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Tomato spotted wilt orthotospovirus (TSWV) is one of the most successful

pandemic agricultural pathogens transmitted by several species of thrips in a

persistent propagative manner. Current management strategies for TSWV heavily

rely on growing single-gene resistant cultivars of tomato (“Sw-5b” gene) and

pepper (“Tsw” gene) deployed worldwide. However, the emergence of resistance-

breaking strains (RB) in recent years has compounded the threat of TSWV

to agricultural production worldwide. Despite this, an extensive study on the

thrips transmission biology of RB strains is currently lacking. It is also unclear

whether mutualistic TSWV-thrips interactions vary across di�erent novel strains

with disparate geographical origins. To address both critical questions, we studied

whether and how four novel RB strains of TSWV (two sympatric and two allopatric),

alongwith a non-RB strain, impact western flower thrips (WFT) fitness andwhether

this leads to di�erences in TSWV incidence, symptom severity (virulence), and

virus accumulation in two di�erentially resistant tomato cultivars. Our findings

show that all RB strains increased WFT fitness by prolonging the adult period

and increasing fecundity compared to non-RB and non-viruliferous controls,

regardless of the geographical origin of strains or the TSWV titers in individual

thrips, which were substantially low in allopatric strains. TSWV accumulation in

thrips varied at di�erent developmental stages and was unrelated to the infected

tissues fromwhich thrips acquired the virus. However, it was significantly positively

correlated to that in WFT-inoculated susceptible plants, but not the resistant

ones. The TSW incidences were high in tomato plants infected with all RB strains,

ranging from 80% to 90% and 100% in resistant and susceptible plants, respectively.

However, TSW incidence in the non-RB-infected susceptible tomato plants was

80%. Our findings provide new insights into how novel strains of TSWV, by

selectively o�ering substantial fitness benefits to vectors, modulate transmission

and gain a potential epidemiological advantage over non-RB strains. This study

presents the first direct evidence of how vector-imposed selection pressure,

besides the one imposed by resistant cultivars, may contribute to the worldwide

emergence of RB strains.
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1. Introduction

Tomato spotted wilt orthotospovirus (Orthotospovirus

tomatomaculae, referred to hereafter as TSWV) is ranked second

among the most devastating plant pathogenic viruses across

the world (Scholthof et al., 2011). TSWV has a wide host range

(over 1,000 plant species from >90 plant families), and it is

transmitted by several species of thrips (Thripidae; Thysanoptera)

in a persistent propagative manner (Whitfield et al., 2005; Pappu

et al., 2009). Thrips cause both direct (via feeding) and indirect (via

transmission of TSWV) damage to an array of specialty and staple

food crops worldwide. Their cosmopolitan distribution shared a

wide host range, and rapid reproductive potential have enabled

TSWV to become a pandemic agricultural pathogen over the

past century. TSWV has 80–110 nm spherical virions containing

tripartite negative/ambisense RNA segments: large (L), medium

(M), and small (S), with sizes of 8.9, 4.8, and 2.9 kb, respectively

(Adkins et al., 1995).

Besides the management of its vector, the use of resistant

cultivars is one of the most effective TSWVmanagement strategies.

In the past few decades, two dominant single genes, namely, Sw-

5b and Tsw, offering broad-spectrum resistance against TSWV,

were identified from wild relatives and deployed into commercial

tomato and pepper cultivars, respectively (Boiteux and De Avila,

1994; Boiteux, 1995; Dianese et al., 2011; De Oliveira et al., 2018).

The single-gene resistance is mediated through the interaction of

nucleotide-binding leucine-rich repeats (NLR) of the Sw-5b gene

of tomato with TSWV avirulent (Avr) factor, a non-structural

movement protein (Nsm), and that of the Tsw gene of pepper

with TSWV Avr, a non-structural silencing suppressor (Nss)

(Margaria et al., 2004; Peiró et al., 2014). However, tremendous

selection pressure on TSWV imposed by widely deployed single-

gene resistant cultivars of both tomato and pepper has led to

the emergence of novel resistance-breaking (RB) strains of TSWV

worldwide. To date, these strains have been reported in several

countries, including Italy, Australia, Spain, Hungary, South Africa,

Turkey, South Korea, Brazil, and the United States (Aramburu

and Marti, 2003; Margaria et al., 2004, 2007; Ciuffo et al., 2005;

Sharman and Persley, 2006; Zaccardelli et al., 2008; Fidan and Sari,

2019; Yoon et al., 2021; Almási et al., 2023). In the United States,

RB strains have been reported in tomatoes from California and

North Carolina (Batuman et al., 2017; Lahre et al., 2023) and in

peppers from California (Macedo et al., 2019). Most recently, our

lab reported novel strains in tomato and pepper for the first time in

Texas (Chinnaiah et al., 2023; Gautam et al., 2023). Despite several

reports across the world, to date, no study has investigated the

thrips transmission biology of RB strains.

Of all thrips species, western flower thrips (WFT), Frankliniella

occidentalis (Thripidae: Thysanoptera) is reported to be the most

prevalent and efficient vector of TSWV (Wan et al., 2020). WFT

typically acquires TSWV from infected plant tissues in the early

larval stages (Chatzivassiliou et al., 1999). Once acquired, the

virus replicates in the thrips midgut lumen and salivary gland,

often resulting in the persistent and highly efficient transmission

of TSWV throughout the thrips lifespan. Several studies have

explored interactions between thrips and TSWV, in that most

showed that the TSWV infection offers fitness benefits to thrips by

triggering behavioral response and increasing survival, longevity,

and fecundity (Belliure et al., 2004; Maris et al., 2004; Shrestha

et al., 2012; Shalileh et al., 2016; Nachappa et al., 2020; Wan

et al., 2020), while few have reported reduced thrips fitness (De

Angelis et al., 1993; Stumpf and Kennedy, 2005; Ogada et al., 2013),

affecting TSWV transmission and spread favorably or otherwise.

However, almost all previous studies were based on single, wild-

type, or sympatric (originating within the same locality) strains

of TSWV, in that none rigorously evaluated whether and how

virus accumulation at various stages of thrips development affects

overall thrips fitness and transmission. A comprehensive study

on the thrips transmission of novel sympatric and allopatric

(originating from different geographical locations) RB strains is

currently lacking.

Since thrips vectoring is indispensable to the evolutionary

success of TSWV as a pandemic pathogen of agricultural crops,

understanding their interactions in light of resistance-breaking

strains originating from different locations is critical to devising

robust TSWV management strategies. This study examined

whether and how four novel RB strains of TSWV (two sympatric

and two allopatric) along with non-RB control, especially their

accumulation at various thrips developmental stages, affect thrips

fitness (developmental time and fecundity). Furthermore, we

examined whether WFT transmits these strains differently and

whether this leads to differences in TSWV incidence, symptom

severity (virulence), and virus accumulation in two differentially

resistant (one resistant and one susceptible) tomato cultivars.

2. Materials and methods

2.1. TSWV strains

A total of five different TSWV strains were used in this study. Of

these strains, four were resistance-breaking (RB), namely, “Tom-

BL1,” “Tom-BL2,” “Tom-CA,” and “Tom-MX,” whereas the fifth was

a non-resistance-breaking wild-type strain of TSWV, named “non-

RB”. Tom-BL1 and Tom-BL2 were sympatric strains recovered

from TSW-symptomatic Sw-5b-resistant tomato plants grown in

a field trial at Bushland, TX (Chinnaiah et al., 2023). On the

contrary, Tom-CA and Tom-MX were allopatric strains recovered

from TSW-infected tomato fruits showing characteristic chlorotic

ringspot symptoms collected from two different supermarkets in

Amarillo, TX. The non-RB strain used in this study was recovered

from a susceptible pepper cultivar in College Station, TX, as we

were unable to obtain a non-RB strain originating from tomatoes

despite our extensive efforts over the past 2 years, which is possibly

due to the exclusive or near-exclusive adoption of commercial Sw-

5b-resistant tomato cultivars, as all TSWV isolates collected by our

lab turned out to be resistance-breaking. The resistance-breaking

status of all four strains and the lack thereof in a non-RB strain were

confirmed through mechanical and thrips inoculation of 3-week-

old plants from five resistant cultivars and one susceptible one

(control) using TSWV-infected symptomatic tissues from RB/non-

RB strains. A detailed description of mechanical inoculation, along

with the confirmation of TSWV infection status and Sw-5b-

resistant status of inoculated plants, is provided in the two first
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reports of TSWV RB strains from our lab (Chinnaiah et al., 2023;

Gautam et al., 2023). Plants inoculated with different strains were

maintained in separate insect-proof cages to avoid accidental cross-

contamination in the greenhouse at 25◦C with a 12-h photoperiod.

Young leaves showing characteristic TSW symptoms (systemic

infection) across all five different strains were subjected to RNA

extraction followed by reverse transcriptase-quantitative PCR (RT-

qPCR) to confirm the infection status and quantify the virus titer.

2.2. Thrips colony

A virus-free colony of WFT was obtained from Diane Ullman

at the University of California, Davis. Thrips at various stages

of development were reared on surface-sterilized green bean

(Phaseolus vulgaris) pods (a brief exposure to 10% sodium

hypochlorite followed by repetitive washing with water), which also

served as an oviposition site, in a semi-transparent plastic container

[14 (h) × 18.5 (d) cm] with a lid fixed with insect-proof mesh in

the center [4 cm (d)]. The containers were placed in a laboratory at

25◦C and a 16-h photoperiod. Bean pods were changed once every

2 days to provide fresh food. Thrips were reared continuously to

obtain numerous first-instar larvae used in the experiment.

2.3. Thrips fitness and TSWV accumulation

TSWV-infected tomato leaves expressing characteristic TSW

symptoms (nearly equal symptom severity ratings of 4–5 on a scale

of 5) from five strains with known TSWV titers (Tom-BL1 2× 108,

Tom-BL2 1 × 108, Tom-CA 6 × 106, Tom-MX 5 × 105, and non-

RB 1 × 108 copies/ng RNA) were placed in a separate 14-cm Petri

dish (one each) with a lid containing insect-proofmesh at the center

(Figure 1). Uninoculated healthy tomato leaves, with no TSWV

infection, were used as a food source to obtain non-viruliferous

thrips (negative control). For each strain,∼800 neonate first-instar

larvae of WFT (3–4 h within hatching) were allowed to feed on

these leaves with a 72-h acquisition access period (AAP). The

larvae were then subsequently reared on green bean pods through

adulthood. From the original 14-cm Petri dish, multiple cohorts of

10 thrips were randomly selected at each developmental stage to

determine TSWV copy numbers using RT-qPCR. From the original

14-cm Petri dish, a subset of 10 larvae were moved to a 9-cm Petri

dish (one per strain) immediately following the 72-h AAP along

with non-viruliferous thrips from healthy control and allowed to

feed on green bean pods to precisely record developmental time at

each stage: egg through adult (till the first day of adulthood).

For each strain (and non-viruliferous control), eight female

adult thrips developed from the original 14-cm Petri dish after

rearing on green bean pods (on the first day of adulthood) were

released in individual 9-cm plastic Petri dishes (one adult per Petri

dish, eight Petri dishes per strain). The individual thrips were fed

and allowed to oviposit on one green bean pod at a time. Old

bean pods were replaced with fresh ones every 2 days. First, all

subsequent old pods were individually incubated in a new Petri

dish for 3 days at 25◦C to count the number of emerging larvae as a

measure of fecundity throughout the adult stage. For each adult, the

number of days from the first day of adulthood through death was

recorded as a measure of the adult period for each strain, including

non-viruliferous control.

2.4. Thrips transmission

Transmission biology of WFT infected with different strains

of TSWV was determined through TSWV incidence, symptom

severity, and days till the onset of symptoms in two commercial

tomato cultivars: one resistant and one susceptible. More

specifically, 30 adults (a random mix of males and females)

developed from the original 14-cm Petri dish after rearing on green

bean pods (on the first day of adulthood) were released on five

3-week-old individually caged tomato plants from each cultivar

(15 plants per strain) in insect-proof cages and allowed a 72-h

inoculation access period (IAP) on those plants. Plants were then

sprayed with a systemic insecticide to kill thrips and subsequently

monitored for TSW symptom expression at 25◦C during a 16-

h photoperiod in a greenhouse. The severity of TSW symptoms

was rated on a scale of 0–5, where 0 = no symptoms, 1 = mild

mosaic on young leaves; 2 = mosaic and puckering of leaves; 3 =

chlorotic spots and puckering of leaves; 4 = chlorotic and necrotic

spots on leaves, bronzing, and stunting; and 5 = all symptoms

in 4 plus partial wilting. Besides transmission parameters, TSWV

titers in thrips-inoculated plants were measured 30 days post-

inoculation (DPI).

2.5. RNA extraction and TSWV titers in
individual thrips

To quantify the virus acquired by thrips from different TSWV

strains, RNA was extracted from 10 individual thrips per strain at

different developmental stages, including second instar, pre-pupae,

pupae, and adult. Using a camel hairbrush, individual thrips were

moved to 2-ml screw-cap tubes containing sterilized glass or metal

beads. Tubes were vortexed in 20 µl of Quick Extract solution

(Lucigen,Middleton,WI), followed by centrifugation at 12,000 rpm

for 30 s. The tubes were then incubated at 65◦C for 10min followed

by 98◦C for 3min. Immediately after heat shock, tubes were placed

on ice for 5min, briefly centrifuged, and the RNA suspended in the

aqueous phase was transferred to a new tube and stored at −20◦C

for further use.

One-step RT-qPCR was used to detect and quantify

TSWV. A volume of 20-µl reaction mixture contained 5

µl (4×) of TaqMan Fast Virus 1-Step Master Mix (Thermo

Fisher Scientific, Waltham, MA, United States), 1 µl (10

pmol) of each nucleocapsid gene-specific forward (5′-

AGAGCATAATGAAGGTTATTAAGCAAAGTGA-3′) and

reverse primers (5′-GCCTGACCCTGATCAAGCTATC-

3′), 1 µl (20×) of TaqMan probe ([6∼FAM]

CAGTGGCTCCAATCCT[BHQ1a∼Q]), and 1 µl of RNA

(50 ng). The mixture was analyzed in the Quant Studio 7 Pro

system (Applied Biosystems, Waltham, MA, United States) with

the following conditions: reverse transcription at 50◦C for 10min,

holding at 94◦C for 5min, followed by 40 cycles of 94◦C for 10 s
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FIGURE 1

An overview of methods followed to study the transmission biology of resistance-breaking strains of TSWV. For each strain, ∼800 neonate larvae

were allowed a 72-h acquisition access period on non-infected tomato leaves or those infected with various TSWV strains to obtain non-viruliferous

and viruliferous thrips, respectively. Di�erent strains of TWSV used in the study were sympatric (from Bushland, TX): Tom-BL1, Tom-BL2; allopatric

(from California) Tom-CA and (from Mexico) Tom-MX; and non-resistance breaking (non-RB). After virus acquisition, a cohort of 10 second instar

thrips were transferred to a 9-cm sterile Petri dish (a�xed with an insect mesh in the center) containing bean pods to record egg-to-adult

developmental time every 12h. Another large cohort of larvae was transferred to a di�erent set of 14-cm Petri dishes through various developmental

stages. At each stage, TSWV accumulation was quantified in 10 individual thrips per strain (and non-viruliferous control) using RT-qPCR. On the first

day of adulthood, a subset of adult thrips was reared individually on 9-cm Petri dishes (one adult/Petri dish, eight Petri dishes/strain including control)

to record the adult period and fecundity. To record fecundity, individual bean pods were replaced every 2 days with fresh ones. The collected old

pods were then individually incubated in a new Petri dish for 3 days to record the number of emerging larvae. To study TSWV transmission, a large

subset of larvae (30/plant) were allowed a 72-h inoculation access period on 3-week-old non-infect tomato plants from two di�erent cultivars (one

resistant and susceptible each, 10 plants/cultivar/strain) including non-viruliferous thrips as a control.

and 60◦C for 30 s. Absolute virus copy numbers were estimated

using standards containing known copies of the qPCR-targeted

TWSV coat protein gene. Standards were designed by Custom

Applied Biosystems TaqMan Expression assays (Thermo Fisher

Scientific, Waltham, MA, United States). Tenfold serial dilutions

containing from 1011 to 101 targeted gene copies were prepared

using standards. RNA extracted from non-viruliferous thrips fed

on non-infected tomato leaves was used as a negative control. A

total of three technical replicates were analyzed in all RT-qPCR

assays. All experiments were independently replicated three times.

2.6. Statistical analyses

Data from experimental repeats were pooled and analyzed in

R version 3.6.0. Fecundity data were log-transformed to meet the

assumptions of normality and homogeneity of variance before

analysis using one-way ANOVA. Treatment means were compared

with post-hoc Tukey’s HSD tests using the “dplyr” package

(Wickham et al., 2018). Adult period data and total developmental

time in days (egg to adult) were analyzed using the Kruskal-

Wallis test. The treatment medians were compared with a post-hoc

Dunn’s test. Stagewise developmental time (in days) and TSWV

accumulation in thrips at different developmental stages were

analyzed using a mixed-effect model in the “lme4” package, using

strain and developmental stage as fixed effects and replications as

a random effect (Bates et al., 2015). Similarly, virus accumulation

in plants was analyzed using strains and the resistance status of the

plant (susceptible or resistant) as fixed effects and replications as a

random effect. For the mixed-effect model, treatment means were

compared using the “glht” command in the “multcomp” package

(Hothorn et al., 2008). To assess the functional relationship of

TSWV copy numbers in thrips with infected tissues from which

they acquired the virus and with thrips-inoculated plants used in

transmission studies, regression analysis was performed. Statistical

differences were considered significant at a p-value of <0.05.

3. Results

3.1. Developmental time (egg to adult)

TSWV infection in thrips did not affect the median

developmental time of thrips immediately after virus acquisition,

at the second instar stage, which lasted only 2 days. However,

subsequent developmental stages, from pre-pupa through

adulthood, were significantly affected. Total egg-to-adult (the
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FIGURE 2

(A) Total and (B) stage-wise egg-to-adult developmental time of thrips individually infected with di�erent strains of TWSV: Tom-BL1, Tom-BL2,

Tom-CA, Tom-MX, and non-RB, with non-viruliferous control. Di�erent letters indicate significant di�erences at P < 0.05.

first day of adulthood) developmental time differed significantly

between viruliferous and non-viruliferous thrips [F (5,42) = 32.02; P

< 0.01]. Overall, viruliferous thrips took a significantly longer time

to develop from egg to adult compared to non-viruliferous thrips

(Figure 2A). More specifically, the development of thrips infected

with the Tom-CA strain was significantly slower compared to all

other RB and non-RB strains and non-viruliferous control.

Stage-wise developmental time differed significantly across

strains, especially in the late developmental stages [F (29,206) =

46.2; P < 0.01]. Across all strains and controls, the egg period was

3 days, whereas the first and second instar periods were 2 days

each (Figure 2B). However, at the pre-pupal and pupal stages, all

viruliferous thrips, regardless of the strain, showed significantly

slower development compared to non-viruliferous controls. Across

various strains, thrips infected with the Tom-CA strain took the

longest time to develop from the pre-pupal stage to the pupal stage

compared to thrips infected with other strains and controls.

3.2. Adult period and fecundity

Significant differences were observed in the adult period

between treatments and the control [F (5,42) = 4.06; P = 0.004].

Interestingly, the adult period of both non-viruliferous thrips (18.5

days) and those infected with the non-RB strain (25 days) was

significantly shorter compared to both sympatric (Tom-BL1 32.5;

Tom-BL2 32.5 days) and allopatric (Tom-CA 28.5 days; Tom-MX

31 days) RB strains (Figure 3A). However, the adult period did not

differ among various RB strains.

Consistent with an adult period, the number of offspring,

a measure of fecundity produced by viruliferous and non-

viruliferous thrips, was significantly different across different

treatments [F (5,42) = 5.43; P < 0.006]. The fecundity of thrips

infected with sympatric (Tom-BL1 51; Tom-BL2 65 offspring per

adult) and allopatric (Tom-CA 47; Tom-MX 53 offspring per adult)

RB strains was significantly higher compared to thrips infected

with non-viruliferous (34 offspring/adult) and non-RB strains (43

offspring/adult) (Figure 3B). However, no differences in fecundity

were observed within RB strains.

3.3. TSWV quantification in individual thrips
at di�erent developmental stages

Neonate larvae from the first instar larval stage, which lasted

for 2 days, followed by the first day of the second instar stage,

were allowed to acquire TSWV for 72 h. Therefore, TSWV copy

numbers in the first instar stage were not measured in the middle

of virus acquisition. TSWV copies in thrips infected with Tom-BL1,

Tom-BL2, and non-RB strains were significantly higher than those

infected with Tom-MX and Tom-CA strains at all developmental

stages [F (19,176) = 6.73; P < 0.001] (Figure 4). Of the strains,

the accumulation of the RB strain Tom-CA was the lowest,

especially at the first two time points, followed by the Tom-MX

strain. Interestingly, Bushland RB strains, Tom-BL1 and Tom-BL2,

accumulated at significantly different levels in thrips intermittently

in the second instar and pupal stages when TSWV copies in the

Tom-BL2 strain were significantly higher than those in the non-RB

strain. At the second instar and pre-pupal stages, MX strain copies

were higher than those of the CA strain but not in the subsequent

developmental stages.

3.4. Thrips transmission

As expected, only RB-TSWV strains were able to infect Sw-

5b-resistant tomato plants. However, TSW incidence, symptom

severity, and days required for the first onset of symptoms were

marginally different between strains (Table 1). Of the strains,

TSW disease incidence in tomato plants was highest in both

Bushland RB strains: 90% incidence in a resistant cultivar and

100% in a susceptible cultivar. For both strains, resistant plants

showed TSWV symptoms at 34–35 DPI, whereas susceptible plants

expressed symptoms quickly at 27 DPI. However, TSWV symptom
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FIGURE 3

(A) Adult period and (B) fecundity of thrips individually infected with di�erent strains of TWSV: Tom-BL1, Tom-BL2, Tom-CA, Tom-MX, and non-RB,

with non-viruliferous control. Di�erent letters indicate significant di�erences at P < 0.05.

FIGURE 4

TWSV accumulation across di�erent developmental stages of individual thrips infected with di�erent strains of TWSV: Tom-BL1, Tom-BL2, Tom-CA,

Tom-MX, and Non-RB, quantified using RT-qPCR. Di�erent letters indicate significant di�erences at P < 0.05.

severity was similar for both strains (3–4) in both resistant and

susceptible cultivars. TSWV incidence in Mexican and California

RB strains was 80% in a resistant cultivar, whereas it was 100% in

a susceptible cultivar. However, the times required for symptom

expression in resistant and susceptible cultivars were shorter in the

Mexican strain (31 and 27 DPI) compared to the CA strain (37 and

30 DPI), respectively. While the degree of severity of symptoms did

not vary between resistant and susceptible cultivars for theMexican

strain, it was marginally less severe in resistant plants (3) compared

to susceptible cultivars (5) for the California strain. Finally, TSW

incidence in a non-RB-infected susceptible tomato cultivar was

80%, with a high degree of symptom severity (5).

Significant differences in TSWV copies were observed in plants

infected with different TSWV strains [F (8,81) =38.4; P < 0.001]. All

strains accumulated in significantly higher amounts in susceptible

plants than in resistant plants (Figure 5). Susceptible cultivars

infected with Bushland RB and non-RB strains had significantly

higher TSWV copies than the susceptible plants infected with Tom-

CA and Tom-MX strains. Bushland strain Tom-BL2 accumulated

in significantly higher numbers in resistant plants than all other

RB strains. Regression analysis showed that TSWV copy numbers

in adult thrips were not significantly related to those in TSWV-

infected plant tissues from which thrips acquired the virus (F =

6.12; P = 0.089; r2 = 0.67) (Figure 6A). However, a strong positive
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TABLE 1 Percentage of TSW incidence, symptom severity, and the onset of symptom expression in thrips-transmitted resistant and susceptible plants

infected with five TSWV strains.

TSWV isolates Cultivars % TSW incidence Median TSW severity Days till symptom
expression

Tom- BL1 Resistant 90 4 35

Susceptible 100 4 27

Tom- BL2 Resistant 90 3 34–35

Susceptible 100 4 27

Tom-CA Resistant 80 3 37

Susceptible 100 5 30

Tom- MX Resistant 80 4 31

Susceptible 100 4 27

Non-RB Resistant 0 – –

Susceptible 80 5 25

FIGURE 5

TSWV accumulation in thrips-inoculated tomato plants infected

with di�erent strains of TWSV: Tom-BL1, Tom-BL2, Tom-CA,

Tom-MX, and Non-RB. TSWV was quantified 4 weeks

post-inoculation from the topmost leaf using RT-qPCR. Di�erent

letters indicate significant di�erences at P < 0.05.

correlation was observed between TSWV copy numbers in adults

with those in thrips-transmitted susceptible plants (F = 178.2; P <

0.001; r2 = 0.98) (Figure 6B), but not the resistant ones (F = 2.21;

P = 0.27; r2 = 0.52) (Figure 6C).

4. Discussion

Critical steps in broadening our current understanding of

insect vector-plant pathogen interactions involve investigating how

new strains of generalist viruses adapt to hosts, insect vectors,

and the environment. We found that both sympatric (Tom-BL1

and Tom-BL2) and allopatric (Tom-CA and Tom-MX) novel

resistance-breaking strains of TSWV benefit thrips by prolonging

the adult period—arguably the most consequential developmental

stage of thrips and by increasing fecundity—a major determinant

of the reproductive success of insects in general. WFT-transmitted

resistant and susceptible plants exhibit a higher incidence of

TSW in RB strains compared to non-RB strains. This is the first

extensive study on the transmission biology of TSWV RB strains

and presents novel RB strains-mediated increased fitness of thrips

and incidence of TSW in thrips-transmitted plants as one of the

plausible explanations for the increased prevalence of RB strains

worldwide, besides tremendous selection pressure on TSWV in the

form of Sw-5b-resistant cultivars.

Interestingly, in non-viruliferous thrips and those infected with

non-RB strains, the adult period was significantly shorter, and

fecundity was significantly higher than in thrips infected with RB

strains, regardless of their origin. Our findings partly align with

prior studies, in that TSWV infection was reported to prolong

developmental time (Ogada et al., 2013; Wan et al., 2020) and

increase fecundity (Nachappa et al., 2020). However, because the

non-RB strain in the present study was unable to affect either

of the life history traits, there is a partial contrast to these prior

studies, which appear to have used local or wild-type TSWV strains.

The observed differences could be attributed to differences in

experimental design, hosts, or strains.

Overall, across all strains, TSWV copy numbers were high

in the second instar but declined significantly at the pupal stage,

followed by a slight, non-significant increase at the adult stage.

This is consistent with thrips developmental physiology, in that

TSWV replication in thrips peaked during active feeding and

metabolic stages, second instar larva and adult, as opposed to non-

feeding and metabolically less active stages, pre-pupa and pupa.

TSWV copies in individual thrips varied significantly across strains

and developmental stages. For the most part, this study shows

harmony with previous findings by Linak et al. (2020), in which

TSWV titers in the vector Thrips tabaci were found to be unrelated

to virus titers in the leaf tissue from which they acquired the

virus. Despite drastic variations in copy numbers in thrips adults

(lowest copies in CA and MX strains), TSW incidence was higher

(100%) in RB-infected susceptible plants compared to the non-

RB-infected ones (80%). However, in a resistant cultivar, the TSW

incidence of sympatric strains wasmarginally higher (90%) than the

allopatric ones (80%).
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FIGURE 6

Regression analysis to assess functional relationships between TSWV copy numbers in thrips with those in (A) infected tissues from which they

acquired the virus and thrips-inoculated, (B) susceptible, and (C) resistant plants used in transmission studies.

A significant and consistent positive association between the

frequency of transmission and virus titer was reported in a prior

study by Rotenberg et al. (2009). Similarly, our study showed that

the virus titer in adult thrips was strongly correlated to the virus

titer in thrips-inoculated susceptible plants. For instance, high virus

titers in plants infected with Bushland and non-RB strains were

significantly positively correlated to those in adult thrips. However,

this correlation was significant only in susceptible plants but not

in the resistant ones, possibly due to comparatively lower TSWV

copy numbers in resistant plants. Regardless of the virus copy

numbers, TSW symptoms severity was nearly similar in all RB-

infected resistant and susceptible plants, except for the California

strain, in which symptoms appeared to be marginally more severe

in susceptible as opposed to plants. Furthermore, in all RB strains,

TSW symptoms appeared in susceptible plants a week faster than in

resistant plants, except for the Mexican strain, where the difference

was only 4 days. The fastest symptom development was observed in

susceptible plants infected with a non-RB strain (25 days), possibly

due to the high virus titer in these plants. However, no robust

association of symptom severity with virus titer in infected plants

was observed in other strains.

Several factors have been reported to determine the successful

transmission of TSWV by thrips. At the molecular level, specific

interactions of TSWV proteins such as silencing suppressor

(NSs), nucleocapsid (N), and glycoproteins (GN/GC) with TSWV-

interacting proteins (TIPs) of thrips and host resistance genes of

plants have been documented to facilitate TSWV infection and

movement in plant and insect hosts (Ullman et al., 1993; Hallwass

et al., 2014; Montero-Astúa et al., 2014; Badillo-Vargas et al.,

2019). Furthermore, thrips’ mode of reproduction and sex has

been documented to be one of the major determinants of TSWV

transmission. For instance, arrhenotokous (sexually reproducing)

populations of thrips and males have been reported to be more

efficient at transmitting TSWV than thelytokous (parthenogenetic)

populations and females (Chatzivassiliou et al., 2002; Rotenberg

et al., 2009). Since all thrips used in our study were randomly

selected from a large single-synchronous population, it is unlikely

that either of these parameters would have affected our findings.

Indeed, it would be interesting to understand whether and how

these factors determine the transmission efficiency of RB strains.

The selection pressure imposed by the worldwide deployment

of Sw-5b-resistant tomato and Tsw-resistant pepper cultivars on

TSWV is the single most important factor in the recent global

emergence of resistance-breaking strains worldwide. Our findings

provide novel insights into how the mutually beneficial intimate

association between TSWV and thrips may offer epidemiological

advantage to RB strains through increased vector fitness and

further contribute to a re-emerging pandemic of TSWV. An

integrative analysis of novel RB strains is needed to systematically

investigate molecular mechanisms underpinning TSWV infection,

transmission, and their interactions with cross-kingdom hosts and

to devise sustainable pest management strategies.
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