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Introduction: Metaproteomics is a rapidly advancing field that offers unique 
insights into the taxonomic composition and the functional activity of 
microbial communities, and their effects on host physiology. Classically, data-
dependent acquisition (DDA) mass spectrometry (MS) has been applied for 
peptide identification and quantification in metaproteomics. However, DDA-MS 
exhibits well-known limitations in terms of depth, sensitivity, and reproducibility. 
Consequently, methodological improvements are required to better characterize 
the protein landscape of microbiomes and their interactions with the host.

Methods: We  present an optimized proteomic workflow that utilizes the 
information captured by Parallel Accumulation-Serial Fragmentation (PASEF) MS 
for comprehensive metaproteomic studies in complex fecal samples of mice.

Results and discussion: We show that implementing PASEF using a DDA 
acquisition scheme (DDA-PASEF) increased peptide quantification up to 5 
times and reached higher accuracy and reproducibility compared to previously 
published classical DDA and data-independent acquisition (DIA) methods. 
Furthermore, we demonstrate that the combination of DIA, PASEF, and neuronal-
network-based data analysis, was superior to DDA-PASEF in all mentioned 
parameters. Importantly, DIA-PASEF expanded the dynamic range towards low-
abundant proteins and it doubled the quantification of proteins with unknown or 
uncharacterized functions. Compared to previous classical DDA metaproteomic 
studies, DIA-PASEF resulted in the quantification of up to 4 times more taxonomic 
units using 16 times less injected peptides and 4 times shorter chromatography 
gradients. Moreover, 131 additional functional pathways distributed across 
more and even uniquely identified taxa were profiled as revealed by a peptide-
centric taxonomic-functional analysis. We  tested our workflow on a validated 
preclinical mouse model of neuropathic pain to assess longitudinal changes in 
host-gut microbiome interactions associated with pain - an unexplored topic for 
metaproteomics. We uncovered the significant enrichment of two bacterial classes 
upon pain, and, in addition, the upregulation of metabolic activities previously 
linked to chronic pain as well as various hitherto unknown ones. Furthermore, 
our data revealed pain-associated dynamics of proteome complexes implicated 
in the crosstalk between the host immune system and the gut microbiome. In 
conclusion, the DIA-PASEF metaproteomic workflow presented here provides a 
stepping stone towards a deeper understanding of microbial ecosystems across 
the breadth of biomedical and biotechnological fields.
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Introduction

The characterization of microbial communities has increasingly 
gained attention due to their crucial role for the health across planetary 
ecosystems (Clemente et al., 2012; Prescott et al., 2018). However, our 
understanding of dynamic and multidimensional interactions between 
members of these ecosystems (hosts, bacteria, pathogens), and of the 
resulting functional alterations is still limited. Genomic sequencing 
methods are the most common approaches to studying these 
interactions by means of characterizing the taxonomic composition 
and relative abundance of functional genes. Nevertheless, the presence 
of a protein-coding gene does not always result in its expression under 
any given condition and even transcript levels can only partially predict 
protein levels (Liu et al., 2016). Thus, prediction algorithms are used 
for inferring the functional roles of microorganisms in an ecosystem 
based on genomic or transcriptomic datasets, yet such algorithms 
exhibit limited performance (Mills et  al., 2019; Sun et  al., 2020). 
Moreover, the inference on how changes in the abundance of specific 
taxa affect the functional output of a microbial habitat is unclear given 
the prominent functional redundancy (Fetzer et al., 2015; Tian et al., 
2020). In fact, functional changes in the microbiome underlie gut 
inflammation and xenobiotic treatments without detectable changes in 
the taxonomic composition of the microbiome (Li et al., 2023). To 
overcome these boundaries, mass spectrometry-based proteomics 
applied to the study of hundreds of microbial organisms (termed, 
metaproteomics (Rodriguez-Valera, 2004; Wilmes and Bond, 2004)) 
has emerged as an attractive alternative. Metaproteomics has the 
potential to understand complex host-microbiome interactions as it 
enables the analysis of entire sets of proteins, providing direct insights 
into the identity and functionality of microorganisms present in an 
ecosystem (Stamboulian et al., 2022). However, proteomics acquisition 
methods classically used in metaproteomics have reached their 
theoretical profiling limits (Duan et al., 2022).

The predominant method employed for the acquisition of 
metaproteomic data is data-dependent acquisition (DDA) mass 
spectrometry (MS). DDA generally fragments only the most intense 
peptide ions, rendering the majority of remaining peptides unidentifiable 
(Michalski et  al., 2011). Additionally, accurate quantification is 
challenging, owing to the inconsistent recording of ion intensities along 
the chromatographic profile. Consequently, reproducibility across 
repeated analyses is hampered and a sensitivity bias toward high-
abundance peptides is introduced. These limitations are exacerbated in 

highly complex microbial samples (e.g., feces), which are estimated to 
be  composed of 100 million peptide species (Armengaud, 2023) 
distributed across a very high dynamic range (Duan et al., 2022). To 
overcome these constraints, recent studies have evaluated the 
performance of data-independent acquisition (DIA) mass spectrometry 
(Aakko et al., 2020; Long et al., 2020; Zhao et al., 2022, 2023). Although 
DIA offers reproducibility improvements over DDA methods, spectral 
complexity and sampling efficiency remain challenging (Meier et al., 
2020), particularly in highly complex peptidomes. Consequently, 
improved proteomic acquisition methods with the potential to increase 
the depth and resolution of metaproteomics are needed.

Previously, we  showed how the combination of the Parallel 
Accumulation-Serial Fragmentation (PASEF) technology (Meier et al., 
2015) and data analysis based on deep neuronal networks (Demichev 
et al., 2020), significantly increases the number of proteins quantified 
in mouse tissues (Xian et al., 2022). PASEF incorporates an additional 
ion mobility separation that allows for the differentiation of peptide 
signals that would otherwise be co-fragmented (Meier et al., 2015). 
This results in a more than tenfold increase in MS/MS scan rates 
without loss of sensitivity. Here, we  aimed to investigate whether 
PASEF can optimize metaproteomics in complex microbial samples, 
i.e., in mouse feces.

In this study, we show that a DDA-PASEF-based workflow increased 
peptide identification up to 5 times and significantly improved data 
consistency and quantification reproducibility compared to previously 
published classical DDA (Kolmeder et al., 2016) and DIA (Aakko et al., 
2020) methods. Moreover, we demonstrated that a DIA-PASEF strategy 
sets new profiling standards in metaproteomics by enabling the 
quantification of more proteins than DDA-PASEF while requiring only 
1/10 of peptides. In comparison to previous DDA-based metaproteomic 
studies (Tanca et al., 2017, 2018), DIA-PASEF profiled up to 4 times more 
taxonomic units using 16 times fewer injected peptides and 4 times 
shorter chromatography gradients. Furthermore, DIA-PASEF offered 
comparable taxonomic depth as previous metagenomic studies. When 
applied to a pre-clinical mouse model of neuropathic pain, DIA-PASEF 
enabled the quantification of more than 15,000 protein groups and 
deciphered novel host-microbiome interactions associated with the 
establishment of chronic pain. Taken together, we expect DIA-PASEF to 
shed light on previously unexplored regions of the metaproteome and 
significantly enhance our understanding of microbiological ecosystems.

Materials and methods

Reagents

All reagents were purchased from Sigma-Aldrich (St. Louis, 
Missouri) if not mentioned otherwise. Acetonitrile (ACN) and formic 
acid (FA) were purchased from Fisher Scientific (Hampton, New 
Hampshire; both FA and ACN were liquid chromatography-mass 

Abbreviations: DIA, Data-independent acquisition; DDA, Data-dependent 

acquisition; PASEF, Parallel accumulation serial fragmentation; FDR, False discovery 

rate; LC–MS, Liquid chromatography-mass spectrometry; SNI, Spared nerve injury; 

MBR, Match between runs; MQ, MaxQuant; KEGG, Kyoto Encyclopedia of Genes 

and Genomes; GO-MF, Gene Ontology Molecular function terms; SIgA, Secreted 

immunoglobulin A.
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spectrometry (LC–MS) grade). LC–MS grade water from Sigma was 
used for all solutions. Protease inhibitor was purchased from Roche 
(Complete Ultra Tablets Mini, Roche, Basel, Switzerland).

Animal housing and surgery

In-house bred C57BL/6 J female mice were used. All animal 
experiments were carried out with the approval of the IACUC at the 
University of Vienna and of the Austrian Ministry for Education, 
Science and Research (BMBWF; license number 2021–0.138.925). All 
mice used in this study (four mice in each of the three experimental 
conditions) were group-housed in the same room, with a 12 h light/
dark cycle, and with water and food ad libitum. All mice were weaned 
between 22–24  days after birth. The spared nerve injury (SNI) 
paradigm was used to induce neuropathic pain at 4 weeks of age. Mice 
were anaesthetized using isoflurane (4% for induction first and 2% for 
maintenance in O2). To expose the trifurcation of the left sciatic nerve, 
the skin and underlying biceps femoris muscle were incised. A ligature 
was placed around the common peroneal and tibial nerves with a 7–0 
surgical braided silk (Vömel, Kronberg, Germany) below the 
bifurcation, followed by distal transection of both nerves. A 2 mm 
segment was excised from both nerves to impede regrowth. The skin 
was closed with one surgical clip (AutoClip®, Fine Science Tools, 
Heidelberg, Germany) and disinfected with povidone-iodine 
(Mundipharma, Frankfurt am Main, Germany). For analgesia mice 
were injected with carprofen (0.05 mL/10 g body-weight, Zoetis 
Österreich GmbH, Austria) immediately before surgery and on 
postoperative day 1. The clips were removed on postoperative day 5 
with an AutoClip® remover (Mikron Precision Inc., Biel, Switzerland). 
In SHAM-operated mice, the same surgical procedure was carried out 
as in SNI but without ligating and transecting the branches of the 
sciatic nerve. All operated mice were weighed daily until postoperative 
day 7 and from then on, every second day until postoperative day 14 
by female experimenters only (Sorge et  al., 2014). Of note, the 
selection of which mice were used for SHAM or SNI surgeries was 
random and blinded to their microbiome profile, which was obtained 
only after the analysis of the fecal samples.

Mechanical sensitivity test

The test was performed 3–4 days before surgery (Pre) and on a 
postoperative day 14 (14D) using a dynamic plantar aesthesiometer 
(automated von Frey filament, Dynamic Plantar Aesthesiometer: 
37450–001, Dynamic Plantar Aesthesiometer Touch Stimulator: 
37400–002, Ugo Basile®, Gemonio, Italy). Mechanical force (Force 
Intensity: 10.0 g, Ramp Time: 40s) was applied to the lateral side of the 
plantar hind paw and the withdrawal latency (in seconds) was 
measured five times for each hind paw, with at least a 2-min recovery 
period between each measurement. The test was done only by female 
experimenters (Sorge et al., 2014).

Fecal collection

Mice were placed into 10x10cm boxes covered with a lid for 
15 min. After removing mice from the boxes, feces were collected 

using forceps that were previously cleaned with 70% ethanol between 
each sample. Samples were transferred to precooled 2 mL autoclaved 
tubes (Eppendorf, Hamburg, Germany) and stayed on ice until stored 
at −80°C.

Protein extraction, SP3-assisted protein 
digestion, and peptide clean-up

For protein preparation, 30 mg of fecal samples were mixed with 
200 μL of lysis buffer (5% SDS, 2 M Urea, 50 mM Tris–HCl, Protease 
Inhibitor 1x) and vortexed vigorously for 1 min. Following, samples 
were placed in a Thermomixer (Serial Number: 5382JR638726, 
Eppendorf, Hamburg, Germany) for 15 min at 1,200 rpm and 
70°C. When finished, samples were ultrasonicated using a Bioruptor 
Pico (Diagenode, Seraing, Belgium; program: 15 cycles of 30 s “ON” 
and 30 s “OFF,” frequency level: Low, water temperature: +20°C). 
Afterwards, tubes were centrifuged at 16,000 g for 5 min at room 
temperature. Supernatants were saved in new tubes and submitted to 
a new round of centrifugation. The saved supernatants were stored at 
−80°C until SP3-assisted protein digestion.

For protein clean-up and digestion, a modified version of the 
single-pot, solid-phase-enhanced sample preparation (SP3) method 
from Hughes et  al. was used (Hughes et  al., 2019). Briefly, 50 μg 
protein was taken into a 1.5 mL LoBind tube (Eppendorf, Hamburg, 
Germany), and the sample volume was added up to 50 μL with lysis 
buffer. The fecal sample was subjected to protein reduction (5 mM 
Dithiothreitol, DTT, 30 min incubation at +60°C) and alkylation 
(20 mM Iodoacetamide, IAA, 30 min at room temperature in the 
dark). The remaining IAA in the sample was quenched with the 
addition of DTT to a final concentration of 5 mM. 10 μL of pre-mixed 
Sera-Mag SpeedBead beads (50 mg/mL, Cytiva, Marlborough, 
Massachusetts) were added to 50 μg protein sample. To initiate the 
binding of proteins to the beads, one volume of absolute ethanol was 
added immediately, followed by incubation on a Thermomixer 
(Eppendorf) at 24°C for 5 min with 1,000 rpm agitation. The 
supernatant was removed after 2 min resting on a magnetic rack, and 
the beads were rinsed three times with 500 μL of 80% ethanol. Rinsed 
beads were reconstituted in 50 μL digestion buffer (50 mM ammonium 
bicarbonate, pH 8). Protein digestion was performed with 2 μg of 
sequencing-grade trypsin/LysC (Promega, Madison, United States) 
for 18 h at 37°C with 950 rpm agitation. After digestion, ACN was 
added to each sample to a final concentration of 95%. Mixtures were 
incubated for 8 min at room temperature and then placed on a 
magnetic rack for 2 min. The supernatant was discarded, and the 
beads were rinsed with 900 μL of 100% ACN. Rinsed beads were 
reconstituted in 20 μL LC–MS grade water to elute the peptides. The 
peptide concentration was measured in duplicate using 
NanoPhotometer N60 (Serial number: TG2022, Implen, Munich, 
Germany) at 205 nm. Peptide samples were acidified with FA to a final 
concentration of 0.1% and stored at −20°C until LC–MS/MS analysis.

LC–MS/MS setup

Nanoflow reversed-phase liquid chromatography (Nano-RPLC) 
was performed on a NanoElute system (Bruker Daltonik, Bremen, 
Germany). Peptides were separated with either a 70 min or 130 min 
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gradient on a 25 cm x 75 μm column packed with 1.6 μm C18 particles 
(IonOpticks, Fitzroy, Australia). Mobile solvent A consisted of 2% 
ACN, 98% water, 0.1% FA and mobile phase B of 100% ACN + 0.1% 
FA. For both gradient lengths, the flow rate was set to 400 nL/min for 
the first 2 min and the last 9 min of the gradient, while the rest of the 
gradient was set to 250 nL/min. In the 70 min separation, the mobile 
phase B was linearly increased from 0 to 20% from 3 min to 50 min, 
followed by a linear increase to 35% within 10 min and a steep increase 
to 85% in 0.5 min. Then a flow rate of 400 nL/min at 85% was 
maintained for 9 min to elute all hydrophobic peptides. In the 130 min 
separation, the mobile phase B was linearly increased from 0 to 20% 
from 3 min to 110 min, followed by a linear increase to 35% within 
10 min and a steep increase to 85% in 0.5 min. Then a flow rate of 
400 nL/min at 85% was maintained for 9 min to elute all hydrophobic 
peptides. NanoElute LC was coupled with a hybrid TIMS quadrupole 
TOF mass spectrometer (timsTOF Pro, Bruker Daltonik, Bremen, 
Germany) via a CaptiveSpray ion source. Samples were analyzed in 
both data-independent acquisition (DIA) and data-dependent 
acquisition (DDA) modes coupled with parallel accumulation serial 
fragmentation (PASEF) for methods comparison. The samples used for 
the neuropathic pain characterization (SNI, SHAM and Naive) were 
analyzed in DIA-PASEF. In both acquisition modes, the TIMS analyzer 
was operated in a 100% duty cycle with equal accumulation and ramp 
times of 100 ms each. Specifically, in DDA-PASEF mode (Meier et al., 
2018), 10 PASEF scans were set per acquisition cycle with ion mobility 
range (1/k0) from 0.6 to 1.6, and singly charged precursors were 
excluded. Dynamic exclusion was applied to precursors that reached a 
target intensity of 17,500 for 0.4 min. Ions with m/z between 100 and 
1700 were recorded in the mass spectrum. In DIA-PASEF mode (Meier 
et al., 2020), precursors with m/z between 400 and 1,250 were defined 
in 16 scans containing 32 ion mobility steps with an isolation window 
of 26 Th in each step with 1 Da overlapping for neighbouring windows. 
The acquisition time of each DIA-PASEF scan was set to 100 ms, which 
led to a total cycle time of around 1.8 s. In both DDA- and DIA-PASEF 
modes, the collision energy was ramped linearly from 59 eV at 1/
k0 = 1.6 to 20 eV at 1/k0 = 0.6.

Protein database generation for 
metaproteome analysis

A metagenome-translated protein database (PD1) was 
downloaded from http://gigadb.org/ containing 2.6 million protein 
sequences (Xiao et al., 2015). Due to the large size of the protein 
database, a two-step approach (Jagtap et al., 2013) was applied to 
generate a reduced and sample-specific protein database. Briefly, a 
fecal pooled peptide sample was recorded 10 times using DDA-PASEF 
and a 70 min chromatography gradient. The 10 raw data files were first 
converted into mgf format and then searched against the PD1 and a 
decoy database generated with reversed sequences using X!Tandem 
(Muth et  al., 2010), a search engine integrated into SearchGUI 
(Barsnes and Vaudel, 2018) (Version 4.1.11). Trypsin was specified 
with a maximum of 2 missed cleavages allowed. The search included 
variable modifications of methionine oxidation and N-terminal 
acetylation and a fixed modification of carbamidomethyl on cysteine. 
The mass tolerances of 10 ppm for both precursor and fragment were 
used. The output of the X!Tandem search was further validated in 
PeptideShaker with 1% FDR at PSM, peptide and protein levels 

(Vaudel et  al., 2015). All validated proteins were exported as the 
reduced protein database (PD2) containing 9,750 protein sequences. 
PD2 was further used for the comparison of different workflows. 
Another pooled peptide sample made from Naive, SHAM and SNI 
mice was submitted to a 130 min gradient and analyzed in 
DDA-PASEF mode in 9 replicates. The 9 raw data files were subjected 
to the same aforementioned procedures to generate another reduced 
protein database (PD3) containing 10,859 protein sequences. PD3 was 
further used to analyze the metaproteome of Naive, SHAM and SNI 
mice. Mus musculus reference proteome (PD4) was downloaded from 
Uniprot1 and used to identify host proteins from the fecal samples. To 
avoid misassignment of host- and microbiome-derived peptides, 
we used either PD2 or PD3  in combination with PD4 during the 
comparison of the different workflows and the analysis of neuropathic 
pain samples, respectively. To accurately compare the differences in 
performance across different acquisition modes (DDA- and 
DIA-PASEF) and the different data analysis solutions (MQ and 
DIA-NN), we used the same pooled fecal sample for all experiments 
shown in all figures except the last one. The use of this pooled sample 
prevents sample bias and ensures a generalized sample-independent 
representation of the mouse fecal microbiome.

Data processing using different workflows

DDA-PASEF raw data files were analyzed with MaxQuant 
(version 2.1.3.0) and searched with Andromeda against PD2 and PD4, 
at the same time. The search type was specified as “TIMS-DDA.” The 
minimal peptide length was set to 7 amino acids, and a maximum of 
2 missed cleavages was allowed.

The search included methionine oxidation, asparagine and 
glutamine deamidation and N-terminal acetylation as variable 
modifications, as well as cysteine carbamidomethylation as fixed 
modification; a maximum of 5 modifications per peptide was allowed. 
The “Match between runs” function was checked within a 0.7 min 
retention time window and 0.05 ion mobility window. Mass tolerance 
for peptide precursor and fragments were set as 10 ppm and 20 ppm, 
respectively. The FDR was set to 0.01 at the precursor level and protein 
level. Label-free quantification algorithm with a minimum 1 LFQ ratio 
count was used to quantify identified proteins. The rest of the 
parameters were kept as default.

DIA-PASEF raw data files were analyzed with MaxQuant (version 
2.1.3.0) and the search type was specified as “TIMS MaxDIA.” The 
data were searched against the spectral library generated with the 
DDA-PASEF data search in the MaxQuant workflow mentioned above 
using the Andromeda algorithm. Specifically, the output evidence.txt, 
peptide.txt and msms.txt files were used. The rest of the configurations 
were set as same as the search for DDA-PASEF data.

DIA-PASEF raw data files were also searched in DIA-NN 
(Demichev et al., 2020). DIA-NN (version 1.8.1) was used to process 
DIA-PASEF data in library-free mode with PD2 or PD3 and PD4 to 
generate the predicted spectrum library. A deep learning-based 
method was used to predict theoretical peptide spectra along with 
their retention time and ion mobility. Trypsin/P was used for in silico 

1 https://www.uniprot.org/proteomes/UP000000589
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digestion with an allowance of a maximum of 2 missed cleavages. 
Variable modifications on peptides were set to methionine oxidation 
and N-term acetylation, while N-term methionine excision and 
carbamidomethylation on cysteine were fixed modifications. The 
maximum number of variable modifications on a peptide was set to 
5. Peptide length for the search ranged from 7 to 52 amino acids. 
Aligned with the DIA-PASEF acquisition method, m/z ranges were 
specified as 400 to 1,250 for precursors and 100 to 1700 for fragment 
ions. Both MS1 and MS2 mass accuracy were set to automatic 
determination. Protein inference was set to “Protein names (from 
FASTA)” and the option of “Heuristic protein inference” was 
unchecked. Match-between-run (MBR) was checked for cross-run 
analysis in all analyses performed in this study. RT-dependent 
cross-run normalization and Robust LC (high precision) options 
were selected for quantification.

In addition, the same DIA-PASEF raw data files were processed 
with DIA-NN (version 1.8.1) using an experimental spectrum library 
generated in our lab with several metaproteome studies. The 
experimental library contains microbial and host proteins of in total 
14,711 protein isoforms, 19,153 protein groups and 98,159 precursors. 
Besides the use of the experimental spectrum library, all other search 
parameters were the same as described above for the DIA-PASEF data 
search in library-free mode.

Metaproteome data batch correction and 
normalization

For the neuropathic pain experiment, precursor intensities 
(Normalized Intensity from the DIA-NN main report table) were 
submitted to median normalization and quantile batch correction 
using the proBatch R package (Cuklina et al., 2021). The resulting 
precursor intensities were further processed with the R package, 
DIA-NN,2 to extract and calculate the MaxLFQ (Cox et al., 2014) 
quantitative intensity for all identified peptides and protein groups 
with q-value <0.01 as criteria at precursor and protein group levels.

Taxonomy and function annotation

iMetaLab (Cheng et  al., 2020) (version 2.3.0) was used for 
taxonomy and function annotation. The MaxLFQ peptide data 
(microbial and host) were imported into iMetaLab, and the 
built-in taxonomy database was used for the mapping (Ignore 
blanks below rank: Superkingdom, Unique peptide count ≥3). 
MaxLFQ protein identifications with corresponding intensities 
were imported into iMetaLab for functional annotation (using 
default parameters). The K numbers (KEGG Orthology 
identifiers) of mapped proteins were extracted and analyzed 
online3 to obtain KEGG pathways and their corresponding 
number of mapped targets.

The analysis of the taxon-specific functions was performed using 
Meta4P (Porcheddu et al., 2023). The quantitative table of microbial 

2 https://github.com/vdemichev/diann-rpackage

3 https://www.genome.jp/kegg/ko.html

peptides (i.e., Supplementary Table 2) and the taxonomic annotation 
table (i.e., Supplementary Table 3) were imported into Meta4P. Proteins 
annotated with different function databases were generated via eggNOG4 
using PD2. Taxa-specific KEGG pathways were exported and a total 
number of at least 3 peptides per taxon-KEGG pathway was set as the 
threshold to filter the results.

Taxonomic quantification strategy

The iMetalab’s taxonomy annotation output underwent further 
processing in R, where the following steps were taken to quantify the 
detected taxa in each sample. Firstly, peptides without annotations at 
a specific taxon level (e.g., Species) were removed. Next, taxa with at 
least three unique peptides annotated were retained. The peptide 
intensity in each sample was then extracted based on the retained taxa. 
Peptides that were not quantified in all samples were removed. Finally, 
the log2-transformed intensities of common peptides annotated in the 
same taxon were summed up in each sample. The intensities matrices 
of 14D and Pre in each condition were subjected to paired t-test in 
GraphPad Prism (version: 9.5.0(730)) using the “Benjamini and 
Hochberg” method for multiple comparisons.

Functional quantification strategy

The output of the function annotation in iMetaLab underwent 
further processing in R using the following steps to calculate the 
intensity of each KEGG pathway in each sample using proteins with a 
significance p < 0.005 when comparing 14D versus Pre within each 
condition (paired t-test in Limma package (Ritchie et  al., 2015)). 
Firstly, significantly regulated proteins mapped with KEGG ortholog 
numbers (K numbers) were kept for the following analysis. Secondly, 
different pathways annotated with the same K number were separated 
into rows with duplicated intensities for this entry in all samples, as 
there is no evidence to suggest that the protein belongs to only one 
pathway. Thirdly, the intensities of annotated numbers mapped to the 
same pathway were summed up in each sample. Fourthly, the number 
of mapped K numbers to each pathway in each sample was counted. 
Finally, the intensity of each pathway was normalized by dividing the 
summed intensity by the total K numbers mapped for each pathway 
in each sample. The intensity of each pathway was log2-transformed 
before statistical analysis. The transformed intensities were tested by 
comparing 14D versus Pre in each condition (Naive, SHAM, and SNI) 
using the Limma (Ritchie et al., 2015) R package in a paired manner 
with the “Benjamini and Hochberg” method for multiple comparisons.

Pathway analysis of host proteome

The host protein identifications were analyzed in Metascape 
(Zhou et  al., 2019) (https://metascape.org/, version 3.5.20230101, 
accessed on 2023.02.17) and searched against the Gene Ontology 
Molecular Function database with default settings.

4 http://eggnog-mapper.embl.de/
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Results

Development of a PASEF-based 
metaproteomic workflow

Current metaproteomic methods have reached their identification 
and quantification limits in complex microbial samples with high 
dynamic range (Duan et al., 2022) (e.g., feces). We speculated that the 
extra layers of information accessible by the PASEF technology (Meier 
et al., 2015, 2021) could offer significant improvements similar to what 
we demonstrated in our recent work on complex mouse tissue samples 
(Xian et al., 2022). PASEF creates an extra ion mobility dimension that 
increases the sequencing speed ten-fold and reduces spectral complexity. 
To this end, mouse peptide fecal samples were analyzed on a timsTOF 
Pro mass spectrometer (Bruker Daltonics) equipped with a dual TIMS 
cartridge and using the PASEF acquisition method (Meier et al., 2018) 
(Figure 1). In addition to implementing PASEF using a DDA acquisition 
scheme (DDA-PASEF), we also tested the potential advantages of the 
DIA-PASEF acquisition mode (Meier et  al., 2020), which produces 
nearly complete datasets with peptide features defined in a four-
dimensional data space (retention time, m/z, ion mobility, and 
intensity). Finally, we benchmarked two of the most commonly used 
publicly available software solutions for analyzing multi-dimensional 
datasets generated in DDA- and DIA-PASEF modes, MaxQuant (Cox 
and Mann, 2008) and DIA-NN (Demichev et al., 2022).

Identification and quantification 
performance

To compare the performance of different PASEF acquisition 
modes and data analysis software solutions, we first evaluated the total 
amount of microbial and mouse peptides and proteins, which were 
quantified in 10 technical replicates of a pooled mouse fecal sample 
(500 ng of total peptides per run). The data generated in DDA-PASEF 
mode were analyzed within MaxQuant (DDA-MQ), while DIA-PASEF 
data were analyzed using the TIMS MaxDIA module of MaxQuant 
(DIA-MQ) and DIA-NN. For the latter, we compared the performance 

employing an experimentally generated spectral library (DIA-NN-
libE) to the library-free mode (DIA-NN-libF). In all cases, we set a 
protein and precursor FDR cutoff of 1%, as calculated by each software.

We found that DIA-NN-libE yielded nearly two-fold 
improvements in the number of identified microbial peptides and 
proteins compared to DDA-MQ (Figure 2A). Due to the depth of 
the spectral library generated by DDA-MQ, DIA-MQ identifications 
were clearly limited (Figure  2A). In addition, the amount of 
identified host peptides and proteins were also increased two-fold 
(Figure 2A; Supplementary Table 1). Similar results were obtained 
when using the library-free mode (DIA-NN-libF; Figure 2A). This 
performance boost resulted in a fifteen-fold increase in sensitivity 
as highlighted by a higher detection of microbial and host peptides 
and proteins by DIA-NN-libE using 31.25 ng of peptides compared 
to 500 ng analyzed by DDA-MQ (Figure 2B; Supplementary Table 2). 
Importantly, all tested DIA approaches generated data matrices with 
considerably fewer missing identifications for both the microbial 
and host proteins, compared to DDA (Figure 2C). A comparison 
with representative studies using a classical DIA (Aakko et al., 2020) 
and a classical DDA methods (Kolmeder et al., 2016) revealed that 
the peptide overlap enabled by the DDA-PASEF vastly improved 
compared to classical DDA and reached similar performance as 
previously published classical DIA strategies. Further, DIA-NN-libE 
set new standards of reproducibility compared to the 
aforementioned methods (Figure  2D). This optimization of 
identification performance was not due to differences in FDR 
algorithms used by each software, as shown by a two-species 
strategy (Supplementary Figure 1). On the contrary, DIA-NN-libF 
detected significantly fewer false positive precursors than DDA-MQ 
at any given FDR level (Supplementary Figure 1).

We further critically evaluated the quantification performance of 
the DDA- and DIA-PASEF approaches. DIA-NN-libE quantified 
12,700–28,487 peptides not detected by DDA-MQ at any injected 
amounts tested (Supplementary Figure 2A). Importantly, a detailed 
analysis showed that the quality score distribution of the peptides was 
similar between the ones uniquely identified by DIA-PASEF and the 
ones commonly identified by DDA- and DIA-PASEF 
(Supplementary Figure 2B). Notably, DIA-PASEF detected peptides 

FIGURE 1

Study workflow depicting the two-step strategy with X!Tandem and PeptideShaker, different mass-spectrometry acquisition modes, and data 
processing steps.
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covering over 4 orders of abundance magnitude, displaying the biggest 
gains, compared to DDA-PASEF, in the lower intensity ranges 
(Supplementary Figure 2C). These improvements were accompanied 
by better protein intensity correlations among all ten technical 
replicates in all three DIA-PASEF-based analyses (Figure 2E), which 
was preserved even at the lowest sample amount tested 

(Supplementary Figure 3). As a result of this superior quantification 
accuracy, the number of proteins with a coefficient of variability 
(CV) < 20% significantly increased in DIA-PASEF (61% in DDA-MQ, 
75% in DIA-MQ, and 94.49% in DIA-NN-libE; Figure  2F). In 
summary, our data clearly show the benefits of the fourth data 
dimension unlocked by PASEF highlighting the potential of 

FIGURE 2

Performance evaluation of DDA- and DIA-PASEF analyzed with indicated software solutions. (A) Total amount of microbial and host peptides (dark and 
light blue, respectively) and proteins (dark and light green, respectively) identified in 10 technical replicates of a pooled mouse fecal sample in four 
different workflows. (B) Number of peptide (blue colors) and protein (green colors) identifications in either DDA-MQ or DIA-NN-libE workflows at 
different peptide injection quantities analyzed in triplicates. (C) Data completeness of microbial (upper) and host (lower) protein identifications in 
different workflows across 10 technical replicates. (D) Overlap of peptide identifications across all paired comparisons from 10 technical replicates in 
DDA-MQ and DIA-NN-libE workflows, and comparison with 2 previous studies. (E) Intra-group correlations of 4 workflows across all paired 
comparisons from 10 technical replicates. The dots indicate the Pearson’s correlation for each possible paired comparison of proteins. (F) Coefficient 
of variation (CV) distribution of proteins in the microbiota (upper) and host (lower) across 10 technical replicates in 4 workflows. The red dotted line 
indicates the CV  =  0.2.
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DIA-PASEF for serving as a new state-of-the-art acquisition method 
in metaproteomics.

Taxonomic and functional profiling

We next assessed the performance of DDA-PASEF and 
DIA-PASEF in identifying microbial taxa. Globally, DIA-PASEF 
identified organisms belonging to the four major kingdoms present in 
the mouse gut microbiome (Supplementary Figure 4A). Using a 
cut-off of at least three taxon-specific peptides, DIA-PASEF increased 
the identification performance from 1.48-fold (at the species level) to 
2.26-folds (at the family level) compared to DDA-PASEF (Figure 3A; 
Supplementary Table 3). A detailed view revealed remarkable 
identification gains for several phyla such as Actinobacteria, 
Bacteroidetes, and Firmicutes in addition to fungi and metazoans 
(Figure 3A). DIA-PASEF detected more genera known to constitute 
the core gut microbiome of healthy mice reaching a lower limit of 
0.04% relative abundance, as established by 16S rRNA sequencing 
(Wang et  al., 2019) (genus: Gordonia; Supplementary Table 4). 

Moreover, the peptide coverage was significantly increased for 34 of 
the 35 genera commonly detected by DIA- and DDA-PASEF 
(Supplementary Table 4).

Next, we investigated the annotation of detected proteins to 
functional pathways for both the microbiota and the host. The 
aforementioned improvements in protein quantification reached 
by DIA-PASEF translated to increased numbers of KEGG, COG, 
and NOG functional terms compared to DDA-PASEF (Figure 3B). 
A detailed analysis showed that DIA-PASEF increased the coverage 
of protein groups with general or unknown functions: DIA-PASEF 
enabled the quantification of 485 protein groups annotated with 
COG category R (General function prediction only) and category 
S (unknown function), in comparison to 220 protein groups 
annotated in these two categories with DDA-PASEF 
(Supplementary Table 3). DIA-PASEF data covered 100% of all 
KEGG pathways detected by DDA-PASEF (Figure 3B) and enabled 
the quantification of additional 11 pathways 
(Supplementary Table 5). Moreover, DIA-PASEF offered higher 
coverage in nearly 50% of commonly annotated pathways 
(Figure 3B and Supplementary Table 5).

FIGURE 3

Taxonomic profiling and functional annotations of metaproteomes. We used identified peptides and protein groups from 3 technical replicates (250 ng 
peptide per MS run) in DDA-MQ or DIA-NN-libE workflows. (A) Comparison of DDA-PASEF (lavender) and DIA-PASEF (beige) workflows at different 
taxonomic levels (upper panel: cut-off ≥3 unique peptides per taxon as identified in iMetalab). The zoom-in bar plots show phyla annotated in both 
workflows with their respective peptide counts. (B) Bar plots show the number of microbial proteins annotated using KEGG, COG, and NOG databases. 
The zoom-in lower panel depicts selected KEGG pathways (details in  Supplementary Table S5) with the number of microbial proteins mapped to 
KEGG ortholog identifiers (K numbers). (C) A given example of taxon-function analysis at the family level in comparison to DDA- and DIA-PASEF data 
using Meta4P.
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Of particular interest is the fact that DIA-PASEF increased the 
detection of functions assigned to specific taxonomic families 
(Figure  3C). The number of KEGG entries assigned by peptides 
detected using DIA-PASEF increased for the majority of members at 
all taxonomic ranks (family level in Figure  3C, all other ranks in 
Supplementary Table 6), which highlights the benefits of the workflow.

As for the host biology, DIA-PASEF enabled the characterization 
of 77 unique protein functional categories (Supplementary Table 5), 
as well as an increased number of host proteins associated with 
Gene Ontology Molecular function terms (GO-MF) commonly 
detected by DDA-PASEF (Supplementary Figure 4B and 
Supplementary Table 5).

DIA-PASEF offers novel insights into 
host-microbiome interactions upon 
neuropathic pain

Chronic pain affects an estimated 20% of the world’s population 
(Treede et  al., 2015; Price and Gold, 2018). Nevertheless, current 
therapies are ineffective for many patients and exhibit significant side 
effects (Price and Gold, 2018). Initial studies utilizing 16S rRNA 
sequencing showed changes in the gut microbiome composition 
during the onset and regulation of chronic pain in humans and animal 
models (Morreale et al., 2022), suggesting the gut microbiome as a 
potential target for novel treatments. However, our knowledge is 
scarce and a thorough assessment of functional alterations of the gut 
microbiome associated with chronic pain is awaiting.

We set out to test our DIA-PASEF metaproteomic workflow in 
the validated spared nerve injury (SNI) mouse model of neuropathic 
pain (Decosterd and Woolf, 2000). We collected fecal samples from 
four aged-matched SNI, four SHAM (surgery without nerve injury), 
and four Naive female mice before (Pre) and 14 days (14D) post-
surgery covering the critical period of chronic pain onset (Cobos 
et al., 2018; Segelcke et al., 2021) (Figure 4A). Analysis of mouse 
behaviours confirmed the expected development of neuropathic pain 
as indicated by mechanical allodynia (Cobos et  al., 2018) (i.e., 
hypersensitivity to an innocuous tactile stimulus to the affected hind 
paw) in SNI but not in SHAM mice (Supplementary Figure 5). In 
total, our DIA-PASEF workflow detected 81,378 peptides 
corresponding to 12,239 and 2,267 microbial and mouse protein 
groups, respectively (Figure  4A; Supplementary Table 7). 
We quantified 29 phyla, 45 classes, and 119 species with at least 3 
peptides per taxon (Supplementary Figure 6A and 
Supplementary Table 8). A comparison to two previously published 
classical DDA mouse gut metaproteomic studies (utilizing 16 times 
more injected peptides, and 4 times longer chromatography gradients 
per run (Tanca et  al., 2017, 2018)), showed the ability of our 
DIA-PASEF workflow to profile up to 4 times more taxonomic units 
(Supplementary Figure 6B). Additionally, we  harnessed a recent 
compilation of 2,446 global mouse gut metagenomes (Beresford-
Jones et  al., 2022) as a reference for microbiota abundance. 
Remarkably, DIA-PASEF exhibited high sensitivity and detected 
species with a mean abundance of 0.003 (when using the cutoff of 3 
species-specific peptides, i.e., Alistipes indistinctus; 
Supplementary Table 4).

From the taxonomic point of view, we revealed that the bacterial 
classes Actinobacteria and Gammaproteobacteria were increased 

during neuropathic pain in SNI animals at 14D (Figure  4B; 
Supplementary Table 9). Besides taxonomy, metaproteomics facilitates 
insights into host-microbiome interactions. To reveal functional 
changes in host-microbiome interactions upon nerve injury, 
we  investigated proteins and their association with biological 
pathways. Pathway analysis using KEGG terms showed significant 
enrichment of distinct microbial pathways in each of the three 
experimental conditions when comparing 14D with “Pre” data 
(Figure 4C; Supplementary Table 9). With respect to the functional 
changes in the gut proteome of the host (i.e., in mice), there was only 
limited overlap across all three conditions; instead, we observed rather 
quite specific pathway alterations (Supplementary Figure 7A): while 
SNI animals exhibited upregulation of processes related to the 
immune response of the gut (Figure  4D), in SHAM animals the 
repertoire of altered proteins was distinct, and the extent of observed 
changes was lower except for the increase of several major urinary 
proteins (Supplementary Figure 7B). Notably, unsupervised clustering 
of protein intensities “Pre” surgery strongly suggests that observed 
condition-specific alterations were not due to baseline gut proteome 
differences between the mice (Supplementary Figure 7C; importantly, 
the mice were randomly assigned to the three experimental conditions 
before the surgeries, please see Methods for details). Taken together, 
our results provide a stepping stone for follow-up interventional 
studies investigating the mechanistic relevance of here discovered 
host-microbiome alterations for neuropathic pain.

Discussion

We present a novel metaproteomic workflow utilizing PASEF 
technology, as well as deep neural network-based data analysis offered 
by DIA-NN. The combination of both elements yielded very 
significant improvements compared to previous metaproteomic 
workflows and facilitated, for the first time, the global assessment of 
host-microbiome interactions in a mouse model of neuropathic pain.

We hypothesized that the features of the PASEF technology would 
be especially advantageous in a sample with high dimensionality like 
the fecal microbiome, where few species represent more than 80% of 
the total abundance (Duan et al., 2022). The sequential release of ion 
packages trapped in the tunnel of the TIMS mobility analyzer together 
with the synchronization of the quadruple selection increases 
sensitivity and reduces the complexity of spectra generated by PASEF 
(Meier et al., 2015). Accordingly, we show that the reproducibility of 
detection between samples offered by DDA-PASEF doubled compared 
to classical DDA approaches and even matched the performance of 
classical DIA (Aakko et al., 2020). Adding a DIA mode to the PASEF 
scheme enabled us to even further increase the number of peptides 
and proteins quantified in comparison to DDA-PASEF. These gains 
became overtly evident in peptides at the lower abundance range, a 
fact that will greatly improve the detection limits of current 
metaproteomic workflows (Duan et al., 2022). The CScore distribution 
of the peptides was similar between the ones uniquely identified by 
DIA-PASEF and the commonly identified by DDA- and DIA-PASEF, 
which establishes high confidence in identification gains enabled by 
DIA-PASEF. Notably, DIA-PASEF reached similar or even better 
taxonomic depth than previous large-scale mouse metagenomic 
studies (using 16S rRNA). Upcoming DIA-PASEF schemes (Szyrwiel 
et al., 2022; Distler et al., 2023; Skowronek et al., 2023) as well as other 
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DIA data analysis tools (Zhang et  al., 2023) have the potential to 
further advance the impact of PASEF on metaproteomics that 
we pioneered in this study.

DIA-PASEF achieves a nearly complete record of all peptide 
fragments (Meier et al., 2020). Despite the significant improvements 
facilitated by DIA-PASEF, only 31,957 out of 66,748 microbial 
peptides (47%) identified during the analysis of the neuropathic 
pain samples were taxonomically annotated highlighting a 
limitation in the depth of currently available taxonomic databases. 
In addition, a large amount of peptide spectra likely remains 
unidentified. Nonetheless, this information is stored in very 
comprehensive digital MS/MS datasets. Thus, our workflow offers 

the possibility to interrogate these data in the future by either using 
continuously improved microbiome-based databases or emerging 
AI-based algorithms. The use of these datasets in the metaproteomic 
field will offer extra advantages: community-shared data resources, 
optimization in the utilization of valuable microbiome samples 
(e.g., clinical human samples), and reduced animal experimentation 
for hypothesis testing.

The taxonomic and functional depths achieved by DIA-PASEF 
allowed us to directly interrogate, for the first time, the functional 
alterations in the gut ecosystem during neuropathic pain. Our findings 
suggest that Actinobacteria and Gammaproteobacteria are increased 
upon neuropathic pain in SNI animals. These data are in line with 

FIGURE 4

Host-microbiome changes in the mouse gut in a preclinical mouse model of neurophatic pain (SNI). (A) Top: Experimental workflow indicating the 
three experimental groups and the times of fecal sampling, surgery (i.e., nerve-injury), and behavioural assessment (for details, please see Methods). 
Bottom: Peptide and protein identifications in both the microbiota and the host using DIA-PASEF in all three experimental groups (Naive, SHAM, and 
SNI). (B) The abundance of the two indicated bacterial classes that are specifically up-regulated in SNI mice at 14D post-surgery (*q  <  0.05; paired t-test 
with Benjamini-Hochberg correction for multiple comparisons). (C) Significantly altered KEGG pathways of the microbiome in all three experimental 
groups (*q  <  0.05, **q  <  0.01). (D) Expression patterns of 15 selected host proteins (selected based on p  <  0.005, pair-wise comparison 14D versus Pre in 
SNI) in all three experimental conditions.
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previous genomic findings in SNI mice (Hua et  al., 2021) and 
interstitial cystitis human pain syndrome (Braundmeier-Fleming 
et al., 2016).

Far beyond the extent of previous taxonomic studies, we detected 
an upregulation of the microbial KEGG pathway “folate biosynthesis” 
exclusively upon nerve injury. Folate is produced in the murine gut by 
several bacterial taxa including Actinobacteria (Engevik et al., 2019), 
and its deficiency has been associated with a greater risk of peripheral 
neuropathy in a retrospective cohort of more than 500,000 people 
(Taverner et al., 2019). Remarkably, Botez et al. (1978) showed an 
improvement in clinical and electrophysiological measurements of 
five patients with polyneuropathy after 9–39 months of folate therapy. 
Therefore, the functional insights offered here might point towards an 
endogenous mechanism, by which the gut ecosystem aims at 
ameliorating neuropathic pain. This is an exciting hypothesis that may 
open new therapeutical avenues harnessing folate supplementation as 
already implemented for diverse autoimmune diseases (Mölzer et al., 
2021). Folate was reported to stabilize and increases the abundance of 
Treg lymphocytes in the colon (Mölzer et al., 2021). Interestingly, Treg 
lymphocytes can alleviate chronic neuropathic pain by inhibiting the 
Th1 response via CD4+ helper cells (Bethea and Fischer, 2021). 
Emerging clinical evidence proposes an intricate interplay between 
the gut microbiome, neuroimmune signalling and neuropathic pain 
(Ustianowska et al., 2022), e.g., by influencing the balance between 
pro-inflammatory and anti-inflammatory T cells (Ding et al., 2021).

In addition to the potential role of bacterial folate production, 
we  also discovered alterations of several host protein complexes, 
exclusively in SNI animals. For example, those known to be involved 
in the crosstalk between the host immune system and the gut 
microbiome. We observed an upregulation of two components of the 
Major Histocompatibility Complex II (MHC-II). MHC-II contributes 
to the maturation of B cells via the presentation of exogenous bacterial 
antigens and the production of secreted IgA (SIgA) (Jiang et al., 2019). 
Dysregulation of the IgA-microbiota axis affects multiple pathologies 
with an inflammatory component (Abokor et al., 2021), but its link to 
pain syndromes is unknown. Notably, we  observed a significant 
upregulation of the Polymeric Immunoglobulin Receptor in SNI 
animals at 14D. Polymeric Immunoglobulin Receptor represents one 
of the two proteins that are necessary for the secretion of IgA from gut 
mucosal plasma cells into the gut lumen where it contributes to 
controlling the abundance of commensal microbiota (Weis and Round, 
2021). A detailed analysis of our data shows that both the 
immunoglobulin J chain (J chain), also being part of this secretory 
complex, as well as IgA tend to be upregulated in SNI animals, even 
though they did not pass our statistical cutoff (Uniprot IDs: P01592 
and P01878 in Supplementary Table 10). Furthermore, we observed a 
significant increase in Gammaproteobacteria in SNI mice. In this 
context, it is noteworthy that Gammaproteobacteria are known to 
produce gut inflammation in mice thereby triggering an IgA-dependent 
immune response via activation of B cells (Mirpuri et al., 2014). Thus, 
our findings open new avenues for future mechanistic studies aimed at 
deciphering the role of these microbiome-immune pathways for 
chronic pain. Besides, our data revealed prominent functional changes 
occurring in the gut of age-matched Naive mice over the two-week 
experimental period, which highlights the need to adequately control 
for purely age-induced changes in microbiome studies by including 
Naive non-treated mice.

In summary, we present the valuable potential of DIA-PASEF to 
provide in-depth and novel insights into host-microbiome interactions 
with a significant impact on our understanding of microbiological 
ecosystems across diverse biology disciplines.
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SUPPLEMENTARY FIGURE 1

Identification performance of DIA-NN and MaxQuant software. Precursor 
identification numbers are plotted against the FDR, estimated using a two-
species library method, searching the data against both the microbial protein 
database (PD2) and the A. Thaliana proteome (UP000006548). Each point in 
the graph corresponds to a decoy (A. Thaliana) precursor with the x-axis 
reflecting its estimated FDR and the respective score threshold and the y-axis 
representing the number of target microbial precursors at this threshold.

SUPPLEMENTARY FIGURE 2

Comparisons of peptide identifications. (A) Venn diagrams show the 
unique and overlapped number of identified microbial peptides between 

the DIA-NN-libE and the DDA-MQ workflows, at increasing amounts of the 
injected peptides. (B) CScore (the score used to calculate precursor 
q-value in DIANN) distribution (histogram, 30 bins) of peptides uniquely 
identified in DIA-PASEF workflow (red) and commonly identified in DDA- 
and DIA-PASEF workflow (gray). (C) Left: Dynamic range of peptides 
uniquely identified using DIA-NN-libE (red symbols) or shared with DDA-
MQ (grey symbols), when 31.25 ng of peptides were injected. Right: 
Number of detected peptides in each intensity quarter either exclusively 
identified using DIA-NN-libE (red-bordered boxes) or shared with DDAMQ 
(grey-bordered boxes).

SUPPLEMENTARY FIGURE 3

Correlation plots between 3 technical replicates at the lowest peptide quantity 
tested when using the DDA-MQ (A) and the DIA-NN-libE (B) workflow.

SUPPLEMENTARY FIGURE 4

(A) Hierarchical classification of annotated taxonomy from Unipept using DIA-
NN-libE data. (B) Top 30 common GO-MF (Gene Ontology-Molecular 
Function) enriched in the host proteome (analyzed by Metascape using a cut-
off of 3 proteins per function and an adjusted p-value < 0.01).

SUPPLEMENTARY FIGURE 5

Mechanical sensitivity tests of SNI mice (A) and SHAM mice (B) before (Pre) 
and after surgery (14D). Each data point on the left side of both graphs 
corresponds to the ratio of ipsilateral (operated) and contralateral 
(nonoperated) paw values of individual mice (two-tailed paired t-test; N = 4 
mice/condition). The right side of both graphs shows the mean (SNI = 0.702, 
SHAM = 0.031) and individual differences at Pre and 14D with 95% 
confidence interval.

SUPPLEMENTARY FIGURE 6

(A) Taxonomic annotations in all three conditions at 6 taxa levels. Cutoff: at 
least 3 unique peptides per taxon (as identified by iMetalab). (B) Taxonomic 
comparison between our study using DIA-PASEF and two published studies 
using classical DDA. Peptide sequences of two published studies were 
retrieved from PRIDE using the identifiers and then subjected to iMetalab for 
taxonomic annotation (cutoff: at least 3 peptides per taxa). In the case of 
PXD004911 only peptides identified from fecal samples (but not caecal 
contents) were used for the comparison.

SUPPLEMENTARY FIGURE 7

Differential expression in the host proteome. (A) Shared and unique numbers 
of regulated host proteins after pairwise comparison (14D versus Pre) in each 
condition (p-value < 0.005). (B) The expression patterns of 32 selected host 
proteins (selected based on p-value < 0.005, pair-wise comparison, 14D 
versus Pre in SHAM) in all three experimental groups. The color code indicates 
the average ratio (14D/Pre) of each host protein. (C) PCA analysis of the 
protein intensities quantified in the feces of Naive, SHAM, and SNI mice before 
the surgery.
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