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Background: Irritable bowel syndrome (IBS) is one of the most common functional 
gastrointestinal disorder. Traditionally, early life stress (ELS) is predisposed to IBS in 
adult. However, whether ELS induces IBS in early life remains unclear.

Methods: Separated cohort studies were conducted in neonatal male pups of 
C57BL/6 mice by maternal separation (MS) model. MS and non-separation mice 
were scheduled to be  evaluated for prime IBS-phenotypes, including visceral 
hypersensitivity, intestinal motility, intestinal permeability, and anxiety-like 
behavior. Ileal contents and fecal samples were collected and analyzed by 16S 
rRNA gene sequencing and bacterial community analyses. Subcellular structures 
of intestinal epithelial, such as epithelial tight junctions and mitochondria, were 
observed under transmission electron microscopy.

Results: MS induced visceral hypersensitivity and decreased total intestinal 
transit time from childhood to adulthood. In addition, MS induced intestinal 
hyperpermeability and anxiety-like behavior from adolescence to adulthood. Besides, 
MS affected intestinal microbial composition from childhood to adulthood. Moreover, 
MS disrupted intestinal mitochondrial structure from childhood to adulthood.

Conclusion: The study showed for the first time that MS induced IBS from early 
life to adulthood in mice. The disrupted intestinal mitochondrial structure and 
the significant dysbiosis of intestinal microbiota in early life may contribute to the 
initiation and progress of IBS from early life to adulthood.
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Introduction

Irritable Bowel Syndrome (IBS) is a functional gastrointestinal disorder, newly called 
“disorders of the gut-brain interaction,” which was characterized by recurrent episodes of 
abdominal pain/discomfort and bowel habit changes (Botschuijver et al., 2019; Han et al., 2022; 
Brierley et al., 2023), with high prevalence both in childhood and adulthood worldwide (Sperber 
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et  al., 2021). With recurrent symptoms and without particularly 
effective treatments, IBS significantly affects the quality of life, and 
mental and physical health of patients (Black and Ford, 2020; Sperber 
et  al., 2021; Li et  al., 2023). Despite the major global effort, the 
mechanism underlying the pathogenesis of IBS remains unknown 
(Mishima and Ishihara, 2021). Brain-gut axis dysfunction and visceral 
hypersensitivity are two of the main characteristics of IBS, while 
intestinal hyperpermeability, abnormal gastrointestinal motility, 
activation of the intestinal mucosal immune response, low-grade 
intestinal inflammation, and somatic and psychological disorders may 
also be involved in the pathophysiological processes (Xiao et al., 2021; 
Tesfaye et al., 2023). In recent years, more attention has been focused 
on the role of early life stress (ELS) in the pathogenesis of IBS. A large 
number of pre-clinical and clinical studies have shown that ELS can 
result in persistent changes in the central stress response systems, 
heightened visceral hypersensitivity, enhanced intestinal motility, shifts 
in gut microbiota composition, elevated anxiety-and depressive-like 
behaviors, and increase predisposition to developing IBS in adulthood 
(Riba et  al., 2018; Ju et  al., 2020; Low et  al., 2020; Rincel and 
Darnaudéry, 2020; Collins et al., 2023; Petitfils et al., 2023; Lee and 
Jung, 2024). Early life is an important period for the development of 
the central nervous system (CNS), gut, and gut microbiota (Osadchiy 
et al., 2019; Ratsika et al., 2021). ELS can disrupt this critical period and 
may contribute to the etiology of several neurodevelopmental 
disorders, such as IBS (Osadchiy et  al., 2019; Tao et  al., 2022b). 
Accordingly, ELS may impact the brain-gut-microbiota axis before 
adulthood. However, whether ELS can result in IBS in children and 
adolescents is not yet understood.

Maternal separation (MS) is a classic animal model of IBS, which 
effectively mimics ELS (Riba et al., 2018; Wong et al., 2019; Huang 
S. T. et al., 2021; Tao et al., 2022a). Using MS model, some of the 
pathogeneses of IBS were widely studied, such as visceral 
hypersensitivity (Wu et al., 2020; Huang S. T. et al., 2021; Wang et al., 
2022; Tao et al., 2022a), intestinal hyperpermeability (Kuti et al., 2020; 
Torres-Maravilla et al., 2022), intestinal dysmotility (Bülbül and Sinen, 
2021), intestinal dysbiosis (Rincel and Darnaudéry, 2020; Park et al., 
2021), and anxiety-like and depressive-like behaviors (Zhou et  al., 
2022; Favoretto et  al., 2023). Also, Riba et  al. (Riba et  al., 2018) 
systematically studied the influence of MS on the function of the 
intestine, mimicking IBS’s main features, including intestinal 
hyperpermeability, visceral hypersensitivity, microbiota dysbiosis, bile 
acid malabsorption, and low grade inflammation in the intestine. 
Results suggested that MS is a suitable model for IBS. These studies 
mainly focused on the effect of MS on adult rodents; however, few 
studies paid attention to the influence of MS on young rodents. One 
study reported that MS rats showed significant visceral hypersensitivity 
from the post-weaning period to adult (Yi et al., 2017). Moreover, our 
previous study using a novel distention balloon to evaluate visceral 
hypersensitivity found that MS induced visceral hypersensitivity in 
post-weaning mice (Tao et al., 2022a). Together, these results suggested 
that visceral hypersensitivity in the early life, such as post-weaning 
period, might play a more meaningful pathophysiologic role in the 
formation of adult IBS. Therefore, to dynamically explore the potential 
effect of MS on early life to adulthood may provide a new vision of the 
pathogenesis of IBS, and thus may develop new therapeutic targets 
for IBS.

Accordingly, we conducted separated cohort studies of mice to 
investigate the hypothesis that ELS induced prime phenotypes of IBS, 
such as visceral hypersensitivity, intestinal hyperpermeability, 

abnormal gastrointestinal motility, intestinal dysbiosis, and anxiety-
like behavior, from childhood to adulthood.

Materials and methods

Study design

Twenty pregnant C57BL/6 mice of 13 days gestation age were 
purchased from the Laboratory Animal Center of Zhejiang University. 
They were individually housed and maintained on a 12-h light–dark 
cycle (turned on at 9: 00 am and turned off at 9:00 pm) with access to 
food and water ad libitum. To avoid the effects of stress on dams, litters 
were not disturbed on the first one day after delivery. Female pups were 
euthanized on postnatal day (PND) 2 by decapitation after being 
anesthetized with 2% isoflurane. To avoid the effects of estrogen, only 
male pups (n = 82) were used. Number the entire litters of mice from 1 
to 20 and generate random numbers using an Excel spreadsheet. Arrange 
them in ascending order based on the random numbers. Assign the first 
6 random numbers to cohort 1, numbers 7–13 to cohort 2, and numbers 
14–20 to cohort 3. After grouping, each cohort was further divided into 
MS groups and non-separation (NS) groups using the same method. The 
schematic of the study design was shown in Figure 1. Protocols for 
animal research were preapproved by the Zhejiang University Ethics 
Committee for Animal Research (ethics review number: ZJM20230025).

Maternal separation

MS was implemented as previously described (Riba et al., 2018; 
Wong et al., 2019; Tao et al., 2022a). For the protocol of MS please 
refer to the Supplementary data.

Abdominal withdrawal reflex

Abdominal withdrawal reflex (AWR) score was evaluated by 
colorectal distension (CRD) on mice at PND 25, 40 and 70 according 
to the previous study with some modifications (Yu et al., 2012; Zhang 
Y. et al., 2020; Tao et al., 2022a). For the protocol of AWR please refer 
to the Supplementary Data.

Total intestinal transit time

The total intestinal transit time (TITT) was measured by carmine 
red as previous study used (Schmitt et al., 2017). Briefly, carmine red 
(1390-65-4, MedChemExpress) was given by gavage to mice fasted 
for 6 h (10 mg/mL of water, 10 μL/g body weight). The TITT was 
measured by the time between ingestion of carmine red and first 
appearance of the dye in feces.

Intestinal paracellular permeability

Intestinal paracellular permeability was evaluated by the intestinal 
permeability of fluorescein isothiocyanate-dextran (FITC-D) 4 kDa as 
previous studies described with some modifications (Toubal et al., 
2020; Ye et al., 2021). For the detailed protocol please refer to the 
Supplementary data.
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Animal behavior experiments

Animal behavior experiments were implemented during the dark 
phase of the diurnal cycle in the Laboratory Animal Center of 
Zhejiang University. Mice were placed in the experiments room 0.5 h 
ahead of experiments for environmental adaptation.

Open-field test

Open-field test (OFT) was tested as previous study (Chen et al., 
2021). For the protocol of OFT please refer to the Supplementary data.

Elevated plus maze

The protocol of elevated plus maze (EPM) was previous described 
(Zhang H. et al., 2020). For the protocol of EPM please refer to the 
Supplementary data.

Transmission electron microscopy

The protocol of transmission electron microscopy (TEM) was 
previous reported (Ye et al., 2021). Briefly, ileal fresh tissues about 
0.5–1 cm were fixed overnight in 2.5% glutaraldehyde at 4°C. After 
rinsed three times for 10 min each with PBS, tissues were fixed with 
1% osmium tetroxide for 1 h. Then, the specimens were rinsed in 
distilled water 10 min each for three times, followed by stained 
with 2% aqueous uranyl acetate for 30 min. The samples were 
subjected to dehydration in an ethanol gradient series: 50%, 70%, 
and 90% ethanol, each for 15 min, followed by 100% ethanol for 
20 min treatments in shaking table (60 rpm). Then samples were 
treated with 100% acetone twice for 20 min each. Embedding: pure 
acetone + embedding solution (1:1) was incubated for 2 h at room 
temperature, pure acetone + embedding solution (1:3) was 
incubated for 2 h at room temperature, and then the solution was 
replaced with pure embedding solution and was embedded at 
37°C. After polymerization, 90 nm thick sections were cut using an 
ultra-microtome (LEICA EM UC7, Leica, United States). Finally, 

FIGURE 1

Experimental overview and methodology of the study. The study investigates whether early-life stress induced irritable bowel syndrome during early 
life stages, including childhood and adolescence, and persists into adulthood. To simulate early-life stress, we established a maternal separation model. 
Newborn mice were randomly divided into three cohorts: PND 25–30 representing childhood, PND 40–45 representing adolescence, and PND 70–75 
representing adulthood. Within each age group, neonatal mice were further randomly divided into maternal separation groups and non-separation 
groups. Each MS group was experiencing maternal separation at PND 2–14. Both MS and NS groups were weaned at PND 22. Both gut functional and 
behavioral parameters were evaluated at specific predetermined times. Fecal samples and ileal contents were collected for microbial community 
analysis by 16S rRNA sequencing. Intestinal tissues were collected and subcellular structures of intestinal epithelial were observed under transmission 
electron microscopy. (A): Study cohort; (B): Experimental sequence. Animals were scheduled to be evaluated for intestinal parameters and behavior, 
and then to be sacrificed. (C): Sampling. NS, non-separation; MS, maternal separation; CRD, colorectal distention; TITT, total intestinal transit time; IP, 
Intestinal permeability; OFT, pen field test; EPM, elevated plus maze; TEM, Transmission Electron Microscopy.
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samples were observed by 120kv TEM (Tecnai G2 Spirit 120 kV, 
Thermo FEI).

Mitochondrial measurement

Mitochondria morphology within TEM images was analyzed with 
ImageJ, encompassing mitochondrial length, width, and area, followed 
previously published approaches (Lam et al., 2021). Mitochondrial 
cristae were evaluated by a cristae score: 0, no well-defined cristae; 1, 
more than 50% of the mitochondrial area lacks cristae; 2: more than 
25% of the mitochondrial area lacks cristae; 3: many irregular cristae 
covering over 75% of the area; 4: Many regular cristaer (Eisner 
et al., 2017).

Microbiota analysis

Ileal contents and fecal DNA extraction, 16S rRNA gene 
sequencing, and bacterial community analysis.

For materials and methods, please refer to the Supplementary data.

Statistical analyses

The distribution of data was analyzed by Shapiro–Wilk normality 
test. Normally distributed data is represented using the 
mean ± standard deviation (SD), whereas non-normally distributed 
data is represented using the median and interquartile range (IQR). 
Two sets of normally distributed data are analyzed using a Student’s 
t-test, while non-normally distributed data are analyzed using 
non-parametric tests. For AWR, two-way repeated-measures ANOVA 
followed by Bonferronis multiple-comparisons test was used. All data 
were analyzed by IBM Statistical Package for the Social Sciences 
(SPSS), version 23 (IBM Corporation). p < 0.05 was considered 
statistically significant.

Results

ELS induced visceral hypersensitivity from 
childhood to adulthood

AWR vs. threshold
The CRD threshold of AWR score 1, 2, 3, and 4 at PND 25 was 

significantly lower in MS compared to NS (p < 0.0001, respectively) 
(ELS × pressure) with Bonferronis multiple-comparisons test, 
interaction: F (3, 80) = 2.99, p < 0.05; and it had significant main effect 
of ELS: F (1, 80) = 191.2, p < 0.0001; also significant main effect of 
pressure: F (3, 80) = 160.2, p < 0.0001 (Figure 2A). Besides, the CRD 
threshold of AWR score 1, 2, 3, and 4 at PND 40 was significantly 
lower in MS compared to NS (p < 0.000, respectively) (ELS × pressure) 
with Bonferronis multiple-comparisons test, interaction: F (3, 
88) = 7.27, p < 0.001; and it had significant main effect of ELS: F (1, 
88) = 354.2, p < 0.0001; also significant main effect of pressure: F (3, 
88) = 217.2, p < 0.0001 (Figure 2C). In addition, the CRD threshold of 
AWR score 1, 2, 3, and 4 at PND 70 was significantly lower in MS 
compared to NS (p < 0.0001, respectively) (ELS × pressure) with 

Bonferronis multiple-comparisons test, interaction: F (3, 84) = 10.70, 
p < 0.0001; and it had significant main effect of ELS: F (1, 84) = 387.7, 
p < 0.0001; also significant main effect of pressure: F (3, 84) = 202.7, 
p < 0.0001 (Figure 2E).

AWR vs. pressure
The AWR scores at 10 mm Hg, 20 mmHg, 30 mmHg, 40 mmHg, 

50 mmHg, 60 mmHg, and 70 mmHg at PND 25 were significantly 
higher in MS compared to NS (p < 0.0001, respectively) 
(ELS × pressure) with Bonferronis multiple-comparisons test, 
interaction: F (7, 160) = 80.57, p < 0.0001; and it had significant main 
effect of ELS: F (1, 160) = 1,361, p < 0.0001; also significant main effect 
of pressure: F (7,160) = 1,364, p < 0.0001) (Figure 2B). However, there 
was no difference of AWR score at 80 mmHg pressure of CRD between 
MS and NS at PND 25 (p > 0.05) (Figure 2B). The AWR scores at 
10 mm Hg, 20 mmHg, 30 mmHg, 40 mmHg, 50 mmHg, 60 mmHg, 
and 70 mmHg at PND 40 were significantly higher in MS compared 
to NS (p < 0.0001, respectively) (ELS × pressure) with Bonferronis 
multiple-comparisons test, interaction: F (7, 176) = 140.9, p < 0.0001; 
and it had significant main effect of ELS: F (1, 176) = 4,111, p < 0.0001; 
also significant main effect of pressure: F (7,176) = 3,329, p < 0.0001) 
(Figure  2D). However, there was no difference of AWR score at 
80 mmHg pressure of CRD between MS and NS at PND 40 (p > 0.05) 
(Figure 2D). The AWR scores at 10 mm Hg, 20 mmHg, 30 mmHg, 
40 mmHg, 50 mmHg, and 60 mmHg at PND 70 were significantly 
higher in MS compared to NS (p < 0.0001, respectively) 
(ELS × pressure) with Bonferronis multiple-comparisons test, 
interaction: F (7, 168) = 872.4, p < 0.0001; and it had significant main 
effect of ELS: F (1, 168) = 12,901, p < 0.0001; also significant main effect 
of pressure: F (7,168) = 6,200, p < 0.0001) (Figure 2F). However, there 
was no difference of AWR score at 70 and 80 mmHg pressure of CRD 
between MS and NS at PND 70 (p > 0.05) (Figure 2F).

ELS promoted intestinal motility from 
childhood to adulthood

The TITT in MS was significantly shorter than NS at PND 26 
(102.70 ± 7.83 min VS 121.9 ± 12.97 min, p < 0.0001, Figure  2G), at 
PND 41 (99.42 ± 18.88 min VS 128.3 ± 20.62 min, p < 0.01, Figure 2H) 
and at PND 71 (86.33 ± 10.76 min VS 135.6 ± 45.43 min p < 0.01, 
Figure 2I), respectively.

ELS increased intestinal paracellular 
permeability from adolescence to 
adulthood

Compared to NS, fluorescence intensity of FITC-Dextran in 
serum in MS was significantly higher at PND 42 (7.37 ± 1.13 VS 
1.94 ± 0.05, p < 0.001, Figure  3D) and PND 72 (24.99 ± 4.24 VS 
3.86 ± 0.33, p < 0.001, Figure 3G), respectively. However, there was no 
significant difference of fluorescence intensity of FITC-Dextran in 
serum between MS and NS at PND 27 (p > 0.05) (Figure 3A). TEM of 
intestine tissue revealed that the epithelial tight junctions were 
loosened and the gap widened in MS compared to NS at PND 45 
(256.4 ± 38.47 nm VS 12.27 ± 1.67 nm, p < 0.001, Figure 3F) and PND 
75 (249.5 ± 32.70 nm VS 17.30 ± 2.21 nm, p < 0.001, Figure  3I). 
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However, there was no significant different junctional gaps between 
MS and NS at PND 30 (p > 0.05) (Figure 3C).

ELS disrupted intestinal mitochondrial 
structure

Intestinal mitochondrial structure was observed under TEM. The 
mitochondria were disarranged, irregular in size and shape, and 
displaying cristae vacuolation in MS (Figures 4B,D,F) (marked with red 
arrows and red dotted box) compared to NS (Figures 4A,C,E) (marked 
with white arrows and white dotted box). Mitochondrial morphology in 
electron microscope images was analyzed using ImageJ. Compared to NS, 

MS exhibited significantly longer mitochondrial length at PND 30 
(1.63 ± 0.32 μm vs. 0.85 ± 0.14 μm, p < 0.05) (Figure 4G). Additionally, the 
mitochondrial area was significantly larger in MS compared to NS at PND 
30 (1.20 ± 0.38 μm2 VS 0.35 ± 0.13 μm2, p < 0.05, Figure 4I). However, there 
was no significant difference in mitochondrial width between MS and NS 
(1.02 (0.67, 1.03) VS 0.55 (0.35, 0.72), p > 0.05) at PND 30, Figure 4H). 
There was significant difference in mitochondrial length in MS compared 
to NS at PND 75 (0.91 ± 0.13 μm vs. 0.50 ± 0.13 μm, p < 0.05, Figure 4O). 
Similarly, the mitochondrial area was significantly larger in MS than in 
NS at PND 75 (0.65 ± 0.056 μm2 VS 0.20 ± 0.09 μm2, p < 0.01, Figure 4Q). 
However, there was no significant difference in mitochondrial width 
between the two groups at PND 75 (0.72 ± 0.21 μm VS 0.46 ± 0.08 μm, 
p < 0.05, Figure 4P). In addition, there were no significant differences in 

FIGURE 2

Early life stress induced visceral hypersensitivity and promoted intestinal motility from childhood to adulthood. (A,B): impact of early life stress on 
visceral sensitivity at PND 25. (C,D): impact of early life stress on visceral sensitivity at PND 40. (E,F): impact of early life stress on visceral sensitivity at 
PND 70. (G–I): impact of early life stress on intestinal motility at PND 26, 41, and 71, respectively. AWR, abdominal withdrawal reflex; CRD, colorectal 
distention; NS, non-separation; MS, maternal separation; PND, postnatal day; ns, no significance; **p  <  0.01; ***p  <  0.001; ****p  <  0.0001.
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FIGURE 3

Early life stress induced intestinal hyperpermeability from adolescence to adulthood. (A,D,G): impact of early life stress on intestinal hyperpermeability 
assessed by FITC-Dextran at PND 27, 42 and 72, respectively. (B,E,H): Intestinal epithelium was observed by transmission electron microscope at PND 
30, 45, and 75, respectively. (C,F,I): junctional gaps in the images of transmission electron microscope were measured by ImageJ at PND 30, 45, and 
75, respectively. FITC, fluorescein isothiocyanate; NS, non-separation; MS, maternal separation; PND, postnatal day; ns, no significance; ***p  <  0.001; 
****p  <  0.0001. The white arrow indicated tight junctions between intestinal epithelial cells.
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FIGURE 4

Early life stress disrupted intestinal mitochondrial structure. (A,B): impact of early life stress on intestinal mitochondrial structure at PND 30; (C,D): 
impact of early life stress on intestinal mitochondrial structure at PND 45; (E,F): impact of early life stress on intestinal mitochondrial structure at PND 
75. (G,H,I): mitochondrial measurement, including length, width, and area, at PND 30, respectively. (K,L,M): mitochondrial measurement, including 
length, width, and area, at PND 45, respectively. (O,P,Q): Mitochondrial measurement, including length, width, and area, at PND 70, respectively. 
(J,N,R): cristae score at PND 30, 45, and 70, respectively. The white arrow indicated normal morphology of mitochondria and the white dotted box 

(Continued)
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indicated well-organized mitochondrial arrangement in intestinal epithelial cells, with normal mitochondrial cristae morphology. The red arrow and 
red dotted box indicated irregular mitochondrial size and morphology in intestinal epithelial cells, with the formation of mitochondrial cristae 
vacuolation. NS, non-separation; MS, maternal separation; PND, postnatal day; ns, no significance; *p  <  0.05; **p  <  0.01.

FIGURE 4 (Continued)

terms of mitochondrial length, width and area between MS and NS at 
PND 40 (p > 0.05, Figures  4K,L,M, respectively). Notably, the cristae 
scores were significantly lower in MS group compared to NS group at 
PND 30 (1.67 ± 0.58 VS 4.0 ± 0.00, p < 0.01, Figure 4J), 45 (1.67 ± 0.58 VS 
4.0 ± 0.00, p < 0.01, Figure 4N), and 75 (1.67 ± 0.58 VS 4.0 ± 0.00, p < 0.01, 
Figure 4R).

ELS induced anxiety-like behavior from 
adolescence to adulthood

There were no differences in the performance of OFT (Figures 5A,B) 
at PND 28 and of EPM (Figures 5C,D) at PND 29 between MS and NS 
groups (p > 0.05, respectively). However, there were significant differences 
in the performance of OFT, including shorter travel distance, lesser 
percent time in center, and lesser center entries in MS compared to NS 
groups at PND 43 (p < 0.01, respectively) (Figures 5E,F). Also, there were 
significant differences in the performance of EPM, including shorter open 
arm distance (p < 0.05), decreased open arm time (p < 0.05), and lesser 
open arm entries (p < 0.01) respectively, in MS compared to NS groups at 
PND 44 (Figures 5G,H). Likewise, there were significant differences in the 
performance of OFT, including shorter travel distance (p < 0.01), lesser 
percent time in center (p < 0.01) and lesser center entries (p < 0.001), 
respectively, in MS compared to NS groups at PND 73 (Figures 5I,J). Also, 
there were significant differences in the performance of EPM, including 
shorter open arm distance, decreased open arm time, and lesser open arm 
entries in MS compared to NS groups at PND 74 (p < 0.01, respectively) 
(Figures 5K,L).

Impact of ELS on microbial composition of 
ileal contents at genus level

Concerning the genus level, Burkholderia-Caballeronia-
Paraburkholderia, Brevundimonas, Bradyrhizobium, Clostridiales_
vadinBB60_group_unclassified, Acidiferrobacteraceae_unclassified, 
Lachnospiraceae_unclassified, Sphingopyxis, Actinobacteria_
unclassified, Phreatobacter, Helicobacte were significantly more 
enriched in the MS group compared to NS group (Figures 6A,B). On 
the contrary, the abundance of Lactobacillus, Parvibacter, 
Enterorhabdus, Dubosiella, and Clostridiales_Family_IV._Incertae_
Sedis_unclassified was significantly decreased in the MS group 
compared to NS group (Figures 6A,B). Furthermore, the abundance 
of Ruminococcus_1 was significantly decreased and the abundance of 
Methylobacterium was significantly enriched in the MS group 
compared to the NS group at the genus level (Figures 6C,D).

Impact of ELS on microbial composition of 
fecal samples at genus level

At genus level, ELS remarkably affect microbial composition of 
fecal samples from PND 30, PND 45, to PND 75. AS shown in 

Figure  7, We  observed that the MS group had a higher relative 
proportion of Oxyphotobacteria_unclassified at PND 30 
(Figures  7A,B), a higher relative enrichment of Prevotellaceae_
UCG-001, Tyzzerella, Rikenellaceae_RC9_gut_group, Paraprevotella, 
Erysipelotrichaceae_unclassified, Eubacterium_ventriosum_group, 
Candidatus_Saccharimonas, Butyricicoccus, Alistipes at PND 45 
(Figures  7C,D), and a higher relative abundance of Kineothrix, 
Blautia, Bifidobacterium, Duncaniella at PND 75 (Figures 7E,F) than 
that of NS group. However, we found that compared to NS group, MS 
group had a lower relative composition of Kineothrix, Eisenbergiella, 
GCA-900066575, Ruminiclostridium, Oscillibacter, A2, and 
Lachnospiraceae_UCG-006 at PND 30 (Figures 7A,B), a lower relative 
component of Gastranaerophilales_unclassified, Mollicutes_RF39_
unclassified, Muribaculum Dehalobacterium, Christensenellaceae_
unclassified, Blautia, at PND 45 (Figures 7C,D) and a lower relative 
proportion of Prevotellaceae_UCG-001 and Lachnospiraceae_
UCG-010 at PND 75 (Figures 7E,F).

Discussion

This study investigated the impact of ELS on the main phenotypes 
of IBS, such as visceral hypersensitivity, hyperpermeability, intestinal 
dysmotility, intestinal dysbiosis, and anxiety-like behavior from 
childhood to adulthood. Most importantly, this study showed for the 
first time, that ELS induced IBS from early life to adult in mice.

Numerous previous basic studies reported that neonatal pups 
experience of ELS was predisposed to IBS in adulthood (Rincel and 
Darnaudéry, 2020; Tao et al., 2022b). However, seldom study focused on 
the impact of ELS on the early life. A large number of clinical evidence 
indicated that early life adverse event increased the risk for IBS in adult 
(Burke et al., 2017; Ju et al., 2020; Low et al., 2020). Chang et al. investigated 
different types of early adverse life events before age 18 years and their 
association with IBS and demonstrated that IBS patients had a higher 
prevalence of general trauma, physical punishment, emotional abuse, and 
sexual events, compared with controls (Bradford et  al., 2012). 
Furthermore, ELS was even correlated with symptom severity of IBS 
(Park et al., 2016). These clinical studies indicated that ELS play a crucial 
role in the initiation and progression of IBS. One cannot help but wonder 
when did ELS cause IBS? Gut microbiota and brain development begin 
during the prenatal period and continue throughout adulthood, 
particularly the first 3 years of life representing a critical developmental 
period. Disruptions in development can influence interaction between 
these two systems and may contribute to the pathogenesis of 
neurodevelopmental disorders such as IBS (Borre et al., 2014; Ratsika 
et al., 2021; Chen et al., 2022). Therefore, there is reason to believe that 
ELS will disrupt the vital developmental window and may present IBS-like 
alterations in early life. Indeed, one study supported the idea that ELS 
caused visceral hypersensitivity from the post-weaning period to adult in 
rats (Yi et al., 2017). Furthermore, our previous study reported that ELS 
induced visceral hypersensitivity in post-weaning mice (Tao et al., 2022a). 
The results indicated that ELS caused IBS-like phenotype in early life. 
However, beyond these two studies, no other documented study focused 
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on the influence of ELS on IBS-like phenotypes in early life. Accordingly, 
the profound significance of our study was that it was the first study to 
comprehensively investigate the influence of ELS on the prime IBS-like 
phenotypes in early life. Also, our study provided convincing evidence 
that ELS induced IBS from early life to adult.

In this study, a significant observation was the impact of ELS on 
the structural integrity of intestinal mitochondria. The mitochondria 
exhibited evident disruptions in their usual architecture, which 
included disorganized arrangement, irregular variations in size and 
shape, and notably, the presence of cristae vacuolation (Figure 4). This 
significant result indicated that intestinal mitochondrial dysfunction 
may play an important role in the prosses of ELS induced IBS. Normal 
mitochondrial function is essential for intestinal epithelial cell 
homeostasis. Mitochondrial function emerges as a key player in cell 
fate decisions and in coordinating cellular metabolism, immunity, 
stress responses and apoptosis (Rath et al., 2018; Guerbette et al., 2022). 
Preclinical evidence demonstrated that alterations in mitochondrial 
function and structure are linked to both early stress and systemic 
biological dysfunction. In addition, early clinical studies supported that 
increased mitochondrial DNA content and altered cellular energy 
demands may be present in individuals with a history of ELS (Zitkovsky 
et al., 2021). Evidence from rodent models suggested that mitochondria 
exhibited structural and functional changes, such as decreased 

respiratory enzymatic activity or mitochondrial membrane potential, 
was associated with long-term or excessive exposure to stress, resulting 
in an impaired capacity for energy production (Picard and McEwen, 
2018; Zitkovsky et al., 2021). Furthermore, chronic psychosocial stress 
induced epithelial hyperpermeability and visceral hypersensitivity and 
disturbing mitochondrial activity throughout the intestine (Vicario 
et  al., 2012). Therefore, the ELS induced visceral hypersensitivity 
(Figure 2), and intestinal hyperpermeability (Figure 3) in early life at 
the present study may be  associated with the dysfunction of 
mitochondria in early life in intestinal epithelium (Figure 4). Further 
studies specifically investigating these interactions are warranted. 
Notably, fluorescence intensity of FITC-D in MS was higher than NS 
at PND 27, but the difference had no statistical significance (Figure 3A). 
Subsequent TEM revealed that epithelial tight junctions were loosened 
and the gap widened in MS compared to NS at PND 30, but the 
differences were not statistically significant (Figures  3B,C). These 
results implied that intestinal paracellular permeability was mild 
increased caused by ELS, but not increased enough to allow biological 
macromolecules such as FITC-D, entrance. These results also indicated 
that although the dysfunction of mitochondria was induced by ELS in 
childhood, the impairment of intestinal barrier function is not severe. 
On the other hand, work in animal models supported a causal 
association between mitochondrial dysfunction and changes 

FIGURE 5

Early life stress induced anxiety-like behavior from adolescence to adulthood in mice. (A,E,I): track diagram of OFT; (C,G,K): track diagram of EPM; 
(B,F,J): performance in OFT at PND 28, 43, and 73, respectively; (D,H,L): performance in EPM at PND 28, 43, and 73, respectively. ns, no significance; 
NS, non-separation; MS, maternal separation; PND, postnatal day; OFT, open field test; EPM, elevated plus maze. *p  <  0.05; **p  <  0.01; ****p  <  0.0001.
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FIGURE 6

Impact of early life stress on microbial community of ileal contents at genus level from PND 30 to PND 75. (A,C) Bubble plot showed the significant 
difference of microbial abundance of ileal contents between MS and NS at Genus level at PND 30 and PND 75, respectively. (B,D) Sankey diagram 
showed significant differences of taxonomy abundance of microbial community of ileal contents between MS and NS at PND 30 and PND 75, 
respectively. The upregulated microbial abundance was marked with red, while the downregulated microbial abundance was marked with green. 
Arabic numeral (1–10) represented different Genus. Genus names that were abbreviated by their first three or four letters in Sankey diagram could 
be found in Bubble plot.
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FIGURE 7

Impact of early life stress on microbial community of fecal samples at genus level from PND 30 to PND 75. (A,C,E): bubble plot showed the significant 
difference of microbial abundance of fecal samples at genus level at PND 30, 45, and 75, respectively. (B,D,F): Sankey diagram showed significant 
differences of taxonomy abundance of microbial community of fecal samples between MS and NS at PND 30, 45, and PND 75. The upregulated 
microbial abundance was marked with red, while the downregulated microbial abundance was marked with green. Arabic numeral (1–10) represented 
different Genus. Genus names that were abbreviated by their first three or four letters in Sankey diagram could be found in Bubble plot.

https://doi.org/10.3389/fmicb.2023.1255525
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Tao et al. 10.3389/fmicb.2023.1255525

Frontiers in Microbiology 12 frontiersin.org

representative of psychopathology, such as anxiety or depressive-like 
behaviors (Hollis et  al., 2015; Kasahara et  al., 2016). MS induced 
behavioral abnormalities in rats were associated with mitochondrial 
dysfunction in brain (Khorjahani et  al., 2020). Recently, clinical 
investigations have revealed that significant interactions of 
mitochondrial respiratory and the inflammatory in the development 
of anxiety and depression (Liu et al., 2023). We found that MS mice 
presented anxiety-like behavior at adolescence and adulthood, but not 
at childhood (Figure  5). These results suggest that behavioral 
abnormalities induced by ELS may be relatively mild during the early 
stages of life. Furthermore, the association between abnormal 
mitochondrial function in the intestines and behavioral anomalies 
implies that the impact of ELS on intestinal mitochondrial function 
during early life, such as childhood, might also be subtle. This would 
also imply that the impact of ELS on intestinal function in early life 
might be  reversed by effective treatment. Therefore, further 
investigations are much warranted to determine whether early 
treatment, such as restoring mitochondrial function, can reverse ELS 
induced IBS-like alterations. However, confirming these hypotheses 
would require further research.

Intestinal dysbiosis plays an important role the pathogenesis of 
IBS (Canakis et al., 2020; Petitfils et al., 2023; Zhou et al., 2023). Early 
life is the critical window for the development of gut microbiota, gut 
and brain (Laursen et  al., 2021; Ratsika et  al., 2021). Therefore, 
disturbance of this process, such as caused by ELS, may have a high 
predisposition to the development of IBS in adulthood (Wu et al., 
2020). We found that MS affected the composition of both ileal and 
fecal microbiota (Figures  6, 7), suggesting MS affected intestinal 
microbiota community from early life to adulthood. Importantly, MS 
significantly reduced the ileal genus abundance of beneficial bacteria, 
such as Lactobacillus (Zhang Q. et al., 2021), Parvibacter (Liu et al., 
2021), Enterorhabdus (Pagliai et al., 2020), Dubosiella (Yuan et al., 
2021), and remarkably increased the genus increment of harmful 
bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, at PND 
30 (Figures 6A,B). Lactobacillus and Dubosiella were short-chain-fatty 
acids (SCFAs) producing bacteria. The reduction in abundance of 
Lactobacillus and Dubosiella may indicate the decreased synthesis of 
SCFAs level in ileum. SCFAs were important fuels for intestinal 
epithelial cells (IEC) and regulate IEC functions through different 
mechanisms to modulate their proliferation, differentiation as well as 
functions of subpopulations such as enteroendocrine cells, to impact 
gut motility and to strengthen the gut barrier functions as well as host 
metabolism (Yao et al., 2020; Martin-Gallausiaux et al., 2021). Stanton 
et  al. found that MS rats had significantly lower ratios of SCFAs 
producers (Egerton et al., 2020). Additionally, animal exposure to 
prolonged restraint significantly reduced SCFAs, and Lactobacillus in 
the gut was significantly reduced (Maltz et al., 2018). Furthermore, low 
SCFAs were reported to be associated with visceral hypersensitivity in 
rats (Zhang J. D. et al., 2021). Therefore, the intestinal dysbiosis in early 
life observed in our MS mice might play an important role in the 
initiation of IBS. Thus, further studies were warranted. On the other 
hand, the relative abundance of genus Methylobacterium in ileum 
displayed significantly higher in MS than NS at PND 75 
(Figures  6C,D). Methylobacterium was shown to be  related to 
constipation (Cao et al., 2017). Matsumoto, et al. indicated that genera 
of Methylobacterium was significantly higher in the constipation-
predominant IBS compared to diarrhea-predominant IBS (Matsumoto 
et al., 2021). The pathogenic mechanism by which Methylobacterium 

leads to IBS may be related to its ability to trigger intestinal immune 
and inflammatory responses (Sun et  al., 2021). The role of 
Methylobacterium in the implication of MS induced IBS requires 
further exploration. In addition to ileum dysbiosis caused by MS, the 
microbial community of fecal samples was also disturbed from the 
early life to adulthood (Figure  7). For example, the abundance of 
oxyphotobacteria_unclassified was upregulated in MS compared to 
NS. Moreover, the abundance of Lachnospiraceae_UCG-006, 
Oscillibacter, Ruminiclostridium, GCA-900066575 was downregulated 
in MS compared to CT at PND 30. Besides, various harmful bacteria 
were enrichment in fecal samples at PND 45, such as Candidatus_
Saccharimonas (Cruz et al., 2020), Prevotellaceae_UCG-001(Ibrahim 
et  al., 2019), Rikenellaceae RC9 gut group (Emami et  al., 2021), 
Tyzzerella (Huang J. et al., 2021), Paraprevotella (Yoon et al., 2021), 
Eubacterium_coprostanoligenes_group (Wei et al., 2021), and the acetic 
acid production bacteria, such as Alistipes (Xu et al., 2021). It reported 
that Alistipes was enriched in post inflammatory irritable bowel 
syndrome (PI-IBS) (Song et al., 2020). In pediatric patients with IBS, 
a greater frequency of pain correlated with an increased abundance of 
the genus Alistipes (Saulnier et al., 2011). The results demonstrated 
that Alistipes may play a role in MS induced IBS in early life. Moreover, 
the abundance of genus Erysipelotrichaceae_unclassified was also 
higher in MS than NS, which was correlation with obesity (Oh et al., 
2021). By contrast, some beneficial bacteria, including 
Gastranaerophilales_unclassified (Wu et al., 2021), Dehalobacterium 
(Gu et al., 2020), Christensenellaceae (Brandsma et al., 2019), Blautia 
(Wang et  al., 2019), Muribaculum (McNamara et  al., 2021), were 
reduced in MS compared to NS. Gastranaerophilales have been 
identified as the primary producers of indole, which can subsequently 
be  converted into indolepropionic acid. Indolepropionic acid is 
recognized for its anti-inflammatory properties in both the 
gastrointestinal tract and the peripheral system (Rosario et al., 2021). 
A reduction in Dehalobacterium has been linked to the development 
of inflammation (Chen et  al., 2023). The aboundance of 
Christensenellaceae has shown a positive association with microbial 
metabolites related to intestinal barrier function (Zhao et al., 2022). 
The role of Blautia, or its products, in modulating intestinal epithelium 
health has been highlighted (Rashidi et al., 2022). Moreover, recent 
research indicated that Muribaculum exhibited a negative correlation 
with plasma TNF-α and colon inflammatory gene expression (TNF-α), 
while showing a positive correlation with colon tight junction genes 
(OCLN and CLDN1) (Yang et al., 2023). Likewise, MS significantly 
affect the composition of microbiota in fecal samples at PND 75. At 
the genus level, the beneficial bacteria, including Prevotellaceae_
UCG-001 (Hu et al., 2020) and Lachnospiraceae_UCG-010 (Han et al., 
2021), were downregulated, while the bacteria, such as Kineothrix (Xie 
et al., 2021), Blautia (Wang et al., 2019), Bifidobacterium (Liu et al., 
2021), Duncaniella (Chang et  al., 2021) were upregulated. 
Prevotellaceae_UCG-001 was widely known as a probiotic for superior 
SCFAs production capacity. A decrease in its abundance has been 
linked to depression (Zhang Z.-W. et  al., 2022) and intestinal 
inflammation (Wu et al., 2023). On the other hand, the abundance of 
Lachnospiraceae_UCG-010 was found to be significantly reduced in the 
fecal samples of patients with IBS, while it was observed to be increased 
in healthy individuals (Zhuang et al., 2018). Study revealed that higher 
levels of Lachnospiraceae_UCG-010 were associated with improved 
intestinal barrier function and a reduction in intestinal lesion scores 
(Kan et  al., 2021). Taken together, MS leads to dysbiosis in fecal 
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samples from early life to adulthood in mice. These findings suggest 
that early-life exposure to MS disrupts the balance of intestinal 
microbiota. The observed dysbiosis in the gut microbiota during early 
life could potentially play a role in the onset and development of 
MS-induced IBS. Further studies are required to fully elucidate the 
mechanisms underlying this relationship.

IBS is a highly prevalent, chronic disorder that significantly reduces 
patients’ quality of life (Lacy et al., 2021). At present, the pathogenesis 
of IBS remains elusive and the treatments for IBS are unsatisfactory (van 
Orten-Luiten et al., 2022; Gao et al., 2023). Therefore, other line of 
thought may be needed, namely to investigate the initiation and process 
of IBS. Our results suggested that MS induced IBS in early life. 
Therefore, when investigating the pathogenesis of IBS, it is necessary to 
extend the research timeline to the earlier stages of life, which also 
represents a crucial developmental window for the brain-gut-microbiota 
axis (Leyrolle et al., 2021). While we did not delve into the potential 
mechanisms underlying the induction of IBS by ELS, our findings 
suggest that mitochondrial dysfunction in the intestinal epithelium and 
dysbiosis of the gut microbiota might play crucial roles in ELS-induced 
IBS. The interplay between mitochondria and gut microbiota holds a 
vital significance in maintaining intestinal physiological balance. Under 
normal circumstances, intestinal epithelial cells plays a vital role in 

maintaining the hypoxic environment in the intestinal lumen, 
facilitating the prevalence of obligate anaerobic microbiota, which is 
dependent of mitochondrial oxidative phosphorylation (Litvak et al., 
2018). On the other hand, these microbes contribute essential 
metabolites like SCFAs to supply nutrients for gut epithelial cells 
(Takihara and Okuda, 2023). In addition, SCFAs are potentially effective 
modulators for mitochondria function (Zhang Y. et al., 2022). Microbial 
communications with intestinal epithelial mitochondria might modify 
mitochondrial structural characteristics and metabolic capabilities. This 
abnormal interaction could trigger inflammasome activation, 
potentially disrupting epithelial hypoxia and affecting the structure of 
the gut microbiota (Zhang Y. et  al., 2022). Interestingly, we  found 
disrupted intestinal mitochondrial structure and the significant 
dysbiosis of intestinal microbiota in early life. Therefore, microbiota-
mitochondria crosstalk dysfunction may be involved in the pathogenesis 
and initiation of IBS induced by ELS (Zhang Y. et al., 2022). Further 
research is needed to validate this hypothesis. The hypothetical 
mechanism of the potential role of microbiota-mitochondria crosstalk 
dysfunction in the pathogenesis of ELS-induced IBS is summarized in 
Figure 8.

In conclusion, this study shows for the first time that ELS induces 
IBS from early life to adulthood in mice. The disrupted intestinal 

FIGURE 8

The hypothetical mechanism of the potential role of microbiota-mitochondria crosstalk dysfunction in the pathogenesis of ELS-induced IBS. ELS, early 
life stress; IBS, irritable bowel syndrome; IEC, intestinal epithelial cells; SCFAs, short-chain-fatty acids.
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mitochondrial structure and the significant dysbiosis of intestinal 
microbiota in early life may contribute to the initiation and progress 
of IBS from early life to adulthood. A noteworthy implication of our 
study is that it paves the way for new insights into pathogenetic 
investigation of IBS and contributes to develop novel therapeutic 
targets for IBS in future investigations.
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