source for each of the 662 human isolates (Table 1). The source with 
the highest probability of assignment was considered the model 
predicted source for each human isolate. For each primary source 
class, the sum of probabilities of assignment indicated the number of 
human isolates that were assigned to a source (Munck et al., 2020a). 
One hundred and forty one human isolates related to the DT104 
outbreak were used to validate model performance by contrasting the 
model predicted primary sources against the epidemiologically linked 
primary sources. The caret R package was used for all modelling work 
(details in the Supplementary material).

2.8 Random forest model without the 
clonal DT104 animal isolates

To assess the influence of the clonal DT104 animal isolates on 
model performance, a RF1—no DT104 model was run without the 60 
DT104 outbreak related animal isolates (Table  1). The RF1—no 
DT104 model utilized the same random forest algorithm and 
resampling methodology as the RF1 model (Table 2). The RF1—no 
DT104 model used 421 cgMLST loci as model features that were 
retained after applying the rfe and Boruta feature selection algorithms 
as described above. After model training and tuning, the RF1—no 
DT104 model (Table  2) was subsequently applied to predict the 
primary sources of the 662 human isolates.

3 Results

3.1 Phylogenetic relationship of the 399 
animal isolates

Phylogenetic analysis of the 399 animal isolates revealed varying 
degrees of genetic relatedness (Figure 1). As expected, the 60 DT104 

TABLE 1  Description of the machine learning model datasets.

Model dataset Details Description Dataset function

Animal isolate training set (RF1, 

RF2, RF3)

322 isolates from 8 primary source classes—Cattle: 

62 (19.3%), OtherMammals: 45 (14.0%), Pigs: 132 

(41.0%), Sheep: 38 (11.8%), Broilers: 16 (5.0%), 

Layers: 6 (1.9%), Turkey: 9 (2.8%), Game: 14 

(4.3%)

Primary source known and provided 

to the model

Used for feature selection and model 

training

Animal isolate test set (RF1, RF2, 

RF3)

77 isolates from 8 primary source classes—Cattle: 

15 (19.5%), OtherMammals: 11 (14.3%), Pigs: 33 

(42.9%), Sheep: 9 (11.7%), Broilers: 3 (3.9%), 

Layers: 1 (1.3%), Turkey: 2 (2.6%), Game: 3 (3.9%)

Primary source known but withheld 

from the model

Used to verify model’s ability to 

correctly recognize isolates 

originating from different primary 

source classes

Animal isolate training set (RF1—no 

DT104)

275 isolates from 8 primary source classes—Cattle: 

41 (14.9%), OtherMammals: 35 (12.7%), Pigs: 132 

(48.0%), Sheep: 22 (8.0%), Broilers: 16 (5.8%), 

Layers: 6 (2.2%), Turkey: 9 (3.3%), Game: 14 (5.1%)

Primary source known and provided 

to the model

Used for feature selection and model 

training

Animal isolate test set (RF1—no 

DT104)

64 isolates from 8 primary source classes—Cattle: 

10 (15.6%), OtherMammals: 8 (12.5%), Pigs: 32 

(50.0%), Sheep: 5 (7.8%), Broilers: 3 (4.7%), Layers: 

1 (1.6%), Turkey: 2 (3.1%), Game: 3 (4.7%)

Primary source known but withheld 

from the model

Used to verify model’s ability to 

correctly recognize isolates 

originating from different primary 

source classes

Human isolates 662 human isolates Primary source not known Isolates assigned by the model to 

each of the eight primary source 

classes
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outbreak related isolates (SNP address 60.11.15.16.458.459.x) clustered 
in a single clade of the phylogenetic tree (Figure 1). All 60 isolates were 
assigned to BAPS cluster 1 together with another 80 isolates at the first 
hierarchical level of the BAPS clustering algorithm. The 140 BAPS 
cluster 1 isolates were genetically identical at the 100 SNP threshold 
and they occupied neighbouring clades on the phylogenetic tree 
(Figure 1). At the second hierarchical level of BAPS, the 60 DT104 
outbreak related isolates were all assigned to a single cluster not shared 
with other isolates. The 322 training and 77 test set isolates (Table 1) 
were evenly distributed throughout the phylogenetic tree (Figure 1).

There was reasonably well defined clustering by host type amongst 
the 399 animal isolates (Figure  1). The Pigs isolates were largely 
confined to two phylogenetic tree clades that overlapped with BAPS 
clusters 4 and 3 (Figure  1). BAPS cluster 4 comprised almost 
exclusively monophasic S. Typhimurium isolates. BAPS cluster 6 
comprised Sheep isolates, BAPS cluster 5 largely comprised Game 
isolates, and BAPS cluster 1 isolates were mostly from the Cattle, 
OtherMammals, and Sheep primary sources (Figure 1).

The structures of both the animal isolate training (Figure 2A) and 
test (Figure 2B) set phylogenetic trees based on the variable sites from 
the 163 cgMLST loci used as model features were highly concordant 
with the tree constructed from the core genome variable sites 
(Figure 1). Thus, selection of model features was not biased to specific 
primary sources.

3.2 Classification of the human isolates

The hyperparameter tuned RF1, RF2, and RF3 models were highly 
congruent in their ability to correctly predict the primary source 
classes of the training and the test set animal isolates as evidenced by 
the highly similar training and test set accuracy and kappa values 
produced by these models (Table 2). Details of the assignments of the 
training and the test set isolates to the different sources by the tuned 
RF1, RF2, RF3 models that led to the selection of the tuned RF1 model 
(with mtry = 109; Tables 3, 4) for prediction of the primary sources of 
662 human isolates are provided in the Supplementary material and 
the Supplementary Tables S2–S5.

Applying the RF1 model to the 322 animal training set isolates, 
4.7% isolates sampled from animal sources, 8.7% sampled from farm 
environment, and 14.9% sampled from sources of unspecified origin 
were incorrectly assigned to their actual primary source class. Of the 
77 animal test set isolates, 17.0% sampled from animal sources, and 
40.0% sampled from sources of unspecified origin were incorrectly 
assigned, whereas 100.0% of the farm environment isolates were 
correctly assigned. Therefore, assignment of isolates obtained from 
sources of unspecified origin had the lowest accuracy. For the entire 
animal isolate dataset, there were 18 incorrectly assigned isolates 
sampled from sources of unspecified origin, the majority of which 
(n = 13) were OtherMammals isolates incorrectly assigned to the 
Cattle or Pigs primary source classes. Five of these 13 isolates, all 
incorrectly assigned to the Cattle, were DT104 outbreak related (SNP 
address: 60.11.15.16.458.459.x) and hence it is possible that this was 
the reason why the RF1 model misassigned those five isolates and not 
because they were sampled from sources of unspecified origin. 
Interestingly, of the other eight of the 13 incorrectly assigned 
OtherMammals isolates, one was assigned to Cattle and seven 
assigned to Pigs. This result indicated that the companion animals T
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could possibly be acting as secondary hosts that were infected by the 
farm animals. Furthermore, on 13 different occasions when the farm 
environment isolates and isolates sampled from sources of unspecified 
origin were collected from the same premises as the animal source 
isolates, the unknown sampling type isolates shared the same SNP 
address up to the 5 SNP threshold with isolates of known provenance. 
Thus, for example, a Pigs farm environment isolate sampled from rat 
faeces shared a SNP address with three isolates sampled from the same 
premise from Pigs (and all were assigned to the Pigs primary source 
class). In the entire animal isolate dataset, only two isolates that were 
sourced from the farm environment were assigned by the RF1 model 
to an incorrect primary source. Overall, the results of the RF1 model 
were acceptable even if the provenance of all isolates included in the 
animal training and test sets was not 100% clear.

Applying the tuned RF1 model to predict the sources of 662 
human isolates indicated that 314 (47.4%) isolates were attributed to 
Cattle, 163 (24.6%) to Pigs, 85 (12.8%) to OtherMammals, 55 (8.3%) 
to Sheep, 33 (5.0%) to Broilers, 8 (1.2%) to Game, and 4 (0.6%) to 
Layers with a highest probability of assignment value (Figure 3A and 
Supplementary Table S6). Sum of the probabilities of assignment for 
each primary source class indicated that 288 (43.7%) human isolates 

were assigned to Cattle, 167 (25.2%) to Pigs, 89 (13.4%) to 
OtherMammals, 49 (7.4%) to Sheep, 42 (6.4%) to Broilers, 12 (1.8%) 
to Game, 8 (1.2%) to Layers, and 7 (1.1%) to Turkey 
(Supplementary Table S6). The probability of assignment for 111 
(16.8%) human isolates to a primary source class was low, below 0.500. 
Forty five of the 111 low confidence probability of assignment human 
isolates were assigned to Sheep and 32 to OtherMammals (Figure 3A 
and Supplementary Table S6).

Overall, the RF1 generated assignments of human isolates to 
animal primary sources correlated well with the known 
epidemiological data. In this dataset, 141 (21.3%) of the 662 human 
isolates were related to the S. Typhimurium DT104 outbreak that 
was primarily linked to the consumption of beef and mutton that 
became contaminated due to poor farm and abattoir practices 
(Figure 4). Of these, 136 (96.5%) isolates were assigned to Cattle, 3 
(2.1%) to Sheep, and 2 (1.4%) to OtherMammals (Figure 4 and 
Supplementary Table S6). Therefore, out of a total of 314 human 
isolates that were assigned to Cattle, 136 (43.3%) were the DT104 
outbreak related isolates. There was a marked contrast in how 
confidently the tuned RF1 model assigned these two groups of 
human isolates (the DT104 outbreak related isolates and the 

FIGURE 1

Phylogenetic tree of the 399 animal training and test set RF1, RF2, and RF3 model isolates. Innermost annotation ring (Serovar) specifies whether an 
isolate was S. Typhimurium or a monophasic variant of S. Typhimurium, second annotation ring (DT104 outbreak link) specifies whether an isolate 
exhibited the DT104 outbreak specific SNP address of 60.11.15.16.458.459.x, third annotation ring (ML model dataset) specifies whether an isolate 
belonged to the training or the test machine learning model dataset, fourth annotation ring (Host) specifies the primary source class of each of the 
isolates, and fifth annotation ring (BAPS level 1) specifies the BAPS cluster each isolate was assigned to at the first hierarchical level. Bootstrap branch 
support values between 80% and 100% are shown on the tree. The tree is rooted at the outgroup strain SRR8820637.
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FIGURE 2

(A) Phylogenetic tree of the 322 animal training set RF1, RF2, and RF3 model isolates constructed from variable sites from the 163 cgMLST loci retained 
as machine learning model inputs. Innermost annotation ring (Serovar) specifies whether an isolate was S. Typhimurium or a monophasic variant of S. 
Typhimurium, and second annotation ring (Host) specifies the primary source class of each of the isolates. Bootstrap branch support values between 

(Continued)
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remainder) to the Cattle and Sheep primary sources. All 139 DT104 
outbreak related human isolates were assigned to either Cattle or 
Sheep with high confidence probability of assignment values of 
above 0.500. By contrast, of the 178 human isolates with different 
SNP address assigned to Cattle, 15 (8.4%) were assigned with a low 
confidence probability of assignment of below 0.500. Equally, of the 

52 human isolates not related to the DT104 outbreak assigned to 
Sheep, 45 (86.5%) were assigned with a low confidence probability 
of assignment (Figure  3A and Supplementary Table S6). 
Additionally, of the 314 human isolates that the tuned RF1 model 
assigned to Cattle, 311 (99.0%) were of DT104 (including isolates 
with different SNP address to the DT104 outbreak related isolates), 

80% and 100% are shown on the tree. The tree is rooted at the outgroup strain SRR8820637. (B) Phylogenetic tree of the 77 animal test set RF1, RF2, 
and RF3 model isolates constructed from variable sites from the 163 cgMLST loci retained as machine learning model inputs. Innermost annotation 
ring (Serovar) specifies whether an isolate was S. Typhimurium or a monophasic variant of S. Typhimurium, and second annotation ring (Host) specifies 
the primary source class of each of the isolates. Bootstrap branch support values between 80% and 100% are shown on the tree. The tree is rooted at 
the outgroup strain SRR8820637.

FIGURE 2 (Continued)

TABLE 3  The tuned RF1 machine learning model confusion matrix for the assignment of 322 training set animal origin S. Typhimurium and monophasic 
S. Typhimurium isolates to eight primary source classes.

Broilers Cattle Game Layers OtherMammals Pigs Sheep Turkey

Broilers 15 1 0 0 0 0 0 0

Cattle 0 60 0 0 7 1 8 0

Game 0 0 14 0 0 0 0 0

Layers 0 0 0 5 0 0 0 0

OtherMammals 0 0 0 0 36 0 1 0

Pigs 1 0 0 1 2 131 0 0

Sheep 0 1 0 0 0 0 29 0

Turkey 0 0 0 0 0 0 0 9

Sensitivity 0.938 0.968 1.000 0.833 0.800 0.992 0.763 1.000

Specificity 0.997 0.939 1.000 1.000 0.996 0.979 0.996 1.000

Balanced accuracy 0.967 0.953 1.000 0.917 0.898 0.986 0.880 1.000

The values along the diagonal (in bold) indicate the number of isolates correctly assigned by the model to their actual primary source class. The values above and below the diagonal indicate 
the number of isolates incorrectly classed by the model not to their actual primary source class (column headers) but to the model predicted source (row names). The isolates were assigned to 
the primary source class with the highest model computed probability of assignment. Balanced accuracy is the average of the sensitivity (true positive rate) and specificity (true negative rate) 
values for each primary source class.

TABLE 4  The tuned RF1 machine learning model confusion matrix for the assignment of 77 test set animal origin S. Typhimurium and monophasic  
S. Typhimurium isolates to eight primary source classes.

Broilers Cattle Game Layers OtherMammals Pigs Sheep Turkey

Broilers 2 0 0 0 0 0 0 0

Cattle 0 13 0 0 1 2 4 0

Game 0 0 3 0 0 0 0 0

Layers 0 0 0 0 0 0 0 0

OtherMammals 0 0 0 0 5 0 0 0

Pigs 1 2 0 1 5 30 0 0

Sheep 0 0 0 0 0 0 5 0

Turkey 0 0 0 0 0 1 0 2

Sensitivity 0.667 0.867 1.000 0.000 0.455 0.909 0.556 1.000

Specificity 1.000 0.887 1.000 1.000 1.000 0.796 1.000 0.987

Balanced Accuracy 0.833 0.877 1.000 0.500 0.727 0.852 0.778 0.993

The values along the diagonal (in bold) indicate the number of isolates correctly assigned by the model to their actual primary source class. The values above and below the diagonal indicate 
the number of isolates incorrectly classed by the model not to their actual primary source class (column headers) but to the model predicted source (row names). The isolates were assigned to 
the primary source class with the highest model computed probability of assignment. Balanced accuracy is the average of the sensitivity (true positive rate) and specificity (true negative rate) 
values for each primary source class.
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and of the 55 isolates assigned to Sheep, 47 (85.5%) isolates were of 
DT104 (including isolates with different SNP address to the DT104 
outbreak related isolates) (Supplementary Table S6). Taken together, 
the above results strongly indicate that the human isolates for which 
there was epidemiological primary source data were assigned with 
high confidence to the expected primary source classes. Therefore, 
these outputs gave credence to the overall performance of the 
RF1 model.

Furthermore, 214 human isolates that were not part of the 
DT104 outbreak were previously analysed as part of the Horizon2020 
COMPARE project (Munck et al., 2020b) where the Pigs primary 
source class was found to be  the largest contributor to human 
infection (Arnold et al., 2021). The outputs of RF1 correlated with 
this finding as of the 163 human isolates assigned to Pigs, 126 
(77.3%) were the COMPARE project isolates 
(Supplementary Table S6).

FIGURE 3

(A) The tuned RF1 model based assignment of 662 human isolates to eight primary source classes. The isolates are ordered by their probability of 
assignment to the Cattle (314 assigned isolates), followed by the Pigs (163 assigned isolates), OtherMammals (85 assigned isolates), Sheep (55 assigned 
isolates), Broilers (33 assigned isolates), Game (eight assigned isolates), and Layers (four assigned isolates) primary sources. (B) The tuned RF1—no 
DT104 model based assignment of 662 human isolates to eight primary source classes. The isolates are ordered by their probability of assignment to 
the Cattle (355 assigned isolates), followed by the Pigs (149 assigned isolates), OtherMammals (72 assigned isolates), Sheep (51 assigned isolates), 
Broilers (26 assigned isolates), Game (seven assigned isolates), and Layers (two assigned isolates) primary sources. No human isolates were assigned to 
the Turkey primary source class by either of the two models. Each vertical bar represents a single human isolate. The colour composition of each bar 
reflects the probability of assignment of an isolate to each of the eight primary sources. The more uniform the colour the higher the probability of 
assignment of an isolate to a single primary source class.
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3.3 Feature importance for RF1

The top  15 RF1 model features (cgMLST loci), ranked in 
accordance with mean decrease in accuracy, are presented in Table 5. 
cgMLST locus STMMW_21601 was the feature that ranked the 
highest overall. STMMW_21601 was the most important feature for 
correct classification of the Cattle, Pigs, Sheep, and Broilers primary 
sources. For OtherMammals it was the fifth most important feature, 
for Layers the fourth most important feature, and for Turkey and 
Game the second most important feature. Locus STMMW_21601 
represents gene yegO, a multidrug transporter subunit MdtC (Table 5).

3.4 RF1—no DT104 model performance

The tuned RF1—no DT104 model, which was run without 60 
DT104 outbreak related animal isolates, produced training set 
accuracy of 0.989 (95% CI: 0.969–0.998) and kappa of 0.985 (Table 2). 
RF1—no DT104 incorrectly assigned 3/275 training set isolates 
(Table 6). The test set accuracy of the tuned RF1—no DT104 model 
was 0.781 (95% CI: 0.660–0.875) and kappa 0.663, values that were 

comparable to the test set accuracy and kappa produced by the tuned 
RF1 model (Table  2). In total, 14 of the RF1—no DT104 test set 
isolates were assigned by that model to an incorrect primary source 
class (Table 7). Four of these isolates were also part of the test set for 
the RF1 model and all four were assigned to incorrect primary sources 
by that model.

Of the 275 animal training set isolates, 1.0% sampled from animal 
sources and 1.9% sampled from sources of unspecified origin were 
incorrectly assigned by the RF1—no DT104 model. For the 64 test set 
animal isolates, 18.2% obtained from animal sources and 41.2% of 
isolates obtained from sources of unspecified origin were attributed to 
an incorrect primary source class by the RF1—no DT104 model. All 
training and test set isolates sampled from the farm environment were 
assigned correctly.

There were broad similarities in how the tuned RF1 (Figure 3A) 
and RF1—no DT104 (Figure  3B) models classed the 662 human 
isolates (Supplementary Table S6). RF1—no DT104 assigned 355 
(53.6%) human isolates to Cattle, 149 (22.5%) to Pigs, 72 (10.9%) to 
OtherMammals, 51 (7.7%) to Sheep, 26 (3.9%) to Broilers, 7 (1.1%) to 
Game, and 2 (0.3%) to Layers (Figure 3B and Supplementary Table S6). 
Attributing human isolates to primary source classes based on the sum 

FIGURE 4

Phylogenetic tree of the 60 animal and 141 human RF1, RF2, and RF3 model S. Typhimurium isolates that were linked to the DT104 outbreak via the 
60.11.15.16.458.459.x SNP address. Innermost annotation ring (Human isolate) specifies whether an isolate was collected from a human salmonellosis 
patient, and second annotation ring (Host) specifies the primary source class of each of the animal isolates and the RF1 assigned primary source of 
each of the human isolates. Bootstrap branch support values between 80% and 100% are shown on the tree. The tree is rooted at the outgroup strain 
SRR8820637.
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TABLE 5  The top 15 RF1 model features (cgMLST loci) ranked by the mean decrease in accuracy—an overall feature importance measure across all eight primary source classes (MeanDecreaseAccuracy).

cgMLST 
locus

Cattle OtherMammals  Pigs Sheep Broilers Layers Turkey Game MeanDecreaseAccuracy
Gene 
name

Gene function description

STMMW_21601 0.194 0.010 0.178 0.157 0.147 0.065 0.116 0.237 0.151 yegO Multidrug transporter subunit MdtC

STMMW_04461 0.067 −0.004 0.106 0.052 0.041 0.049 0.053 0.071 0.069 sbmA Microcin B17 transporter

STMMW_09941 0.057 0.005 0.042 0.033 0.035 0.026 0.033 0.039 0.037 rec2 ComEC family protein

STMMW_31261 0.023 −0.016 0.058 0.028 0.019 0.012 0.031 0.037 0.032 Sodium: sulfate symporter

STMMW_17951 0.009 −0.012 0.066 0.004 0.001 0.020 0.032 0.002 0.029 dadA D-amino acid dehydrogenase small subunit

STMMW_02471 0.078 0.009 0.015 −0.003 0.032 0.008 0.014 0.020 0.025 cutF Lipoporotein NlpE

STMMW_00981 0.029 0.013 0.002 0.016 0.023 0.001 0.010 0.314 0.024 imp LPS assembly protein LptD

STMMW_22931 0.042 0.014 0.003 0.022 0.037 −0.004 0.013 0.169 0.023 yojN Putative regulator YojN

STMMW_23721 0.102 −0.040 0.007 0.015 0.048 0.001 0.016 0.018 0.022 yfcH Epimerase

STMMW_24491 0.109 −0.047 0.014 0.006 0.008 0.001 0.010 0.004 0.022 cysK Cysteine synthase A

STMMW_17181 0.018 −0.002 0.031 0.021 0.021 0.015 0.022 0.042 0.022 trpE Anthranilate synthase component 1

STMMW_30971 0.007 0.002 0.047 0.001 0.002 0.012 0.004 0.000 0.022 uxaC Uronate isomerase

STMMW_32791 0.007 0.002 0.039 0.001 0.001 0.019 0.081 0.004 0.020 mtr Probable amino acid permease

STMMW_13951 0.016 0.001 0.028 0.019 0.019 0.000 0.020 0.029 0.020 orf242 Helix-turn-helix-type transcriptional regulator

STMMW_18131 0.001 0.000 0.046 0.000 0.002 0.010 0.014 0.000 0.019 yoaA ATP-dependent helicase

The feature importance for each of the eight primary sources the RF1 model was trained to recognize (Cattle, OtherMammals, Pigs, Sheep, Broilers, Layers, Turkey, Game) is also specified. The EnteroBase derived gene name and gene function description is specified 
for each of the 15 features. Note that the top ranking feature for a specific primary source may not be shown in the table as the top 15 cgMLST loci are ordered by MeanDecreaseAccuracy.
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of probabilities of assignment for each class revealed that 240 (36.2%) 
human isolates were assigned to Cattle, 156 (23.6%) to Pigs, 129 
(19.5%) to OtherMammals, 68 (10.3%) to Broilers, 40 (6.0%) to Sheep, 
14 (2.2%) to Game, 8 (1.2%) to Layers, and 7 (1.0%) to Turkey 
(Supplementary Table S6). All but one of the 141 DT104 outbreak 
related (SNP address: 60.11.15.16.458.459.x) human isolates were 
assigned by the RF1—no DT104 model to the Cattle primary source 
class; the one isolate was assigned to OtherMammals (according to the 
RF1 model output, that isolate was assigned to Cattle) 
(Supplementary Table S6). RF1—no DT104 model assigned 125/662 
(18.9%) human isolates to a primary source with a low confidence 
probability of assignment of below 0.500. This included 64/125 
(51.2%) isolates assigned to Cattle, 40/125 (32.0%) to OtherMammals, 
and 15/125 (12.0%) to Pigs (Figure 3B and Supplementary Table S6). 

Twenty one of the 125 RF1—no DT104 model low confidence 
probability of assignment human isolates were related to the DT104 
outbreak (Supplementary Table S6). Of the 355 human isolates that 
the tuned RF1—no DT104 model assigned to Cattle, 354 (99.7%) were 
of DT104 (including isolates with different SNP address to the DT104 
outbreak related isolates), and of the 51 isolates assigned to Sheep, 44 
(86.3%) isolates were of DT104 (including isolates with different SNP 
address to the DT104 outbreak related isolates) 
(Supplementary Table S6). Of the 149 human isolates assigned to the 
Pigs primary source by the RF1—no DT104 model, 146 (97.9%) were 
the COMPARE project isolates that were analysed as part of a previous 
study which found Pigs to be the main contributor to human infection 
(Arnold et  al., 2021) (Supplementary Table S6). Therefore, these 
classification patterns were highly congruent with how these isolates 

TABLE 6  The tuned RF1—no DT104 machine learning model confusion matrix for the assignment of 275 training set animal origin S. Typhimurium and 
monophasic S. Typhimurium isolates to eight primary source classes, excluding all isolates with the clonal DT104 outbreak SNP address of 
60.11.15.16.458.459.x.

Broilers Cattle Game Layers OtherMammals Pigs Sheep Turkey

Broilers 15 1 0 0 0 0 0 0

Cattle 0 40 0 0 0 0 0 0

Game 0 0 14 0 0 0 0 0

Layers 0 0 0 6 0 0 0 0

OtherMammals 0 0 0 0 35 0 0 0

Pigs 1 0 0 0 0 132 0 1

Sheep 0 0 0 0 0 0 22 0

Turkey 0 0 0 0 0 0 0 8

Sensitivity 0.938 0.976 1.000 1.000 1.000 1.000 1.000 0.889

Specificity 0.996 1.000 1.000 1.000 1.000 0.986 1.000 1.000

Balanced accuracy 0.967 0.988 1.000 1.000 1.000 0.993 1.000 0.944

The values along the diagonal (in bold) indicate the number of isolates correctly assigned by the model to their actual primary source class. The values above and below the diagonal indicate 
the number of isolates incorrectly classed by the model not to their actual primary source class (column headers) but to the model predicted source (row names). The isolates were assigned to 
the primary source class with the highest model computed probability of assignment. Balanced accuracy is the average of the sensitivity (true positive rate) and specificity (true negative rate) 
values for each primary source class.

TABLE 7  The tuned RF1—no DT104 machine learning model confusion matrix for the assignment of the 64 test set animal origin S. Typhimurium and 
monophasic S. Typhimurium isolates to eight primary source classes, excluding all isolates with the clonal DT104 outbreak SNP address of 
60.11.15.16.458.459.x.

Broilers Cattle Game Layers OtherMammals Pigs Sheep Turkey

Broilers 2 0 0 0 0 0 0 0

Cattle 0 6 0 0 0 0 0 0

Game 0 0 3 0 0 0 0 0

Layers 0 0 0 1 0 0 0 0

OtherMammals 0 1 0 0 4 1 1 0

Pigs 1 3 0 0 4 30 1 1

Sheep 0 0 0 0 0 1 3 0

Turkey 0 0 0 0 0 0 0 1

Sensitivity 0.667 0.600 1.000 1.000 0.500 0.938 0.600 0.500

Specificity 1.000 1.000 1.000 1.000 0.946 0.688 0.983 1.000

Balanced accuracy 0.833 0.800 1.000 1.000 0.723 0.813 0.792 0.750

The values along the diagonal (in bold) indicate the number of isolates correctly assigned by the model to their actual primary source class. The values above and below the diagonal indicate 
the number of isolates incorrectly classed by the model not to their actual primary source class (column headers) but to the model predicted source (row names). The isolates were assigned to 
the primary source class with the highest model computed probability of assignment. Balanced accuracy is the average of the sensitivity (true positive rate) and specificity (true negative rate) 
values for each primary source class.
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were classed by the RF1 model and overlapped closely with the 
expectations based on the epidemiological data or outputs of 
other studies.

cgMLST locus STMMW_21601 was also the overall most 
important feature for the RF1—no DT104 model (Table 8).

4 Discussion

In this study, utilising 163 cgMLST loci as model features, three 
distinct RF models were trained, tuned, and evaluated on 399 
S. Typhimurium and monophasic S. Typhimurium animal isolates. 
Subsequently, the best performing model was applied to predict 
primary source of 662 S. Typhimurium and monophasic 
S. Typhimurium human clinical cases. Supervised classification 
algorithms, including RF, exhibit properties highly suited for 
attribution of foodborne pathogens. Such models first learn to 
associate patterns in the provided genomic data of, for instance, 
S. Typhimurium isolates originating from different primary sources 
(i.e., animal host species) with a specific source. Subsequently, when 
applied to predict the sources of human clinical cases, the algorithm 
will seek out the genomic data patterns it had previously learnt to 
recognize and use that information to assign a primary source to each 
of the analysed human isolates (Munck et al., 2020a). The more data 
a ML algorithm has been exposed to, the more accurate it should 
become in making such predictions, as it has the ability to learn from 
the patterns in the data and hence to improve its decision making 
capabilities (Libbrecht and Noble, 2015).

The majority of the training set isolates (n = 322) used in the 
three RF models were from the following primary sources: Pigs 
(41.0%), Cattle (19.3%), OtherMammals (14.0%), and Sheep 
(11.8%). Highly unbalanced training data has previously been noted 
to result in a potential bias in favor of the majority class in the ML 
model generated predictions (Velez et al., 2007; Njage et al., 2019b). 
The best performing model, RF1, assigned 47.4% of the 662 
S. Typhimurium and monophasic S. Typhimurium human isolates 
to Cattle, 24.6% to Pigs, 12.8% to OtherMammals, and 8.3% to 
Sheep. Thus, it cannot be concluded that the RF1 model assigned 
majority of the human isolates to sources which were 
overrepresented in the training set. While best practice is to use a 
balanced training dataset when implementing a RF model, this is 
an idealized scenario, and such datasets can be difficult to obtain. 
Only a proportion of the infected animals are detected by 
surveillance, and many primary hosts infected with S. Typhimurium 
or monophasic S. Typhimurium are asymptomatic and act as a 
reservoir of infection (Arnold et  al., 2021). Furthermore, if the 
collection of isolates was biased towards the livestock and farm 
animals and there is lack of isolate collection from other potential 
S. Typhimurium and monophasic S. Typhimurium reservoirs, such 
as wild birds or animals (Skov et al., 2008), this will have a strong 
impact on the ability of attribution models to inform if the isolates 
from the rarer sources infected the human population.

In the analysed animal isolate dataset, 163 of the 399 isolates were 
S. Typhimurium (and in two cases monophasic S. Typhimurium) of 
DT104, of which 60 were clonal isolates related to the known 2015–
2018 DT104 outbreak in England and Wales [Animal and Plant 
Health Agency (APHA), 2017]. Even though S. Typhimurium of 
DT104 can reside in numerous host species, it is considered primarily 

a cattle pathogen (Poppe et al., 1998). Indeed, of the 165 isolates of 
DT104, 145 (87.9%) were from four mammalian primary source 
classes: Cattle (n = 59), OtherMammals (n = 34), Pigs (n = 28), and 
Sheep (n = 20). The intentional inclusion of the clonal, DT104 outbreak 
related isolates in the RF1 model facilitated the validation of model 
performance by using confirmed primary sources of human infections 
as model inputs. Although presence of the clonal isolates may have 
influenced the RF1 model outputs, the proportion of the DT104 
outbreak related isolates did not exceed 50% for any of the eight 
primary sources. Previous studies emphasised minimizing the 
proportion of clonal genomes in the model training set in order to 
avoid artificially inflating source prediction accuracy (Zhang et al., 
2019). We tested the potential model confusion by running the RF1 
model without the clonal DT104 isolates (the RF1—no DT104 model) 
and compared the model outputs. The RF1—no DT104 model 
performed slightly better than RF1 at the training stage (accuracy: 
0.989 vs. 0.929, kappa: 0.985 vs. 0.905) and at the test stage (accuracy: 
0.781 vs. 0.779, but not kappa: 0.663 vs. 0.700), however, these metrics 
were highly similar thus indicating the robustness of the RF1 model 
to the presence of clonal isolates in the training set. The value of the 
kappa statistic in the range of “0.61–0.80” is indicative of “substantial” 
model performance (Landis and Koch, 1977) and in the range of 
“0.40–0.75” of “fair to good” model performance (Fleiss et al., 2003). 
Therefore, both models performed adequately and comparably to ML 
attribution models described in several recently published studies 
(Zhang et al., 2019; Munck et al., 2020a; Tanui et al., 2022).

A closer inspection of how the training and test isolates were 
attributed by the RF1 and RF1—no DT104 models revealed that of the 
23 RF1 model primary source misassignments at the training stage, 
15 were the DT104 outbreak related isolates. The number of training 
set misassignments was lower for the RF1—no DT104 model with 
only three incorrectly assigned isolates. There were 12 DT104 outbreak 
related isolates in the RF1 model test set, however, of the 17 primary 
source class misassignments only four were the DT104 outbreak 
related isolates (all incorrectly assigned to Cattle). Unlike for the 
training set, the majority (nine) misassignments were from another 
primary source class (Cattle, OtherMammals, Broilers, or Layers) to 
Pigs. The overrepresentation of the Pigs primary source class isolates 
in the training set might have been the reason for these 
misassignments. However, all nine isolates, of which seven were 
monophasic S. Typhimurium, clustered in clades that largely 
comprised Pigs isolates on the 163 cgMLST locus based test set 
phylogenetic tree. Therefore, it was more likely that the misassignment 
of these isolates was due to their genetic closeness to isolates 
representative of the Pigs source. Similarly, of the 14 test set isolates 
that were misassigned by the RF1—no DT104 model, 10 (originating 
from Broilers, Cattle, OtherMammals, Sheep, and Turkey) were 
incorrectly classed as Pigs. These 10 isolates clustered with Pigs isolates 
on the core genome alignment based phylogenetic tree, and eight were 
monophasic S. Typhimurium. One possible explanation for the 
observed test set misassignments could be  that the isolates from 
primary sources other than Pigs were classed as Pigs by both models 
as these isolates did in fact originate from the Pigs primary source 
class that cross-infected a different primary host.

The fact that both, the RF1 and RF—no DT104 models, assigned 
99.0% of the 141 DT104 outbreak related human isolates to the 
presumed primary sources based on the known epidemiological data 
supported the applicability of RF to attribution of human Salmonella 
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TABLE 8  The top 15 RF1—no DT104 model features (cgMLST loci) ranked by the mean decrease in accuracy—an overall feature importance measure across all eight primary source classes 
(MeanDecreaseAccuracy).

cgMLST 
locus

Cattle OtherMammals Pigs Sheep Broilers Layers Turkey Game MeanDecreaseAccuracy Gene name Gene function description

STMMW_21601 0.063 0.078 0.096 0.006 0.003 0.048 0.075 0.045 0.051 yegO Multidrug transporter subunit MdtC

STMMW_41061 0.044 0.046 0.080 0.014 −0.001 0.053 0.059 0.039 0.045 rpoB DNA-directed RNA polymerase subunit beta

STMMW_04461 0.039 0.052 0.057 0.008 0.005 0.034 0.058 0.034 0.035 sbmA Microcin B17 transporter

STMMW_17181 0.034 0.031 0.044 0.014 −0.004 0.034 0.041 0.034 0.029 trpE Anthranilate synthase component 1

STMMW_31261 0.017 0.023 0.037 0.006 −0.008 0.037 0.033 0.020 0.026 Sodium: sulfate symporter

STMMW_17881 0.020 0.032 0.019 0.026 0.009 0.024 0.025 0.029 0.023 treA “Alpha, alpha-trehalase”

STMMW_13951 0.025 0.019 0.040 0.005 0.001 0.025 0.034 0.015 0.022 orf242 Helix-turn-helix-type transcriptional regulator

STMMW_23721 0.054 0.094 0.029 0.001 −0.019 0.009 0.005 0.013 0.021 yfcH Epimerase

STMMW_09941 0.026 0.037 0.033 0.005 0.002 0.017 0.029 0.012 0.020 rec2 ComEC family protein

STMMW_17951 0.002 0.005 0.004 0.007 −0.010 0.038 0.005 0.017 0.019 dadA D-amino acid dehydrogenase small subunit

STMMW_00981 0.018 0.021 0.173 0.000 0.007 0.005 0.016 0.021 0.018 imp LPS assembly protein LptD

STMMW_22931 0.022 0.029 0.104 −0.003 0.007 0.004 0.018 0.012 0.015 yojN Putative regulator YojN

STMMW_04281 0.016 0.017 0.026 0.003 0.000 0.015 0.020 0.008 0.014 res Type III restriction-modification system StyLTI enzyme res

STMMW_30971 0.005 0.012 0.002 0.008 0.003 0.022 0.002 0.005 0.014 uxaC Uronate isomerase

STMMW_23551 0.043 0.052 0.026 0.000 −0.007 0.005 0.004 0.007 0.013 yfbS Transcriptional regulator

The feature importance for each of the eight primary sources the RF1—no DT104 model was trained to recognize (Cattle, OtherMammals, Pigs, Sheep, Broilers, Layers, Turkey, Game) is also specified. The EnteroBase derived gene name and gene function description is 
specified for each of the 15 features. Note that the top ranking feature for a specific primary source may not be shown in the table as the top 15 cgMLST loci are ordered by MeanDecreaseAccuracy.
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infections. Especially in the case of foodborne outbreaks, which are 
inherently clonal, a RF model could be applied to rapidly detect or 
narrow down the potential outbreak sources provided that these were 
represented in the model training set (Vilne et  al., 2019). It is 
understood that the England and Wales 2015–2018 S. Typhimurium 
DT104 outbreak most likely originated from cattle, but the spread was 
probably due to the movement of sheep, and most human cases that 
were not linked to farms were likely due to mutton consumption 
[Animal and Plant Health Agency (APHA), 2017]. Thus, the RF1 
model, for which 20 of the 48 RF1 training set DT104 outbreak related 
isolates were from Cattle, behaved as expected when assigning most 
of the DT104 outbreak related human isolates with a high confidence 
probability of assignment of over 0.500 to Cattle. However, although 
contaminated mutton was also suspected to be a source of the DT104 
outbreak in humans and 16 RF1 training set DT104 outbreak related 
isolates were from the Sheep primary source, only three human 
isolates with the DT104 outbreak SNP address were assigned to Sheep 
by the model. Thus, it is conceivable that at least some of the human 
DT104 outbreak related isolates assigned by RF1 to Cattle should have 
instead been assigned to Sheep. Additionally, close to 25% of the RF1 
training set DT104 outbreak related isolates were from the 
OtherMammals primary source but the RF1 model assigned only two 
DT104 outbreak related human isolates to OtherMammals. As the 
OtherMammals primary source class (dogs and horses) was not 
known to be epidemiologically linked to the DT104 outbreak, it was 
encouraging that the model assigned very few DT104 outbreak related 
human isolates to this source. Furthermore, a Bayesian attribution 
model applied to the COMPARE project isolates concluded that “pigs 
were found to be  the main contributor to human infection for 
S. Typhimurium/monophasic S. Typhimurium”, with the estimate of 
attribution of human isolates to pigs ranging from 48.2% to 59.3% 
depending on which subtyping method was used (Arnold et al., 2021). 
RF results were highly congruent with the outputs of the Bayesian 
method as RF1 assigned 58.9% of the 214 COMPARE human isolates 
to the Pigs primary source and of all 163 human isolates assigned by 
RF1 to Pigs, 77.3% were the COMPARE project isolates. Isolates from 
the four avian primary source classes (Broilers, Layers, Game, Turkey) 
comprised 14.0% (45/322) of all training set isolates but only 6.8% of 
the human isolates were assigned to any of these four primary sources. 
This result is in agreement with the conclusions of Lupolova et al. 
(2017) that the avian S. Typhimurium and monophasic 
S. Typhimurium isolates are a lower public health threat in the 
United Kingdom.

Largely congruent attribution of the 662 human isolates by the RF1 
and the RF1—no DT104 models indicated that the assignment of the 
DT104 outbreak related human isolates to the presumed correct primary 
sources according to the available epidemiological data was not 
dependent on the inclusion of the DT104 outbreak related isolates in the 
model training set. However, the RF1—no DT104 model retained 421 
cgMLST loci (2.5 times more than RF1) after feature selection and hence 
required a longer running time compared to RF1. Additionally, the 
RF1—no DT104 model produced low confidence probability of 
assignment values for a greater proportion of human isolates (125/662) 
in comparison with the RF1 model (111/662), most of which were to 
Cattle. For the RF1 model, the largest proportion of the low confidence 
probability of assignment human isolates were attributed to Sheep. 
Further experimentation with different proportions of clonal animal 
isolates retained as part of the model training set will likely be useful to 

better understand the influence of very closely genetically related isolates 
on the accuracy of classification of human isolates by ML models.

There are several potential explanations for the low confidence 
assignments of human isolates to a primary source, one being the lack 
of representation in the model training set of primary sources that 
human isolates had originated from. For example, for RF1, 8.1% of the 
low confidence probability of assignment human clinical cases had 
potential links to travel outside of the UK. Hence, it is plausible that 
the contracted S. Typhimurium and monophasic S. Typhimurium 
strains were genetically distinct from the bacterial populations 
circulating in the English and Welsh primary sources that the model 
was trained to recognize. However, 81.3% of the travel linked human 
isolates were assigned by RF1 to a source with a high confidence 
probability of assignment of above 0.500, and furthermore, 16.6% of 
isolates obtained from salmonellosis patients without apparent travel 
history were assigned to a source with a low confidence probability. 
Thus, patient travel history was likely not the sole reason behind the 
low confidence assignments for some human isolates. Infection via 
imported foods (Stein and Chirilã, 2017) or human to human 
salmonellosis transfer (Lupolova et al., 2017, 2019) may have been an 
additional reason why certain human isolates carried genetic 
signatures that were not represented in the model training set. 
Additionally, 32/111 low confidence RF1 human isolate assignments 
were to OtherMammals. In the RF1 training set, this primary source 
class comprised isolates from several distinct host species that 
included dogs, horses, and cats, which may have been a potential 
source of confusion for the model. Refining the model training set by 
removing this primary source class deserves further investigation.

The RF1 and RF1—no DT104 models used core genome MLST 
loci as model features which produced robust outputs. Other studies 
have found that the accessory genomes of the analysed bacterial isolates 
were a useful source of ML model features for attribution of 
S. Typhimurium isolates (Lupolova et al., 2017; Zhang et al., 2019). If 
the patterns in allelic variation of MLST loci derived from accessory 
genomic elements were host specific, then using the accessory genome 
MLST loci together with, or instead of, the cgMLST loci could be a 
useful approach for increasing the accuracy of RF predictions. For both 
the RF1 and RF1—no DT104 models, cgMLST locus STMMW_21601, 
which encodes multidrug transporter subunit MdtC, was the most 
important feature for distinguishing between isolates from different 
sources. Transporter proteins have been shown to play an important 
role for host specificity in S. Typhimurium (Morgan et al., 2004) thus 
underscoring the high relevance of STMMW_21601 for source 
attribution RF models. There were 153 cgMLST loci used as model 
features by both the RF1 and RF1—no DT104 models, including 11 of 
the 15 highest ranked model features. Defining a robust panel of 
common cgMLST loci will be  a vital step in applying only those 
features that are the most useful for differentiation of a broad selection 
of S. Typhimurium and monophasic S. Typhimurium primary sources.

In conclusion, the model outputs presented herein provide good 
support for the applicability of RF as a valid approach for attribution 
of bacterial zoonotic pathogens, in particular if complemented by 
precise epidemiological data for both the primary source and human 
isolates. Further optimization of the method should include expanding 
the training set panel of isolates to cover the less frequently 
encountered S. Typhimurium and monophasic S. Typhimurium 
reservoir hosts (i.e., hosts other than common farm and domestic 
animals) as well as introducing model features representative of the 
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accessory genome of the analysed isolates. With the ever-accelerating 
sequencing of high quality genomic data of bacterial pathogens, both 
those objectives ought to be very much achievable.
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