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Identifying primary sources of fecal pollution is important for assessing public 
health risks and implementing effective remediation strategies. To date, one of 
the main molecular approaches for identifying sources of fecal pollution relies 
on detecting molecular markers within bacterial, viral, or mitochondrial nucleic 
acids, that are indicative of a particular host. With a primary focus on identifying 
fecal pollution originating from humans, the field of fecal source tracking often 
places less emphasis on livestock sources, frequently leaving the problem of 
wildlife fecal pollution unaddressed. In this review, we summarize 55 previously 
published and validated molecular assays and describe methods for the detection 
of molecular markers that are indicative of non-human hosts. They cover a range 
of 15 animal species/groups with a primary focus on domestic animals including 
cattle, pigs, dogs, and poultry. Among assays associated with wild animals, the 
majority are designed to detect bird feces, while the availability of assays for 
detecting feces of other wild animals is limited. Both domestic and wild animals 
can represent a zoonotic reservoir of human enteropathogens, emphasizing 
the importance of their role in public health. This review highlights the need to 
address the complexity of fecal contamination and to include a broader range of 
animal species into assay validation and marker identification.
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1 Introduction

Fecal pollution of surface and groundwater poses a major risk to human, animal, and 
environmental health (Paerl et al., 2003; Soller et al., 2010; Penakalapati et al., 2017). Identifying 
primary sources of fecal pollution is important for two main reasons: for assessing public health 
risks (Ashbolt et al., 2010; Soller et al., 2010) and implementing effective remediation strategies 
(Tran et al., 2015).

The level of public health risk can vary depending on the origin of fecal contamination, as 
different hosts can harbor varying types and amounts of pathogens (Fong and Lipp, 2005; Soller 
et al., 2010, 2014; Penakalapati et al., 2017). Human-derived fecal pollution is predominantly 
associated with exposure to human enteric viruses, characterized by low infectious doses (Haas 
et al., 1993; Fong and Lipp, 2005). While the transmission of animal enteric viruses to humans 
is generally limited (Delahoy et al., 2018), other pathogens found in animal feces, such as 
bacteria (Campylobacter spp., non-typhoidal Salmonella, shiga-toxin producing Escherichia coli), 
and protozoans (Giardia duodenalis, Entamoeba histolytica, Toxoplasma gondii, Cryptosporidium 
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spp.) can pose a significant threat (Kotloff et al., 2013; Torgerson and 
Mastroiacovo, 2013; Daniels et al., 2015; Penakalapati et al., 2017; 
Delahoy et al., 2018).

The need for identifying primary sources of fecal contamination 
has driven extensive research in this field for over two decades 
(Bernhard and Field, 2000a,b; Scott et al., 2002). A set of methods and 
techniques used to identify the origin of fecal pollution is called fecal 
source tracking (FST) and methods that target microbial nucleic acids 
exclusively are referred to as microbial source tracking (MST) 
methods (Scott et  al., 2002; Simpson et  al., 2002; Stoeckel and 
Harwood, 2007; Boehm et al., 2013; Stewart et al., 2013; Steinbacher 
et al., 2021). Although less common, other potential targets for FST 
include mitochondrial DNA (mtDNA) of target hosts (Martellini 
et al., 2005; Caldwell et al., 2007; Schill and Mathes, 2008; Caldwell 
and Levine, 2009; He et al., 2016). Additionally, a non-marker-based 
chemical approach can be used to identify sources of fecal pollution 
due to distinct chemical compositions present in the feces of different 
animals. This includes the detection of fecal sterols, fatty acids, 
pharmaceuticals, caffeine and chemical sweetners (Scott et al., 2002; 
Lu et al., 2016; Staley et al., 2016).

While FST research primarily emphasizes the detection of human 
fecal contamination, it is crucial to acknowledge that feces from wild and 
domestic animals can significantly contribute to fecal pollution of 
recreational and drinking water and serve as a significant source of 
pathogen exposure for both humans and animals (Ashbolt et al., 2010; 
Soller et al., 2010; Daniels et al., 2015; Penakalapati et al., 2017; Rashid 
et al., 2019). A variety of assays for the detection of non-human fecal 
contamination have been developed and tested for their diagnostic (e.g., 
sensitivity, specificity, accuracy), analytical (limit of detection, limit of 
quantification) and biological (persistence, resistance, mobility) 
performance criteria. However, most existing assays require further 
validation, particularly concerning their key biological attributes. While 
the need for validation of existing markers remains, there is still a potential 
for exploration of undiscovered wild and domestic animal-associated 
markers that may be  facilitated by the utilization of next generation 
sequencing (Ohad et al., 2016; Boukerb et al., 2021).

2 Literature search

To find publications that evaluated the performance of FST assays 
identifying fecal contamination of animal origin literature search was 
performed using the following bibliographic databases: PubMed, 
ScienceDirect, ResearchGate and Google Scholar. Keywords used for 
the search included: microbial source tracking OR fecal pollution source 
tracking OR host-specific markers OR animal-specific markers. These 
keywords were searched in combination (AND) with performance OR 
validation and in some cases also with fecal contamination OR fecal 
pollution OR animal feces. The search was limited to the English 
language and included papers published before October 2022.

We obtained 70 publications for article review, out of which 46 
matched our criteria. The publication selection criteria were: (1) 
article is peer-reviewed, (2) includes assays for identifying non-human 
fecal pollution sources, (3) contains information about experimentally 
determined assay specificity and/or sensitivity using end-point PCR, 
real-time PCR, digital PCR or isothermal amplification methods, (4) 
the assay specificity is given as a single number for each assay and (5) 
the evaluated assays target bacteria, viruses, or host mtDNA.

3 Target genes of fecal source 
tracking assays

The host-associated nature of gut microbiota makes microbial genes 
suitable markers of the fecal pollution source. One of the most targeted 
genes in marker-based FST techniques is the bacterial 16S rRNA gene 
(Harwood et al., 2018). The 16S rRNA gene is well conserved among 
bacteria of the same species but also contains variable regions providing 
a tool for distinguishing microbial species and differentiating between 
different hosts (Zhang et al., 2012). In addition, bacterial cells generally 
have multiple copies of nearly identical 16S rDNA (Acinas et al., 2004), 
which increases the sensitivity of its detection (Zheng and Shen, 2018). 
Other genes associated with a specific host can be involved in host–
microbe interactions, pathogenesis or have other, sometimes unknown 
functions (Khatib et al., 2002; Hamilton et al., 2006; Shanks et al., 2006, 
2008; Ufnar et al., 2007; Schill and Mathes, 2008; Yampara-Iquise et al., 
2008; Aslan and Rose, 2013; Zhuang et al., 2017; Somnark et al., 2018a).

Bacteria from the order Bacteroidales are the most targeted taxon 
in FST (Bernhard and Field, 2000a; Boehm et al., 2013; Harwood 
et al., 2014; Ahmed et al., 2016b; Ahmed and Harwood, 2017). These 
bacteria are anaerobic and limited to feces, animal rumen, and other 
cavities of humans and most warm-blooded animals (Paster et al., 
1994). In the gut, they outnumber fecal coliform bacteria by two to 
three orders of magnitude (Meays et al., 2004; Zhang et al., 2012). In 
bird intestines their abundance is substantially lower (Lu et al., 2007, 
2008). Therefore, assays targeting birds include bacteria from genera 
Lactobacillus (Ohad et al., 2016; Vadde et al., 2019; Rytkönen et al., 
2021), Helicobacter (Green et  al., 2012; Vadde et  al., 2019), 
Brevibacterium (Weidhaas et al., 2010; Weidhaas and Lipscomb, 2013; 
Schiaffino et  al., 2020) and Catelicoccus (Lu et  al., 2008; Kirs 
et al., 2011).

Due to high stability of viruses in the environment and their host 
specificity, viral markers are suitable candidates for tracking sources 
of fecal contamination of human and non-human origin (Noble and 
Fuhrman, 2001; Ley et al., 2002; Ahmed and Harwood, 2017). Host-
associated markers can be found in teschoviruses (Jiménez-Clavero 
et al., 2003), adenoviruses (de Motes et al., 2004; Hundesa et al., 2006; 
Ahmed et  al., 2010), polyomaviruses (Hundesa et  al., 2006) and 
enteroviruses (Ley et  al., 2002). Having similar characteristics to 
enteric viruses, bacteriophages have also been proposed as promising 
tools for detection of fecal pollution (Toribio-Avedillo et al., 2021).

Host mtDNA (human or non-human) can also be  used as a 
marker based on the presumption that it is highly abundant in feces 
(Caldwell et  al., 2007). Mitochondria are found in all cells of 
eukaryotes and each mitochondrion contains multiple copies of its 
own genome. Therefore, false positive results can be  obtained by 
detecting non-fecal sources (i.e., skin cells) (Caldwell and 
Levine, 2009).

4 Molecular techniques for identifying 
sources of fecal contamination

Various PCR technologies are used for identification and/or 
quantification of host-associated markers, however, isothermal nucleic 
acid amplification techniques such as loop-mediated isothermal 
amplification (LAMP) and helicase-dependent amplification (HDA) 
can be utilized. The PCR technologies used for identifying primary 
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sources of fecal pollution include end-point PCR, real-time PCR, and 
digital PCR (dPCR).

4.1 End-point PCR

End-point PCR is a cost-effective method for amplification of FST 
markers. The resulting amplicons are typically visualized on an 
agarose gel containing an intercalating dye that emits fluorescence 
under UV light (Fremaux et al., 2009; Shanks et al., 2010; He et al., 
2016; Somnark et al., 2018a; Ballesté et al., 2020). Alternatively, there 
are more rapid, sensitive, and automated visualization techniques 
available, including microchip electrophoresis and microfluidics-
based microchip platforms (Chen et al., 2022; Zeid et al., 2023).

4.2 Real-time PCR

Due to end-point PCR having multiple limitations, including lack 
of quantification, sensitivity-specificity trade-off and post-PCR 
processing, most FST assays were later adapted from end-point to 
real-time PCR, which is less labor-intensive and offers a rapid 
detection of markers with higher sensitivity, specificity, and accuracy. 
Another major improvement from end-point PCR is that real-time 
PCR can be  used for quantification. Quantitative real-time PCR 
(qPCR) is based on real-time detection of fluorescence signals that are 
emitted either by hybridization of the PCR product to a sequence-
specific probe labeled with a fluorescent reporter or by binding of the 
intercalating dye into double stranded PCR products. In FST TaqMan 
probes and SYBR green dye are most frequently used among probe 
and dye-based qPCR chemistries respectively (Cao and Shockey, 2012; 
Shahraki et al., 2019; Schiaffino et al., 2020). TaqMan assays tend to 
be more specific and are considered a better choice for detecting host-
associated markers in environmental samples. When using SYBR 
green, melting curve analysis can be used to tackle specificity issues, 
but this may compromise accurate quantification (Kildare et al., 2007).

Considering disadvantages, qPCR has been linked to 
quantification errors due to PCR inhibition (Noble et al., 2010; Green 
and Field, 2012; Cao et al., 2013) and low reproducibility due to usage 
of standard reference materials from different vendors or batches 
(Sivaganesan et al., 2011; Cao et al., 2013). In an effort to minimize 
these limitations, USEPA and NIST developed a Standard Reference 
Material 2,917 (NIST SRM® 2,917) that functions with 13 recreational 
water quality qPCR assays including Rum-2-Bac, CowM2, CowM3, 
DG3, DG37, Pig-2-Bac and GFD among non-human markers of fecal 
pollution (Willis et al., 2022).

4.3 Digital PCR

Another variation of PCR – dPCR has emerged as a promising 
and reliable tool for the detection of molecular markers. It works by 
partitioning the sample into many individual reactions, each 
containing a target molecule or no target at all. Each microreaction 
undergoes PCR amplification separately and microreactions with and 
without amplified product are individually counted. Therefore, this 
method provides absolute quantification without relying on external 
references and curves (Rački et  al., 2014; Taylor et  al., 2015; 

Devonshire et al., 2016). However, it comes at a higher cost and has a 
relatively narrow dynamic range due to the saturation of positive 
reactions in high target concentrations (Tang et al., 2016; Zhao et al., 
2016). Both dPCR and qPCR assays can be  multiplexed to 
simultaneously detect multiple FST targets (Caldwell et al., 2007; Wolf 
et al., 2010; Ishii et al., 2014; Staley et al., 2018).

4.4 Isothermal amplification methods

LAMP is an alternative to PCR that operates at a constant 
temperature (usually 60-65°C) and enables us to detect markers rapidly 
and at a low cost. It can be used on-site without the DNA extraction step 
and in facilities with limited resources. LAMP is performed using a set 
of two or three primer pairs and involves a DNA polymerase with a high 
strand-displacement activity (Nagamine et al., 2001; Martzy et al., 2017; 
Wang et al., 2023). The amplified products can be detected using various 
methods, including agarose gel electrophoresis (Nagamine et al., 2001), 
turbidimetry (Mori et  al., 2001; Huang et  al., 2017), technologies 
employing fluorescence and colorimetric detection (Jiang et al., 2018; 
Wang et al., 2023). Francois et al. (2011) found that the DNA polymerase 
used in LAMP (Bst) is less susceptible to inhibitory substances present 
in stool, urine, and blood in comparison with other polymerases such 
as Taq. Additionally, LAMP can be quantitative and used to detect 
multiple targets simultaneously using a LAMP-based microfluidic chip 
(Jin et  al., 2021). Considering disadvantages, this method requires 
complex primer design (Gadkar et al., 2018) and can often lead to the 
detection of false positive results (Kuboki et al., 2003; Abbasi et al., 2016; 
Gadkar et  al., 2018). The problem of detecting false positives can 
be reduced by replacing intercalating dyes with labeled oligonucleotide 
strand displacement (OSD) probes, that work similarly to TaqMan 
probes in PCR (Jiang et al., 2015).

In the field of FST, a general Bacteroidales PCR (Wang et al., 2023) 
and a human-associated (HF183) assay have been successfully adapted 
for LAMP (Jiang et al., 2018). However, there are currently no LAMP-
compatible assays designed to detect fecal pollution deriving from 
non-human animals.

An additional approach can be  used for the detection of FST 
markers without relying on trained personnel and specialized 
equipment. It utilizes HDA along with a lateral-flow strip test and 
requires only a heating block for amplification. The major limitation 
of this method lies in its inability to quantify results (Kolm et al., 2019).

5 Evaluation of fecal source tracking 
assay performance

Evaluation of FST assay performance requires a comprehensive 
assessment of various crucial aspects, including diagnostic, technical, 
analytical, and biological.

5.1 Diagnostic measures and marker 
abundance

The most common diagnostic measures to facilitate the selection 
of the best FST assay are specificity and sensitivity. Specificity refers to 
the proportion of samples that are not the target of interest and 
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correctly yield a negative result, whereas sensitivity represents the 
proportion of target samples in which the marker is detected (EPA, 
2005; Kildare et al., 2007). Positive predictive value, negative predictive 
value, and accuracy can complement the specificity and sensitivity 
calculations (Kildare et al., 2007). It has been suggested that there is 
no universally acknowledged performance benchmark that categorizes 
an assay as appropriate for FST; instead, the selection criteria are case-
dependent (Belanche and Blanch, 2011; Harwood and Stoeckel, 2011; 
Raith et al., 2013; Reischer et al., 2013; Demeter et al., 2023). Caution 
should be taken when interpreting diagnostic measures, as they are 
heavily reliant on sampling intensity, the choice of animal species to 
be sampled and sampling location.

Due to geographical instability, diagnostic measures of a marker 
should always be validated before its application in a new geographical 
area (Bernhard and Field, 2000a; Scott et al., 2005; McQuaig et al., 
2006; Ufnar et al., 2006; Stoeckel and Harwood, 2007; Harwood et al., 
2009). Furthermore, potential temporal instability of markers is 
another important factor to consider (Reischer et al., 2013; Yahya 
et al., 2017; Mayer et al., 2018; Ballesté et al., 2020).

Another critical consideration revolves around marker abundance. 
Highly abundant markers are more likely to be detected, particularly 
in situations where microbial contamination is present in low 
concentrations (Roslev and Bukh, 2011). Units of measure for 
abundance are typically expressed as number of gene copies per unit 
of fecal wet mass on a logarithmic scale (Raith et al., 2013; Yahya et al., 
2017; Vadde et al., 2019; Schiaffino et al., 2020; Zhang et al., 2020).

Ideally, a marker would exhibit 100% specificity and 100% 
sensitivity for a given target host. However, this level of performance 
is frequently not achieved, as shown in Supplementary Table 2. One 
approach to overcome problems of low sensitivity, specificity, marker 
abundance and quantification abilities is to use multiple markers of 
fecal pollution for detection of one animal group (Ballesté et al., 2010; 
Ahmed et al., 2019; Liang et al., 2020).

5.2 Technical and analytical measures

The MIQE guidelines (Minimum Information for Publication of 
Quantitative Real-Time PCR Experiments), published by Bustin et al. 
(2009), provide a standardized framework for generating consistent 
and high-quality real-time PCR data. Additionally, guidelines for 
digital PCR were published in 2013 and subsequently updated in 2020 
(Huggett et al., 2013; Whale et al., 2020).

Among important analytical criteria for establishing marker 
detection and quantification thresholds are assay limit of detection 
(aLOD) and assay limit of quantification (aLOQ). Both parameters 
indicate how effectively an analytical method can detect (aLOD) or 
quantify (aLOQ) a specific marker under ideal laboratory conditions. 
In theory, PCR assays can identify very low numbers of gene copies 
(Santo Domingo et al., 2007; Armbruster and Pry, 2008; Demeter 
et  al., 2023). However, in practice, the analytical sensitivity is 
influenced by the characteristics of the sample matrix and the steps 
involved in sample processing (Demeter et al., 2023).

While aLOD and aLOQ focus on the method’s theoretical 
capability, sample limit of detection (sLOD) and sample limit of 
quantification (sLOQ) account for the actual sample matrix in which 
the analysis is conducted and consider the effect of all sample 
processing steps including sampling, filtration, nucleic acid isolation 

and the amount of nucleic acid analyzed (Santo Domingo et al., 2007; 
Kolm et al., 2019; Demeter et al., 2023). These parameters help assess 
whether the FST method is appropriate for detecting the marker in 
specific types of environmental samples considering the chosen 
methodology (Reischer et al., 2006; Weidhaas et al., 2010; Green et al., 
2012; Devane et al., 2013; Kolm et al., 2019).

aLOD, aLOQ, sLOD, and sLOQ should be  expressed with a 
certain level of confidence (usually 95%) (Reischer et  al., 2006; 
Armbruster and Pry, 2008; Bustin et al., 2009; Devane et al., 2013; 
Kolm et al., 2019; Schiaffino et al., 2020), however this detail is often 
not stated in the research papers. In the context of FST, aLOD and 
aLOQ values are typically expressed as the number of gene copies per 
reaction, whereas the reported units of measure for sLOD and sLOQ 
lack consistency (see Supplementary Table 2).

To account for the impact of the water sample matrix on the 
detection of host-associated markers, the process of establishing sLOD 
and sLOQ involves diluting feces of a target host in environmental 
water samples (freshwater, estuarine and marine water). In some 
studies, sLOD and/or sLOQ were determined by diluting fecal samples 
in distilled water or buffers, accounting only for the fecal sample 
matrix (Supplementary Table 2).

In validation studies, the information about analytical and sample 
limits of detection and quantification is sometimes not stated, as 
indicated by the data presented in Supplementary Table 2. Nonetheless, 
these limits provide a crucial means to assess method sensitivity and 
potential bias, especially when dealing with extremely low marker 
concentrations. Additionally, they significantly impact the 
interpretation of diagnostic data (Raith et al., 2013).

5.3 Biological measures

Key biological attributes of FST markers include persistence, 
resistance, and mobility. Persistence refers to the viability of the 
indicator organism or molecular detectability of the marker in a water 
sample. It is known to be influenced by abiotic and biotic factors such 
as sunlight, temperature, and salinity (Haugland et al., 2005; Siefring 
et al., 2008; Demeter et al., 2023). Ideally, the molecular detectability 
of the marker would match the decay rates of waterborne pathogens 
(Harwood et al., 2014; Demeter et al., 2023).

Technical treatment, and chemical substances such as 
disinfectants, antibiotics and metals can also affect viability and 
molecular detectability of the marker. Understanding which factors 
affect indicator organism and marker concentrations will help us 
understand their resistance in natural environment (e.g., in wastewater 
treatment systems) (Steinbacher et al., 2021; Demeter et al., 2023).

In environmental waters, different indicators (e.g., bacterial, viral) 
have different movement patterns, which can affect FST 
measurements. Apart from having different sedimentation rates, some 
indicators tend to attach to particles while others disperse freely in the 
water. In flowing watercourses, the latter tend to be transported more 
rapidly (Devane et al., 2022; Wang et al., 2022; Demeter et al., 2023).

While numerous genetic markers have been identified, our 
understanding of their key biological attributes remains very limited. 
These attributes, including persistence, resistance, and mobility, are 
vital factors in assessing the performance of host-associated assays in 
different water environments, considering both biotic and abiotic 
factors (Demeter et al., 2023).
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5.4 Assessing true positive probability in 
environmental marker detection

When a marker is tested on water samples, we  can calculate 
conditional probability that the detection of a host-associated marker 
in a given water sample is the result of true positivity using Bayes’ 
theorem. To perform this calculation, additional information 
regarding the probability of fecal contamination from a specific host 
is required for each tested water body (Kildare et al., 2007). If the given 
probability is unknown, the result can be calculated by varying the 
prior probabilities from 0 to 1 as described by Lamendella et al. (2009).

6 Assays and validations for tracking 
animal fecal pollution

A total of 55 assays have been published for tracking fecal 
pollution of animal origin, mostly between years 2005 and 2017 
(shown in Figure  1, listed in Supplementary Table  1). They are 
designed to target a range of diverse genetic markers located within 
different genes, including the bacterial 16S rRNA gene, viral hexon 
gene, and host mtDNA. Certain publications have made slight 
modifications to some of these assays in terms of primer sequences 
(Yahya et al., 2017; Kolm et al., 2019; Rytkönen et al., 2021; Yasar 
et al., 2021).

The choice of FST assays is difficult as host-associated markers 
may be geographically and temporarily unstable (Reischer et al., 2013; 
Yahya et al., 2017; Mayer et al., 2018). Ideally, each laboratory should 
find an appropriate assay in their geographical area by conducting 
their own validation studies. Alternatively, markers previously 
validated in their geographical area may be used. FST studies have 
been conducted all around the world, but mainly in United States, 
China, Australia, New Zealand, and Europe (France, Ireland, Austria, 
and the United Kingdom) (Figure 2). Overview of publications, assays 
(primer and probe sequences, amplicon lengths, annealing 
temperatures, validation metrics) and tested samples can be found in 
Supplementary Table 2.

The majority of published animal-associated assays are designed 
to detect fecal contamination originating from pigs, ruminants 
(domestic and/or wild), cattle, birds, and dogs. When focusing on 
bird-associated assays, most of them aim to identify fecal 
contamination originating from gulls, followed by birds in general, 
waterfowl, chickens, ducks, poultry, and swans. Few assays have been 
developed to identify fecal contamination originating from wild 
animals apart from birds. They target muskrats and possums (Figure 3; 
Supplementary Table  1). General ruminant-associated assays are 
typically utilized for detecting fecal contamination deriving from 
domestic ruminants, but they are also capable of detecting feces of 
wild ruminants (Fremaux et al., 2009; Mieszkin et al., 2010; Raith 
et al., 2013; Reischer et al., 2013; Somnark et al., 2018a; Kolm et al., 
2019; Ballesté et al., 2020; Zhang et al., 2020).

The animal-associated assays described above were validated 
across 46 different studies, collectively resulting in 170 validations. 
General ruminant and pig-associated assays are by far the most 
validated, followed by assays targeting cattle, dogs, birds in general, 
gulls and waterfowl (Figure  3; Supplementary Table  2). The most 
frequently validated assays with general information are shown in 
Table 1.

Methodological differences have been observed among validation 
studies including the utilization of various amplification-based 
technologies (end-point PCR, qPCR, HDA), detection chemistry 
(SYBR green dye, TaqMan probes), probes and annealing 
temperatures. Most papers employed qPCR and end-point PCR for 
assay validation, with none of the studies incorporating LAMP 
technology, despite its increasing prominence (Supplementary Table 2).

6.1 Ruminant-associated fecal source 
tracking assays

As the meat and dairy industry expands, more domesticated 
ruminants such as cattle, sheep, and goats are being raised in factory 
farms. These concentrated populations can act as point sources of fecal 
pollution if proper management practices are not in place. However, 
it is also important to note that some domestic ruminants graze on 
grass outside of farms, particularly in extensive grazing systems or 
open rangelands. In such cases, their waste may be deposited directly 
onto the land, potentially entering water bodies through runoff during 
rainfall events (Garcia-Armisen and Servais, 2007). In addition to 
domestic ruminants, the contribution of wild ruminants to fecal 
contamination of surrounding waters should not be underestimated 
(Nguyen et al., 2018).

Among ruminant-associated FST assays some target ruminant 
feces in general (CF128, BacR, Rum-2-Bac, BacCow, BoBac) while 
others aim to target cattle (CowM2, CowM3, B-Avs) or sheep feces 
(Ovmito, SheepCytB) (Figure 3; Supplementary Table 1). BacCow was 
originally classified as a cattle-associated marker (Kildare et al., 2007) 
but is now generally considered ruminant-associated (Raith et al., 
2013). Another marker, BoBac was published as bovine-associated 
(Layton et al., 2006) and is now considered to be associated with 
ruminants in general (Reischer et al., 2013).

All assays associated with ruminants in general target the 16S 
rRNA gene of Bacteroidales (Figure 3; Supplementary Table 1). Among 
them BacCow, BacR, CF128 and Rum-2-Bac are most frequently 
employed and validated (Figure 3). BacR has consistently shown very 
high performance in terms of sensitivity (>90%) and specificity 
(>84%) (Reischer et al., 2006; Mieszkin et al., 2009; Marti et al., 2011; 
Raith et al., 2013; Haramoto and Osada, 2018; Malla et al., 2018; Kolm 
et al., 2019; Linke et al., 2021). Rum-2-Bac was also highly specific 
(>96%) and sensitive (>93%) in multiple studies (Mieszkin et al., 2010; 
Raith et al., 2013; Yahya et al., 2017; Rytkönen et al., 2021), except 
when tested in China, where its sensitivity was 69% (Zhang et al., 
2020). Numerous studies have consistently reported low specificity of 
the BacCow marker even when considered ruminant-associated 
(Reischer et al., 2006; Kildare et al., 2007; Ahmed et al., 2010; Raith 
et al., 2013; Odagiri et al., 2015; Symonds et al., 2017; Haramoto and 
Osada, 2018; Malla et al., 2018; Somnark et al., 2018a; Vadde et al., 
2019; Zhang et al., 2020). Odagiri et al. (2015) even broadened its 
target host range to include domestic animals and ruminants, raising 
doubts about its overall utility. The assay did however discriminate 
between human and livestock/domestic animal feces. Similarly, 
although highly sensitive, the CF128 assay often resulted in low 
specificity (Gawler et al., 2007; Fremaux et al., 2009; Shanks et al., 
2010; Kirs et al., 2011; Somnark et al., 2018a; Ballesté et al., 2020; 
Zhang et  al., 2020). Other assays associated with ruminant feces 
include BoBac, CF193, Bac32F/RumD1Rm, Bac32F/RumD2R and 
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RumB1F/BacPreR. Among them, all except BoBac and CF193 have 
been found to be highly accurate in terms of both, specificity and 
sensitivity, however they have only been validated once (Dorai-Raj 
et al., 2009; Shanks et al., 2010; Reischer et al., 2013; Somnark et al., 
2018a). General ruminant assays are known to detect feces of wild 
ruminants including deer, caribou, chamois, ibex, moose, and bison. 

Furthermore, they may detect some closely related non-ruminants 
and pseudoruminants such as llamas and camels (Fremaux et al., 2009; 
Mieszkin et al., 2010; Raith et al., 2013; Reischer et al., 2013; Somnark 
et al., 2018a; Kolm et al., 2019; Ballesté et al., 2020; Zhang et al., 2020).

Seven FST assays have been designed to detect and trace fecal 
pollution originating from cattle. Two target the 16S rRNA gene of 

FIGURE 1

Temporal diagram representing the development of animal-associated markers for identifying sources of fecal pollution. The figure was created with R 
4.2.2 using package ggplot2. *forward and/or reverse primer were modified in one or more validation studies.

FIGURE 2

World map representing the number of publications evaluating the performance of animal-associated markers of fecal contamination. Some 
publications conducted validation studies over multiple countries. All the publications included in this map were peer-reviewed, contained information 
about assay specificity and/or sensitivity and included assays that target either bacteria, viruses, or host mtDNA.
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Bacteroidales (Cow-Bac2 EP) and Bifidobacterium (CWBif), four target 
other bacterial genes (Bac2, Bac3, CowM2, CowM3) and one (B-Avs) 
targets a gene encoding the Hexon protein of an adenovirus. The B-Avs 
assay was published as bovine associated (de Motes et  al., 2004), 
however, validation results are not yet published on bovines other than 
cattle. Based on previous results, Bac2, Bac3 and B-Avs were shown to 
be  highly specific, but variable results were obtained on sensitivity 
(Ahmed et al., 2010, 2013; Shanks et al., 2010; Somnark et al., 2018a). 
Results on performance of CowM2 are contradictory (Riedel et al., 
2014; Odagiri et al., 2015; Somnark et al., 2018a), while CowM3 showed 
high specificity and sensitivity in two separate studies (Ahmed et al., 
2013; Raith et al., 2013). Cow-Bac2 and CWBif were validated once with 
results pointing to low specificity (Yahya et  al., 2017; Somnark 
et al., 2018a).

Two sheep associated FST assays target host mtDNA (Ovmito, 
SheepCytB). Both were validated only once. They showed high 
specificity and sensitivity and are therefore potential markers for 
detecting fecal contamination originating from sheep (Ballesté et al., 
2020; Rytkönen et  al., 2021). Caution should be  taken when 
interpreting results of mtDNA based assays as mtDNA can originate 
from all eukaryotic cells, possibly resulting in false positive results.

Apart from domesticated ruminants, wild ruminants should also 
be  considered for FST purposes, depending on the geographic 
location. Native to all continents except Antarctica and Australia 
(Hernández Fernández and Vrba, 2005), wild ruminants represent a 
crucial part of ecosystems and often live in herds, increasing the 
potential for contaminating waterways in their proximity. Feral 
ruminants have also established wild populations in Australia 
following their introduction during European colonization (Skeat 
et al., 1996; Forsyth et al., 2019).

6.2 Pig-associated fecal source tracking 
assays

As an important agricultural subsector, pig farming produces a 
substantial amount of waste. If not properly managed, it can spread to the 
environment and expose us to a variety of zoonotic pathogens, most 
notably E. coli, Salmonella, Campylobacter, Yersinia, Cryptosporidium, and 
Giardia (Guan and Holley, 2003; Massé et al., 2011). Using pig-associated 
FST markers we  can identify contaminated areas and address any 
improper management of pig waste (Heaney et al., 2015).

FIGURE 3

Number of host-associated assays and validation studies per animal host. Assays targeting various hosts across different studies are grouped into the 
host category that best reflects their specificity (BoBac and BacCow are categorized as ruminant-associated; Bac2, Bac3, CowM2 and CowM3 are 
categorized as cattle-associated; GFB and GFC are categorized as gull-associated and GFD is categorized bird-associated). The figure was created 
with R 4.2.2 using packages ggplot2, ggfittext and scales. The icons were made by Freepik and obtained from www.flaticon.com. *the validations 
included either original or modified assays.
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TABLE 1 Most frequently validated assays of animal fecal pollution.

Target 
host

DNA 
target

Target 
organism

Assay Sensitivity Specificity Original 
referencesˣ

Validation references

Ruminants 

(general)

16 s rRNA gene Bacteroidales BacCow 63 – 100 0 – 91 Bernhard and Field 

(2000a), Kildare et al. 

(2007)

Reischer et al. (2006), Kildare et al. 

(2007), Ahmed et al. (2010), Raith et al. 

(2013), Odagiri et al. (2015), Symonds 

et al. (2017), Haramoto and Osada 

(2018), Malla et al. (2018), Somnark et al. 

(2018a), Vadde et al. (2019), Zhang et al. 

(2020)

BacR 91 – 100 84 – 100 Reischer et al. (2006), 

Kolm et al. (2019)

Reischer et al. (2006), Mieszkin et al. 

(2009), Marti et al. (2011), Raith et al. 

(2013), Haramoto and Osada (2018), 

Malla et al. (2018), Kolm et al. (2019), 

Linke et al. (2021)

CF128 85 – 100 0 – 96 Bernhard and Field 

(2000a, 2000b)

Gawler et al. (2007), Dorai-Raj et al. 

(2009), Fremaux et al. (2009), Shanks 

et al. (2010), Kirs et al. (2011), Somnark 

et al. (2018a), Ballesté et al. (2020), 

Zhang et al. (2020)

Rum-2-

Bac*

94 – 100 69 – 100 Mieszkin et al. (2009), 

Yahya et al. (2017)

Mieszkin et al. (2010), Raith et al. (2013), 

Yahya et al. (2017), Zhang et al. (2020), 

Rytkönen et al. (2021)

BoBac 82 – 100 5 – 100 Layton et al. (2006) Layton et al. (2006), Shanks et al. (2010), 

Reischer et al. (2013), Somnark et al. 

(2018a)

Cattle Gene encoding 

a HDIG 

domain protein

Bacteroidales CowM2 50 – 100 0 – 100 Shanks et al. (2008) Shanks et al. (2010), Raith et al. (2013), 

Odagiri et al. (2015), Somnark et al. 

(2018a)

Pigs 16S rRNA gene Bacteroidales PF163 87 – 100 9 – 100 Bernhard and Field 

(2000b), Dick et al. 

(2005a)

Fremaux et al. (2009), Lamendella et al. 

(2009), Symonds et al. (2017), Haramoto 

and Osada (2018), Malla et al. (2018), 

Somnark et al. (2018a), Ballesté et al. 

(2020), Xu et al. (2020)

Pig-1-Bac 98 – 100 68 – 100 Mieszkin et al. (2009) Mieszkin et al. (2009), Xu et al. (2020), 

Zhang et al. (2020)

Pig-2-Bac 75 – 100 66 – 100 Mieszkin et al. (2009) Mieszkin et al. (2009), Marti et al. (2011), 

He et al. (2016), Haramoto and Osada 

(2018), Malla et al. (2018), Somnark et al. 

(2018b), Vadde et al. (2019), Ballesté 

et al. (2020), Schiaffino et al. (2020), Xu 

et al. (2020), Zhang et al. (2020), Linke 

et al. (2021), Rytkönen et al. (2021)

Birds 

(general)

16 s rRNA gene Helicobacter GFD 44 – 88 56 – 100 Green et al. (2012) Green et al. (2012), Ahmed et al. (2016a), 

Symonds et al. (2017), Vadde et al. 

(2019), Zhang et al. (2020), Rytkönen 

et al. (2021)

Lactobacillus Av4143 57 – 100 82 – 97 Ohad et al. (2016) Ohad et al. (2016), Vadde et al. (2019), 

Schiaffino et al. (2020), Rytkönen et al. 

(2021)

Poultry 16S rRNA gene Brevibacterium 

avium

LA35 23 – 78 91 – 100 Weidhaas et al. 

(2010), Weidhaas and 

Lipscomb (2013)

Weidhaas et al. (2010), Weidhaas and 

Lipscomb (2013), Schiaffino et al. (2020)

(Continued)
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Among ten pig-associated assays found, six target the 16S 
rRNA gene (Pig-2-Bac, Pig-1-Bac, PF163, L.amylovorus, Pig-Bac1, 
Pig-Bac2), three target pig mtDNA (Pomito, P-ND5, P-CytB) and 
assay P23-2 targets a methyl-coenzyme M reductase gene in 
methanogenic bacteria (Figure  3; Supplementary Table  1). 
Pig-2-Bac was the most validated (Figure 3; Supplementary Table 2) 
and proved superior to other assays such as Pig-Bac1, Pig-Bac2, 
L. amylovorus, P-CytB and P-ND5 on multiple occasions in terms 
of sensitivity and specificity (Mieszkin et al., 2009; He et al., 2016; 
Xu et  al., 2020; Zhang et  al., 2020). Contradictory results on 
performance were obtained when comparing Pig-2-Bac to the 
PF163 assay (Haramoto and Osada, 2018; Ballesté et al., 2020; Xu 
et al., 2020). Xu et al. (2020) tested five pig-associated assays in 
China and Mongolia and found Pig-2-Bac, Pig-1-Bac and PF163 to 
have equally high performance (100% sensitivity and specificity) 
while Pig-Bac1 and Pig-Bac2 assays resulted in exceptionally low 
specificity. Other assays requiring more validation studies include 
P23-2 (Lamendella et  al., 2007; Ufnar et  al., 2007), P-ND5 
(Caldwell et  al., 2007; He et  al., 2016; Zhang et  al., 2020) and 
Pomito (Martellini et al., 2005; Ballesté et al., 2020).

6.3 Bird-associated fecal source tracking 
assays

Birds are known to carry human pathogens that are excreted 
with fecal waste and include enteric bacteria (Salmonella, E. coli, 
and Campylobacter), protozoans (Cryptosporidium, Giardia) and 
microsporidia (Enterocytozoon, Encephalitozoon) (Vlahović et al., 
2004; Graczyk et al., 2008). There are two main potential origins of 
bird fecal pollution: poultry farms and wild birds. While wild bird 
droppings appear to harbor less abundant and fewer pathogenic 
bacteria than poultry, their contribution to fecal contamination of 
water should not be neglected as they are fundamental components 
of the aquatic ecosystem (Benskin et al., 2009; Boukerb et al., 2021).

We found five assays for tracking fecal contamination originating 
from birds in general. All of them target the 16S rRNA gene of 
different bacteria (Table 1; Figure 3; Supplementary Table 1). Given 
that birds are the most diverse land vertebrates and can be endemic to 
certain geographic locations (Chiappe, 2009), the selection of broadly 
specific markers and detecting bird feces in general can be difficult. 

The primary challenge lies in the sensitivity of assays, which may 
further decrease by validating on a broader range of wild bird species. 
GFD and Av4143 were the most frequently validated assays for 
identifying fecal contamination originating from birds (Figure 3) and 
showed the highest performance when compared to the remaining 
three markers (GFB, GHC, Av163F) (Green et al., 2012; Ohad et al., 
2016). However, their performance varied greatly among different 
validation studies (Ohad et al., 2016; Symonds et al., 2017; Vadde et al., 
2019; Schiaffino et al., 2020; Zhang et al., 2020; Rytkönen et al., 2021) 
and within-study comparisons show contradictory results on which 
assay results in highest specificity and sensitivity 
(Supplementary Table 2; Vadde et al., 2019; Rytkönen et al., 2021).

Some assays were designed to detect gull feces. Among them 
Gull2 and Gull4 were the most frequently validated (Figure 3). 
According to the results of Ryu et al. (2012), Gull4 assay tends to 
be  more specific and less sensitive than Gull2. GHC and GFB 
assays for the detection of gull feces were validated only when first 
published by Green et al. (2012). The specificity of these assays was 
very high, however they detected only 64 and 26% of gull feces, 
respectively.

For detecting fecal contamination of waterfowl, Ohad et al. (2016) 
developed three assays with relatively low sensitivity but high 
specificity: Av13, Av24 and Av216. Using the comparative analysis of 
the 16S rRNA gene, one swan-associated (Swan_2) marker was 
developed and resulted in sensitivity of 75% and specificity of 90% 
when tested on fecal samples (Boukerb et al., 2021).

Among assays developed for the detection of fecal contamination 
originating from domestic birds, one assay aims to detect poultry feces 
in general (LA35) (Weidhaas et al., 2010; Weidhaas and Lipscomb, 
2013; Schiaffino et al., 2020). Another more recently developed assay 
(Av43) detects chicken feces with a high degree of specificity (Ohad 
et al., 2016), whereas two assays based on mtDNA (ND5, CytB) aim 
to detect both chicken and duck feces (Zhuang et al., 2017; Schiaffino 
et al., 2020).

6.4 Fecal source tracking assays targeting 
other animals

While livestock farms present major pollution risk due to the large 
number and density of farm animals, pets such as dogs and cats 

TABLE 1 (Continued)

Target 
host

DNA 
target

Target 
organism

Assay Sensitivity Specificity Original 
referencesˣ

Validation references

Gulls 16S rRNA gene Catellicoccus 

marimammalium

Gull2 13 – 100 86 – 100 Lu et al. (2008) Kirs et al. (2011), Ryu et al. (2012), 

Symonds et al. (2017), Ballesté et al. 

(2020)

Dogs 16S rRNA gene Bacteroidales BacCan* 76 – 100 45 – 100 Kildare et al. (2007) Kildare et al. (2007), Odagiri et al. 

(2015), Nshimyimana et al. (2017), 

Symonds et al. (2017), Malla et al. (2018), 

Schiaffino et al. (2020), Rytkönen et al. 

(2021), Yasar et al. (2021)

Only assays validated in three or more publications are listed in this table. Additional information about all assay validations can be found in Supplementary Table 2. This includes the 
information about target and non-target hosts tested, primer and probe names and sequences, amplicon lengths, molecular techniques used, PCR conditions, other validation metrics, 
technical and analytical measures, biological measures, and sampling locations.
*forward and/or reverse primer were modified in one or more validation studies; ˣreferences for original and modified assay development.
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should not be  neglected as they are an important part of urban 
environments. Dog feces were previously reported to be important 
sources of fecal contamination in surface waters (Ervin et al., 2014; 
McKee et  al., 2020). BacCan marker is the most validated 
dog-associated FST marker with varying results on performance. 
Sensitivity of this marker was always above 75% while specificity 
ranged from 47 to 100% in different studies (Kildare et  al., 2007; 
Odagiri et al., 2015; Nshimyimana et al., 2017; Symonds et al., 2017; 
Malla et al., 2018; Schiaffino et al., 2020; Rytkönen et al., 2021; Yasar 
et  al., 2021). This assay originally includes two reverse primers 
(Kildare et al., 2007), however in some studies only one was included 
(Rytkönen et al., 2021; Yasar et al., 2021). Alternatives to the BacCan 
assay include DogND5 targeting dog mtDNA (Caldwell and Levine, 
2009; Rytkönen et al., 2021) and DogBac (Dick et al., 2005b; Symonds 
et al., 2017), DF113F-DF472R, DF53F-DF606R and DF53F-DF606R 
(Hussein et al., 2014) targeting the 16S rRNA gene of Bacteroidales 
(Figure 3).

Horses, either wild or domesticated are another potential source 
of fecal contamination. Three horse-associated FST assays were found 
but lack validation studies. They target either the 16S rRNA gene of 
Bacteroidales (HoF597, HorseBact) (Dick et al., 2005a; Symonds et al., 
2017; Ballesté et al., 2020) or horse mtDNA (HorseCytB) (Schill and 
Mathes, 2008; Rytkönen et al., 2021).

In the process of identifying new markers of fecal pollution, 
there is often a tendency to overlook wild animals. Only two assays 
have been developed with the aim to detect feces of wild animals 
other than birds and they target muskrats and possums (Marti 
et  al., 2011; Devane et  al., 2013). Given that muskrats live in 
riparian areas and excrete in the water, they are particularly 
relevant in terms of direct contamination of water sources. They 
can spread certain pathogens including G. duodenalis and 
Cryptosporidium spp. (Erlandsen et al., 1990; Marti et al., 2011). 
Marti et  al. (2011) developed an assay, designated MuBa01 for 
identifying fecal pollution deriving from muskrats. It was detected 
in 66% of muskrat samples and did not cross-react with samples of 
other hosts. Another assay was developed to target feces of 
possums, one of New Zealand’s most serious mammalian pests 
with initial validation resulting in 83% sensitivity and 96% 
specificity (Devane et al., 2013).

7 Conclusion

The most common way to determine sources of fecal pollution 
involves detecting host-associated markers found within bacterial, 
viral, or mitochondrial nucleic acids. In this review we presented 
55 assays designed for the detection of non-human animal fecal 
pollution alongside validation results from 41 studies. Based on 
gathered information we found that several promising markers for 
non-human FST have already been discovered, however there is 
still a potential for further exploration, especially for determining 
wildlife sources of fecal pollution. Regarding existing markers, 
more in depth knowledge is required to understand their key 
biological attributes, including persistence in the environment 
(considering biotic and abiotic factors), correlation to human 
pathogens, resistance to technical and chemical treatment and 
movement patterns. To improve evaluation of FST marker 

diagnostics, it is important to expand reference collections and 
include samples from a wider range of geographic locations. 
Furthermore, we found lack of standardization of protocols and 
inconsistencies in data reporting, making validation results 
difficult to compare. The most significant disparities in 
methodology and data reporting were observed in establishing 
sLOD and sLOQ.

A limited number of validation studies investigated the 
potential influence of the environmental matrix on assay 
performance by assessing sLOD and sLOQ. Among these studies, 
discrepancies were observed regarding the type of matrix taken 
into consideration - whether it was solely fecal or a combination of 
fecal and water. Because the aim of FST validations is to later 
identify markers in environmental water, we think that the water 
matrix should be accounted for during assay validation. Therefore, 
we suggest reporting sLOD and sLOQ in units of fecal weight per 
volume of environmental water of interest to enhance consistency 
across studies. These parameters can be evaluated in different water 
sources (e.g., river, lake, groundwater, seawater).

Differences in assay sensitivity and specificity were noticeable 
across various studies, and they can be attributed to a multitude of 
factors. They can arise from variations in the methodologies applied, 
variations in sampling intensity, the selection of host species for 
specificity determination and the choice of detection limits. 
Additionally, geographical location and time of sampling can play a 
significant role, as some markers are known to exhibit temporal and 
geographical instability. One effective strategy to increase diagnostic 
accuracy measures is to detect multiple markers associated with a 
particular host simultaneously.

Ultimately, it is important to acknowledge that FST does not offer 
a universally applicable solution. Instead, it operates as a toolbox 
approach that is required to navigate a diverse array of markers and 
methodology according to each individual situation. The information 
gathered in this review can serve as a starting point for choosing 
appropriate assays for determining non-human sources of 
fecal pollution.
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