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The bacterial communities of the human skin impact its physiology and 
homeostasis, hence elucidating the composition and structure of the healthy 
skin bacteriome is paramount to understand how bacterial imbalance (i.e., 
dysbiosis) may lead to disease. To obtain an integrated view of the spatial 
diversity of the skin bacteriome, we surveyed from 2019 to 2023 five skin regions 
(belly button, behind ears, between toes, calves and forearms) with different 
physiological characteristics (dry, moist and sebaceous) in 129 healthy adults (579 
samples – after data cleaning). Estimating bacterial diversity through 16S rRNA 
metataxonomics, we identified significant (p  <  0.0001) differences in the bacterial 
relative abundance of the four most abundant phyla and 11 genera, alpha- and 
beta-diversity indices and predicted functional profiles (36 to 400 metabolic 
pathways) across skin regions and microenvironments. No significant differences, 
however, were observed across genders, ages, and ethnicities. As previously 
suggested, dry skin regions (forearms and calves) were more even, richer, and 
functionally distinct than sebaceous (behind ears) and moist (belly button and 
between toes) regions. Within skin regions, bacterial alpha- and beta-diversity 
also varied significantly for some of the years compared, suggesting that skin 
bacterial stability may be  region and subject dependent. Our results, hence, 
confirm that the skin bacteriome varies systematically across skin regions and 
microenvironments and provides new insights into the internal and external 
factors driving bacterial diversity.
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1. Introduction

The skin is the largest organ in the human body with an average surface area in adults of 30 m2 
(Gallo, 2017). It has a protective role, acting both as a physical barrier against environmental factors 
and as an immunological barrier, reducing the effects of injuries and infections. The skin also has a 
thermoregulatory function; preventing water loss, enabling temperature regulation and supporting 
vitamin D synthesis (Grice et al., 2009; Grice and Segre, 2011; Byrd et al., 2018; Cundell, 2018).

To a large extent, skin’s physiology and homeostasis is impacted or maintained by the skin 
bacteriome – defined here as the collection of all bacteria living on our skin. The bacteriome 
protects us against invading pathogens by training and communicating with our immune 
system, and is involved in wound healing and breaking down natural products (Scharschmidt 
and Fischbach, 2013; Belkaid and Segre, 2014; Grice, 2015; Boxberger et al., 2021). The skin 
bacteriome harbors millions of bacteria, rivaling in composition and diversity the gut 
microbiome (Costello et al., 2009; Grice et al., 2009; Boxberger et al., 2021).

Typically, the bacterial community composition of the skin of healthy individuals is 
dominated by members of the phyla Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes. 
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The composition and structure of the healthy skin microbiome vary 
between people depending on intrinsic and extrinsic factors (Grice and 
Segre, 2011; Cundell, 2018; Dimitriu et al., 2019; Boxberger et al., 2021; 
Skowron et  al., 2021). Intrinsic factors include, for example, skin 
biogeography or physiology, ethnicity, gender and age; while extrinsic 
factors may include lifestyle, hygiene routine, cosmetics, antibiotics, 
geographical location, climate and seasonality (Dimitriu et al., 2019; 
Skowron et al., 2021). Among those factors, skin biogeography and 
associated physiology have been suggested as the main driver of skin 
microbial variation; microenvironments with comparable physiological 
characteristics tend to harbor similar bacterial communities, while 
those physiologically distinct, sebaceous (e.g., head locations), dry 
(e.g., forearms and legs) and moist (e.g., navel, toe web space), vary in 
bacterial membership and abundance (Grice et al., 2009; Oh et al., 
2014; Byrd et  al., 2018; Cundell, 2018; Skowron et  al., 2021). 
Cutibacterium (formerly known as Propionibacterium) species seem to 
predominate in sebaceous sites, Corynebacterium, β-Proteobacteria 
and Staphylococcus species in moist sites, while a mixed population of 
those bacteria and Flavobacteriales occur in dry sites (Grice et al., 
2009; Oh et al., 2014). Similarly, these two studies have also shown that 
sebaceous sites were less even and rich than moist and dry sites.

However, to what extent bacterial skin profiles are consistent across 
individuals remains to be seen. Similarly, few studies have explored the 
longitudinal stability of the skin microbiome (Costello et al., 2009; Grice 
et al., 2009; Oh et al., 2016), although they seem to indicate that some 
sites are largely stable over time, while others show appreciable 
variation. Even less understood is the functional diversity of the skin 
bacteriome and its variation across skin regions (Kong, 2011; Schommer 
and Gallo, 2013; Oh et al., 2014; Byrd et al., 2018; Wang et al., 2021). 
Recent research has reported that most metabolic pathways are not 
evenly distributed across body sites (Oh et  al., 2014) as previously 
suggested (Human Microbiome Project, 2012), with functional capacity 
driven primarily by skin biogeography and individuals.

Therefore, further research is needed to describe the “normal” 
skin bacteriome of healthy individuals. A better understanding of the 
bacteria inhabiting distinct physiological sites may provide insights 
into the delicate balance between skin health and disease and the 
internal and external factors leading to dysbiosis. Toward this end, 
we  used 16S amplicon high-throughput sequencing and 
metataxonomics to characterize the bacteriomes of 129 healthy 
individuals across five skin locations with different physiological 
properties. Subject individuals were part of an academic course in 
genomics (either undergraduate or graduate) and their bacteriome 
sampling and characterization was part of a project-based learning 
effort for the class (Pérez-Losada et al., 2020). As a consequence, the 
subjects were all healthy individuals with a relatively narrow and 
young age distribution. In this cross-sectional study, we investigated 
how bacterial taxonomic and functional profiles are partitioned across 
human skin regions, habitats, genders, ethnicities and years.

2. Materials and methods

2.1. Cohort

This is a cross-sectional study where participants were sampled 
once and the recruitment period lasted 5 years with sampling 
occurring in four of those 5 years. We recruited healthy undergraduate 

and graduate students from the Milken Institute School of Public 
Health at The George Washington University (Washington, DC, USA) 
every January in 2019, 2020, 2022, and 2023 – we  skipped 2021 
because of SARS COVID-19 restrictions. Students self-reported not 
having any skin diseases and not taking antibiotics or using topical 
steroids for at least the last month before skin sampling (exclusion 
criteria). This study was approved by the George Washington 
University Committee on Human Research, Institutional Review 
Board in 12/20/2018, IRB# 180703. All methods were performed in 
accordance with the relevant guidelines and regulations. Written 
consent was obtained from all adult participants using the informed 
consent documents approved by the George Washington University 
Committee on Human Research. This study was part of a project-
based learning component of a course in Public Health Genomics at 
George Washington University, Washington, DC, USA (Pérez-Losada 
et al., 2020).

2.2. Sampling

A total of 129 students from the Washington DC area participated 
in the study (Supplementary Table S1). All students self-swabbed five 
regions or sites of their skin: belly button (BB), behind both ears (BE), 
between toes of both feet (BT), both calves (CA) and both forearms 
(FA). These five regions comprise three habitats or microenvironments 
with unique physiological properties: sebaceous or oily (BE), moist 
(BB and BT), and dry (CA and FA) (Grice et al., 2009; Grice and Segre, 
2011; Byrd et al., 2018); they are also characteristically affected by 
dermatologic disorders where microbes have been implicated in 
disease pathogenesis (Grice et  al., 2009). We  followed the 
recommendations and sampling protocols used in the Human 
Microbiome Project (2012) and Kong (2016). Briefly, each region was 
sampled twice for 30 s using two sterile catch-all swabs moistened with 
SCF-1 solution (Tris-EDTA and 0.5% Tween-20). Both swabs were 
placed in the same Eppendorf tube containing ZymoBIOMICS™ 
Lysis Solution and processed together directly after sampling – 
see below.

2.3. 16S rRNA amplicon sequencing

Total DNA was extracted from swabs using the ZymoBIOMICS™ 
DNA Miniprep Kit D4300. All extractions yielded >2 ng/μL of total 
DNA, as indicated by NanoDrop 2000 UV–Vis Spectrophotometer 
measuring. DNA extractions were prepared for sequencing using the 
metataxonomic protocol (Marchesi and Ravel, 2015) described in 
Kozich et al. (2013). The V4 hypervariable region of the bacterial 16S 
rRNA gene was amplified using primers 515F – GTGCCAG 
CMGCCGCGGTAA and 806R – GGACTACHVGGGTWTC 
TAAT. Amplicons were then sequenced on the Illumina MiSeq 
platform at the George Washington University Genomics Core using 
2×250 base pair, paired-end sequencing. While the V4 region has been 
shown to cover most of the described human bacterial diversity, it is 
also known that V4-specific primers are biased against some abundant 
skin bacteria, particularly Cutibacterium (Kong, 2016; Meisel et al., 
2016). However, V4 primers can detect taxa that are underrepresented 
in skin microbiome surveys using the V1-V3 region and produce 
amplicons with lower error rates (Kozich et al., 2013; Zeeuwen et al., 

https://doi.org/10.3389/fmicb.2023.1257276
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Pérez-Losada and Crandall 10.3389/fmicb.2023.1257276

Frontiers in Microbiology 03 frontiersin.org

2017). Negative controls processed as above showed no PCR band on 
an agarose gel. We also used water and reagent negative controls and 
mock communities (i.e., reference samples with a known composition; 
Cutibacterium was not included in the mock community) to detect 
contaminating microbial DNA within reagents and the measure 
sequencing error rate. We did not find evidence of contamination and 
our sequencing error rate was very low (0.0038%).

Since student samples were collected and sequenced every year for 
a class project (Pérez-Losada et al., 2020), sequences for the current 
study were generated in four consecutive runs. To account for possible 
batch effects, samples were processed using the same molecular 
protocols and handled by the same technician. Moreover, ten controls 
from previous years were always re-sequenced in subsequent years to 
validate microbial composition and structure using indices and 
statistical tests described below. Sequence files and associated 
metadata and BioSample attributes for all samples used in this study 
have been deposited in the NCBI (PRJNA988281). Metadata and ASV 
abundances with corresponding taxonomic classifications are 
presented in Supplementary Tables S1, S2, respectively.

2.4. Microbiome analyses

16S rRNA–V4 amplicon sequence variants (ASV) in each sample 
were inferred using the DADA2 version 1.18 (Callahan et al., 2016). 
Reads were filtered using standard parameters recommended by the 
authors (no uncalled bases, maximum of 2 expected errors and 
truncating reads at a quality score of 2). Forward and reverse reads 
were trimmed after 240 and 150 bases, respectively, merged and 
chimeras identified. Taxonomic assignment was performed against 
the SILVA v138.1 database using the RDP naive Bayesian classifier 
(Wang et al., 2007; Quast et al., 2013). ASV sequences (~250 bp) were 
aligned in MAFFT (Katoh and Standley, 2013) and FastTree, which 
implements an approximate maximum likelihood search strategy, was 
used to estimate phylogenetic relationships among ASVs (Price et al., 
2010). The resulting ASV tables and phylogenetic tree were imported 
into phyloseq (McMurdie and Holmes, 2013) for further analysis. 
We normalized our samples using the negative binomial distribution 
as recommended by McMurdie and Holmes (2014) and implemented 
in the Bioconductor package DESeq2 (Love et  al., 2014). This 
approach simultaneously accounts for library size differences and 
biological variability and has increased sensitivity if groups include 
less than 20 samples (Weiss et al., 2017). Alpha-diversity was estimated 
using Chao1 richness and Shannon, ACE, and phylogenetic diversity 
(PD) indices. Beta-diversity was estimated using phylogenetic Unifrac 
(unweighted and weighted), Jensen-Shannon divergence and Chao 
distances, and dissimilarity between samples was explored using 
principal coordinates analysis (PCoA).

Differences in taxonomic composition (phyla and genera) and 
alpha-diversity indices between skin regions (predictors) were 
assessed using linear mixed-effects (LME) models analysis, as 
implemented in the lmer4 R package (Bates et  al., 2015), to 
account for non-independence of subjects (random effect). When 
assessing differences between sampling years for each skin region 
(i.e., independent subjects), we  used linear models. We  also 
included age, ethnicity, and gender as covariables in all our 
analyses as well as sampling year in the LME models. Beta-
diversity indices were compared using permutational multivariate 

analysis of variance (adonis), as implemented in the Vegan R 
package (Dixon, 2003), while also accounting for covariables as 
indicated above.

Bacterial functional profiles were assessed using metabolic 
pathways predicted in PICRUSt2 (Douglas et al., 2020). We followed 
the standard pipeline recommended by the authors. Predicted sample 
gene family profiles were collapsed using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) Pathway metadata (Kanehisa et  al., 
2019). Pathway abundances were normalized using the negative 
binomial distribution (McMurdie and Holmes, 2014). As above, LME 
analysis was then used to identify differentially abundant metabolic 
pathways across body regions while accounting for random effects 
(subjects) and covariables (subjects age, ethnicity, and gender).

We applied the Benjamini-Hochberg method at alpha = 0.05 to 
correct for multiple hypotheses testing (Cook, 1977; Benjamini and 
Hochberg, 1995). All the analyses were performed in R (Team RDC, 
2008) and RStudio Team (RStudio, 2015). All data files used in this 
study can be  found in GitHub: https://github.com/mlosada323/
skin-microbiome.

3. Results

3.1. Taxonomic diversity

We sampled skin swabs from a cohort of 129 adult participants 
(students – both undergraduate and graduate) from George Washington 
University, Washington, DC (Supplementary Table S1). They belonged 
to five main ethnicities, White (50.4%), Asian (30.2%), Black (11.6%,), 
Hispanic (5.4%) and Eurasian (2.4%); their mean age was 24.4 ± 7.6 years 
and 69.8% were female. We sequenced the V4 region of the 16S rRNA 
gene (~250 bp) to characterize the microbiome of five skin regions in 
each participant (645 skin samples). ASV singletons and samples with 
<1,045 reads were eliminated from further analysis, rendering a final 
dataset of 579 individual samples distributed across the five targeted skin 
regions: BB (belly button) (121 samples), BE (behind both ears) (121 
samples), BT (between toes of both feet) (127 samples), CA (both calves) 
(104 samples) and FA (both forearms) (106 samples). Within each skin 
region, samples were also analyzed by year: 2019 (12–13 samples), 2020 
(25–32 samples), 2022 (35–43 samples) and 2023 (30–39 samples). 
Samples were run for each year with controls in each run and no 
significant differences indicative of batch effect were observed for any of 
the indices tested between control samples across sequencing runs (see 
also Supplementary Figure S1).

The 579 samples analyzed after quality control included only 1,395 
Archaea reads corresponding to 43 ASVs; this is not surprising given 
its low representation in the human skin (Probst et al., 2013; Oh et al., 
2014). The skin bacteriome, however, accounted for 16,930,379 reads, 
ranging from 1,045 to 138,993 sequences per sample (mean = 29,240.7) 
and was comprised of 8,628 ASVs (Supplementary Table S2).

The bacterial sequences across all 579 filtered samples were 
classified into four dominant (>1% abundance) Phyla: 
Actinobacteriota (29.1%), Bacteroidota (5.2%), Firmicutes (51.1%), 
and Proteobacteria (10.6%). The nine most dominant genera detected 
across all samples were: Staphylococcus (35.7%), Corynebacterium 
(22.6%), Anaerococcus (4.9%), Escherichia-Shigella (3.5%), Prevotella 
(2.0%), Streptococcus (1.9%), Peptoniphilus (1.6%), Porphyromonas 
(1.6%), and Finegoldia (1.4%) (Figure 1).
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Bacterial phyla relative abundance varied across skin regions 
(Table 1) and microenvironments (oily, moist and dry). Belly button 
(BB) and between toes (BT) (moist microenvironment) were mainly 
comprised of Actinobacteriota and Firmicutes; behind ears (BE) (oily 
microenvironment) was dominated by Firmicutes; and calves (CA) 
and forearms (FA) (dry microenvironment) included a combination 
of those three phyla. Bacterial genera relative abundance also varied 
across skin regions and microenvironments (Figure 1; Table 1); BB 
and BT (moist microenvironment) were dominated by Staphylococcus 
and Corynebacterium, BE (oily microenvironment) by Staphylococcus 
and Anaerococcus, while CA and FA (dry microenvironment) showed 
a high proportion of Staphylococcus and Corynebacterium, but also of 
Streptococcus and Escherichia-Shigella. Anaerococcus was also highly 
abundant in BB.

All the four and 12 most abundant phyla and genera, respectively, 
showed significant differences (p < 0.0001; LME test) in their mean 
relative proportions across all skin regions and microenvironments, 
except for Finegoldia (Supplementary Table S3). Skin region pairwise 
comparisons of the most abundant phyla and genera showed the 
highest numbers of significant differences (LME test) between CA or 
FA and other skin regions, while CA – FA showed the lowest number 
of significantly different taxa (Supplementary Table S3). Accordingly, 
microenvironment pairwise comparisons of the most abundant phyla 
and genera showed the highest numbers of significant differences 
(LME test) between dry and other microenvironment, while moist-
oily showed the lowest number of significantly different taxa 
(Supplementary Table S3).

BB, BE, BT, FA, and CA samples had 586, 613, 777, 1,703, and 
2,366 unique ASVs, respectively (Supplementary Figure S2). The five 

groups shared 455 unique ASVs, while paired groups shared a variable 
number, ranging from 437 (CA and FA) to 21 ASVs (BB and BE). 
Only two ASVs (ASV1 and ASV2) of the genera Staphylococcus and 
Corynebacterium comprised the skin core bacteriome of all samples 
(90% prevalence) and accounted for 32 and 12.8% of the total reads, 
respectively. These same genera have also been assigned to the skin 
core in other studies of different cohorts (Costello et al., 2009; Wang 
et al., 2021) and may represent the more stable and consistent bacterial 
members of the skin bacteriota (Backhed et  al., 2012; Shade and 
Handelsman, 2012).

Alpha-diversity indices (Chao1, Shannon, ACE, and PD) of 
microbial community richness and evenness varied significantly 
(p < 0.0001) among skin regions and microenvironments (Figure 2; 
Supplementary Tables S4, S5). CA and FA showed the highest diversity 
for all indices, while BT showed the lowest and BB and BE showed 
intermediate values. Accordingly, the dry microenvironment showed 
the highest diversity for all indices, the moist microenvironment 
displayed the lowest for all indices but Shannon, and the oily 
microenvironment showed intermediate values for all alpha-diversity 
indices but Shannon, where it showed the lowest 
(Supplementary Table S4). All skin region pairwise comparisons of 
alpha-diversity indices involving FA or CA and any other region were 
significantly different (p < 0.0001); while most of the other skin region 
pairwise comparisons were not significantly different 
(Supplementary Table S5). Similarly, all of the microenvironment 
pairwise comparisons of alpha-diversity indices involving dry and any 
other microenvironment resulted significant differences (p < 0.0001); 
while moist-oily comparisons were significant for Shannon and PD 
(p ≤ 0.0013), but were not for Chao1 and ACE (Supplementary Table S5).

FIGURE 1

Bar plots of mean relative proportions of the top bacterial genera in the skin bacteriomes of 129 adults grouped by skin region and year. BB, belly 
button; BE, behind both ears; BT, between toes of both feet; CA, both calves; and FA, both forearms. Microenvironments: oily (BE), moist (BB  +  BT) and 
dry (CA  +  FA).
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Our PCoAs (Figure  3) of beta-diversity estimates showed 
segregation of the skin bacteriomes across regions and 
microenvironments for all distances (JSd, Chao, and Unifrac). The 
adonis analyses detected significant differences (p < 0.0001) in 
community structure (beta-diversity) across all regions and 
microenvironments and for all pairwise comparisons of both factors 
(Supplementary Table S5).

We also compared alpha-diversity indices across years (2019, 
2020, 2022, and 2023) within skin regions 
(Supplementary Table S6). BB showed no significant differences 
for any of the four indices compared (lm tests), while BE only 
showed significant differences in PD for 2019–2023; the other 
three skin regions (BT, CA, and FA) showed significant differences 
in alpha-diversity for different year combinations except 2019–
2020. Similarly, beta-diversity analyses across years within skin 
regions detected significant differences in microbial structure for 
all regions and indices compared, except for the Unifrac weighted 
in BB and BT (Supplementary Table S6). Since we carried out a 
cross-sectional study (i.e., participants were only sampled at a 
single timepoint), our statistical analyses cannot separate 
interpersonal from time-related variation, so we can only conclude 
that skin bacterial stability may be region and subject dependent, 
as previously suggested (Costello et al., 2009; Grice et al., 2009; 
Oh et al., 2016).

Finally, we assessed variation in bacterial composition (phyla and 
genera) and microbial community richness and evenness in relation 
to age, ethnicity, and gender using LME models, but no significant 
differences were observed, suggesting a greater impact of 
regionalization of the skin microbiome.

3.2. Functional diversity

Our functional analysis in PICRUSt2 showed 36 to 397 metabolic 
pathways significantly (p < 0.05) differentially expressed after FDR 
correction between pairs of skin regions (Supplementary Figure S3; 
Supplementary Table S7). As described above for taxonomic profiles, 
the highest number of significantly different pathways (LME test) was 
observed between CA or FA and other skin regions (354 to 397), BE – 
BB – BT showed 253 to 301 significant pathways, while CA – FA 
showed only 36 significantly pathways. Accordingly, the highest 
number of significantly different metabolic pathways (LME test) were 
also observed between the dry microenvironment and the moist and 
oily microenvironments (372 and 400 metabolic pathways, 
respectively), while moist-oily showed 261 significant pathways. 
When pathways were grouped in five basic KEGG categories (Genetic 
Information Processing, Environmental Information Processing, 
Cellular Processes, Metabolism and Organismal Systems) all of them 
resulted in significant differences for both biogeographic factors 
(p < 6.1E-12).

4. Discussion

We characterized the taxonomic and functional bacterial 
diversity of 579 skin samples (129 healthy adults) representing five 
skin regions (belly button, behind ears, between toes, calves and 
forearms) and three different skin habitats or microenvironments 
(sebaceous, dry and moist) collected once in 2019, 2020, 2022, 
and 2023.

TABLE 1 Mean relative abundances (%) of dominant (>1% abundance in at least one skin region) bacterial phyla and genera in the skin bacteriomes of 
129 adults grouped by skin region and microenvironment.

BE BB BT CA FA Oily Moist Dry

Phylum

Firmicutes 85.5 43.3 51.4 35.6 35.4 82.7 44.8 34.0

Actinobacteriota 9.5 44.7 46.8 29.1 22.5 9.7 41.8 23.4

Proteobacteria 3.6 4.5 1.2 23.3 28.2 5.3 3.9 28.1

Bacteroidota 0.8 5.0 0.3 6.2 7.5 1.2 6.3 6.9

Genus

Staphylococcus 70.9 25.9 50.0 17.3 14.9 67.4 31.1 15.1

Corynebacterium 5.8 39.5 44.4 16.3 10.7 5.7 36.4 12.3

Anaerococcus 10.8 8.2 0.3 2.1 1.6 9.8 4.1 1.8

Escherichia-Shigella 0.6 1.2 0.2 5.2 7.1 1.4 1.4 9.6

Streptococcus 0.8 0.6 0.1 3.4 8.3 1.1 0.3 5.5

Prevotella 0.2 1.9 0.1 2.5 2.3 0.4 2.7 2.3

Sphingomonas 0.2 0.2 0.1 2.3 2.0 0.2 2.9 0.5

Lactobacillus 0.2 0.3 0.1 4.3 1.4 0.3 0.2 2.9

Micrococcus 0.1 1.4 0.1 2.5 2.1 0.2 0.5 1.9

Finegoldia 0.9 2.6 0.1 1.5 0.8 1.1 1.7 1.3

Peptoniphilus 1.3 1.7 0.0 1.1 0.5 1.6 1.9 0.9

Porphyromonas 0.3 2.5 0.0 0.6 0.4 0.2 2.9 0.5

BB, belly button (121 samples); BE, behind both ears (121 samples); BT, between toes of both feet (127 samples); CA, both calves (104 samples); and FA, both forearms (106 samples).
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4.1. Taxonomic diversity

The skin bacteriome was dominated by the phylum Firmicutes 
(51.1%), followed by Actinobacteriota (29.1%), Proteobacteria 
(10.6%), and Bacteroidota (5.2%). These same four phyla have also 
been found to be predominant in other studies of the skin microbiome, 
although with different abundances (Grice et al., 2009; Oh et al., 2014). 
Staphylococcus (35.7%) and Corynebacterium (22.6%) were the most 
abundant genera across all samples, while none of the other 
predominant genera had a mean relative abundance >5%. These two 
genera are common members of the human epidermis (Grice et al., 
2009; Human Microbiome Project, 2012; Oh et al., 2014; Byrd et al., 
2018; Cundell, 2018; Dimitriu et  al., 2019). Cutibacterium only 
accounted for 0.55% of all the reads. This could result from primer 

bias in our 16S sequencing protocol (Kong, 2016) or unique features 
of the studied cohort.

All four predominant bacterial phyla and at least eleven of the 
twelve predominant genera varied significantly in their mean relative 
abundances across skin regions and microenvironments (Figure 1; 
Table 1; Supplementary Table S3). CA or FA (dry microenvironment) 
versus other skin regions or microenvironments showed the highest 
number of significant taxon differences (LME test), while CA – FA and 
moist-oily showed the lowest (Supplementary Table S3). The human 
epidermis comprises diverse microenvironments that vary in ultraviolet 
light exposure, pH, temperature, moisture, sebum content, and 
topography (Grice et al., 2009; Grice and Segre, 2011; Byrd et al., 2018). 
Based on these characteristics, the five skin regions sampled here can 
be grouped into three broad categories: sebaceous or oily (BE); moist 

FIGURE 2

Alpha-diversity estimates (Chao1, Shannon, ACE, and phylogenetic diversity) of the skin bacteriomes of 129 adults grouped by skin region and year. BB, 
belly button; BE, behind both ears; BT, between toes of both feet; CA, both calves; and FA, both forearms. Oily, moist and dry regions are colored in 
light gray, green and blue, respectively.
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(BB and BT) and dry (CA and FA). These habitats or microenvironments 
vary in abundance of sweat and sebaceous glands and hair follicles. 
Sweat glands are more abundant in moist regions, so they evaporate 
more water, which in turn also acidifies the skin, making conditions 
unfavorable for the growth and colonization of certain microorganisms 
(Grice and Segre, 2011). Additionally, sweat contains antimicrobial 
molecules that inhibit microbial colonization (Gallo and Hooper, 
2012). Connected to the hair follicle, sebaceous glands are denser in 
oily regions; they secrete lipid-rich sebum, a hydrophobic coating that 
lubricates and provides an antibacterial shield to hair and skin (Byrd 
et al., 2018). Therefore, skin microhabitat variation across regions and 
more broadly across microenvironments is likely responsible for the 
bacterial community diversity observed here; skin areas with 

physiologically comparable sites bear more similar bacterial 
communities, while those physiological distinct harbor more different 
bacteriomes. Other studies have also shown significant differences 
across these same or comparable skin regions and microenvironments, 
although the mean relative abundances of the bacterial taxa involved 
varied across studies (Costello et al., 2009; Grice et al., 2009; Oh et al., 
2014). This is not surprising given the existing methodological 
differences across studies (Kong, 2016; Meisel et al., 2016) and the 
variation in the demographics (Dimitriu et al., 2019; Wang et al., 2021) 
and personal habits (Grice et al., 2009; Byrd et al., 2018; Cundell, 2018; 
Pérez-Losada et al., 2020; Skowron et al., 2021) of the cohorts studied.

Bacterial community richness and evenness (Figure  2; 
Supplementary Tables S4, S5) and structure (Figure  3; 

FIGURE 3

Principal coordinates analysis (PCoA) plots of beta-diversity distances (JSd, Chao and Unifrac) of the skin bacteriomes of 129 adults grouped by skin 
region and year. BB, belly button; BE, behind both ears; BT, between toes of both feet; CA, both calves; and FA, both forearms. Microenvironments: oily 
(BE), moist (BB  +  BT) and dry (CA  +  FA).
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Supplementary Table S5) also varied significantly (p < 0.0001) among 
skin regions and microenvironments (p ≤ 0.0013). Dry regions (CA and 
FA) showed the highest within-sample diversity for all indices (twice as 
high in some cases), while BT showed the lowest and BB and BE showed 
intermediate values. The moist microenvironment (BB and BT) also 
showed the lowest alpha-diversity for most indices. As for beta-diversity, 
BB showed the least similarity among samples, followed by CA and FA 
(dry microenvironment), while the most similar regions were BE and 
BT. Previous studies (Costello et al., 2009; Grice et al., 2009; Oh et al., 
2014) have also shown that bacteriomes from dry skin sites display the 
highest richness and evenness; they also showed the lowest similarity 
(beta-diversity) for interdigital web spaces and navel (Grice et al., 2009), 
forearms (Costello et al., 2009) or sebaceous sites in general (Oh et al., 
2014). Several intrinsic and extrinsic factors alone or combined may 
explain these differences in microbial diversity; as indicated above, dry 
skin regions present more favorable conditions for the growth and 
survival of bacteria (Grice and Segre, 2011; Gallo and Hooper, 2012). 
Additionally, external environmental conditions (temperature, humidity, 
and sunlight – UV radiation) can also alter the bacteriomes of exposed 
skin regions like forearms and calves differently than those of covered 
regions (Boxberger et al., 2021; Skowron et al., 2021). Moreover, washing 
habits or skin care products may also disrupt bacterial communities 
differently and play a role here, since one could expect that some areas 
like calves and forearms are washed and lubricated more often than 
others (between toes or navels) (Fierer et al., 2008; Grice and Segre, 
2011; Two et  al., 2016; Cundell, 2018; Pérez-Losada et  al., 2020; 
Boxberger et al., 2021; Skowron et al., 2021). Finally, gender, age, and 
ethnicity have also been suggested as primary or secondary contributing 
factors to skin diversity in other studies (Ying et al., 2015; Li et al., 2019; 
Skowron et  al., 2021); however, we  have not detected significant 
differences associated to these three factors in our cohort.

4.2. Functional diversity

Contrary to previous studies (Human Microbiome Project, 2012) 
which reported that most metabolic pathways are evenly distributed 
across body sites, we  detected significant variation in functional 
diversity across skin regions and microenvironments 
(Supplementary Figure S3; Supplementary Table S7). As described 
above for taxonomic composition and diversity, pairwise comparisons 
involving dry regions (CA and FA) and microenvironments showed 
the highest differences in metabolism (83–94% pathways) when 
compared to moist and sebaceous skin regions (59–71%). A 
metagenomic analyses of the skin microbiome (Oh et al., 2014) showed 
that 88% of the metabolic modules were also differentially abundant in 
at least one skin microenvironment, hence suggesting that functional 
capacity is driven primarily by biogeography, as reported here.

4.3. Limitations

Metataxonomic studies like this suffer from the inherent 
limitations (e.g., marker validation, technical biases and limited 
taxonomic resolution) (Odom et al., 2023) of collecting sequence 
data from a single partial gene target (16S rRNA). Nevertheless, the 
inferred composition of the skin bacteriomes in this study is similar 
to those described in previous metataxonomic and metagenomic 

studies of the skin. Additionally, our functional analysis (PICRUSt2) 
of 16S data can only predict metabolic pathways that need to 
be confirmed using genomic data. Although we collected a large 
number of samples (579 after data cleaning), the number of regions 
surveyed is small and their distribution across regions and years is 
uneven, which may also impact our statistical results despite their 
high significance. Finally, our sampling is not longitudinal (i.e., 
we sampled different participants every year rather than the same 
individuals at multiple timepoints), hence we  cannot study skin 
bacterial temporal diversity and dynamics or separate interpersonal 
from time-related variation. We hope we can address and correct 
some of these issues in future studies.

5. Conclusion

The taxonomic and functional diversity of the skin bacteriome in 
healthy subjects is poorly understood. We analyzed an adult cohort of 
129 individuals (579 samples) sampled once at four different years to 
generate insights into these issues. We showed that bacterial diversity 
varies spatially across skin regions (belly button, behind ears, between 
toes, calves, and forearms) and microenvironments (dry, moist, and 
sebaceous). This study provides a reference (i.e., normal or healthy 
skin bacteriome) for other studies that examine the role of bacterial 
communities in skin diseases (i.e., dysbiosis) and the impact of 
internal and external factors on the skin bacteriome.
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