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Background: Early life determinants of the development of gut microbiome 
composition in infants have been widely investigated; however, if early life 
pollutant exposures, such as tobacco or mercury, have a persistent influence 
on the gut microbial community, its stabilization at later childhood remains 
largely unknown.

Objective: In this exposome-wide study, we  aimed at identifying the 
contribution of exposure to tobacco and mercury from the prenatal period 
to childhood, to individual differences in the fecal microbiome composition 
of 7-year-old children, considering co-exposure to a width of established 
lifestyle and clinical determinants.

Methods: Gut microbiome was studied by 16S rRNA amplicon sequencing 
in 151 children at the genus level. Exposure to tobacco was quantified 
during pregnancy through questionnaire (active tobacco consumption, 
second-hand smoking -SHS) and biomonitoring (urinary cotinine) at 
4  years (urinary cotinine, SHS) and 7  years (SHS). Exposure to mercury was 
quantified during pregnancy (cord blood) and at 4  years (hair). Forty nine 
other potential environmental determinants (12 at pregnancy/birth/infancy, 
15 at 4  years and 22 at 7  years, such as diet, demographics, quality of living/
social environment, and clinical records) were registered. We used multiple 
models to determine microbiome associations with pollutants including 
multi-determinant multivariate analysis of variance and linear correlations 
(wUnifrac, Bray-Curtis and Aitchison ß-diversity distances), single-pollutant 
permutational multivariate analysis of variance adjusting for co-variates 
(Aitchison), and multivariable association model with single taxa (MaAsLin2; 
genus). Sensitivity analysis was performed including genetic data in a subset 
of 107 children.
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Results: Active smoking in pregnancy was systematically associated with 
microbiome composition and ß-diversity (R2 2–4%, p  <  0.05, Aitchison), 
independently of other co-determinants. However, in the adjusted single 
pollutant models (PERMANOVA), we did not find any significant association. 
An increased relative abundance of Dorea and decreased relative abundance 
of Akkermansia were associated with smoking during pregnancy (q  <  0.05).

Discussion: Our findings suggest a long-term sustainable effect of prenatal 
tobacco exposure on the children’s gut microbiota. This effect was not found 
for mercury exposure or tobacco exposure during childhood. Assessing the 
role of these exposures on the children’s microbiota, considering multiple 
environmental factors, should be further investigated.

KEYWORDS

second-hand smoke, mercury, children, gut microbiota, birth cohort, 16S rRNA, 
diet, smoking during pregnancy

1 Introduction

Exposure to tobacco smoke and mercury during critical 
developmental stages poses significant threats to children’s health 
(Peterson and Hecht, 2017). During pregnancy,  tobacco smoke is 
responsible for adverse outcomes in the offspring, such as impaired 
fetal development, heightened risk of obesity and cardiovascular 
diseases, compromised respiratory function, and increased 
vulnerability to conditions, such as asthma. Second-hand tobacco 
smoke (SHS) exposure during childhood has been related to 
asthma and other upper and lower respiratory illnesses, middle ear 
disease, and even syndrome of sudden infant death. For these 
reasons, there are strong recommendations to reduce children’s 
tobacco exposure (Jenssen et  al., 2023). Mercury exposure, 
particularly in children, poses risks to neurological, nephrological, 
and immunological functions (Ruggieri et al., 2017), with potential 
consequences for neurodevelopment, cognitive abilities, and motor 
skills (US EPA O, 2015; Nutrition C for FS and A, 2023).

The intestine, host to a myriad of microbes, stands as a critical 
organ for metabolizing toxicants (Claus et  al., 2016; National 
Academies of Sciences Engineering and Medicine, 2018; Koontz et al., 
2019). While the diversity, structure, and functional potential of the 
intestinal microbiome are anticipated to undergo alterations due to 
toxicant exposure such as tobacco and mercury (Jin et  al., 1987; 
Rosenfeld, 2017; Tsiaoussis et al., 2019), there is a notable scarcity of 
studies exploring these dynamics in humans, particularly in the 
context of children. Alterations of the gut microbiota in several animal 
models following exposure to mercury have been described including 
enrichment in microorganisms resistant to mercury and multiple 
antibiotics (Lloyd et  al., 2016). The main mechanisms by which 
smoking affects the gut microbiota include the following: raising the 
pH of the intestinal environment, inducing chronic low-grade 
inflammation or inflammation-related diseases by inducing an 
increased abundance of proinflammatory bacteria, and promoting 
oxidative stress. Limited evidence on the impact of maternal smoking 
on the infant gut microbiota and its association with child overweight 
has been published (McLean et al., 2019).

Investigating the intricate associations between these exposures 
and the child gut microbiota is a complex task, which is exacerbated 

by the often-overlooked influence of various determinants, 
including lifestyle factors, and genetic predispositions. Previous 
reports emphasized the importance of day care attendance, 
household exposures (such as siblings or pets), or adherence to 
Mediterranean diet (Stewart et al., 2018; Barcik et al., 2020; Amir 
et al., 2022; Christensen et al., 2022; de Franchis et al., 2022). In 
addition, child body mass index (BMI) has been associated with 
their gut microbiota (Bai et al., 2019; Vander Wyst et al., 2021), 
whereas the risk of asthma could be related to the microbiome 
maturation along the first year of life (Stokholm et  al., 2018). 
Additionally, mother BMI during pregnancy was also considered 
for its possible role as a risk factor for overweight and obesity 
across childhood (Voerman et al., 2019).

The human gut microbiota undergoes its most significant changes 
in infancy, from birth to the age of 3 years. Afterward, it is generally 
considered to be relatively stable over time (De Filippo et al., 2010; 
Hollister et al., 2015; Nakayama et al., 2015; Lundgren et al., 2018; 
Stewart et al., 2018; Zhong et al., 2019; Mesa et al., 2020; Yee et al., 2020; 
Ronan et al., 2021; Xie et al., 2021; Wernroth et al., 2022). Few studies 
have analyzed the persistent influence of early-life determinants on the 
composition of the gut microbiota along childhood, which is defined 
as the period of 3–11 years. It was suggested that breastfeeding, 
antibiotics use, having pets at home, older siblings, and DIETARY 
LIFESTYLE BY dietary intake (such as fiber and total fat consumption) 
could influence the child microbiome (Laursen et al., 2015; Nielsen 
et al., 2018; Savin et al., 2018; Wernroth et al., 2022; Panzer et al., 2023). 
In addition, the environmental pollutants are other possible 
determinants of child gut microbiota even less studied (Jin et al., 1987; 
National Academies of Sciences Engineering and Medicine, 2018; 
Iszatt et al., 2019; Koontz et al., 2019; Tsiaoussis et al., 2019).

Among all of these environmental pollutants, evidence of 
exposure to tobacco and mercury in children studied as part of the 
INMA cohorts in Spain highlights the importance of studying the 
impact of these pollutants on the gut microbiota of children. Based 
on the recent reports, levels exceeding the cotinine level equivalent 
to serum cutoff value of minor second-hand smoker (0.1 ng/mL) 
and the mercury level equivalent to the current US Environmental 
Protection Agency reference dose (5.8 μg/L of MeHg in whole 
blood) were detected. At 4 years old, INMA children were exposed 
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to second-hand smoke (SHS) at home (21.6%) and elsewhere 
(47.1%) based on parental reports (Aurrekoetxea et al., 2016). In 
addition, 28.2% of children, as reported by parents to have no 
regular exposure to second-hand smoke (SHS), exhibited 
quantifiable urinary cotinine (UC) values. Among children from 
the INMA Valencia Cohort, a region close to the cohort studied in 
this article, 24% at birth and 19% at 4 years old exhibited mercury 
concentrations surpassing the threshold defined by the World 
Health Organization’s Provisional Tolerable Weekly Intake 
proposed by WHO (Llop et al., 2014) (i.e., 2.5 μg/g of body weight 
per week in cord blood and 1 μg/g in hair).

On the other hand, the role of host genetics in determining gut 
microbiome composition has been discussed (Hall et  al., 2017; 
Rothschild et al., 2018). Recently, some microbiome-associated human 
genetic variants that could correlate with the relative abundance of 
microorganisms at the strain level were described (Markowitz et al., 
2022). Interestingly, a functional FUT2 gene encodes alpha1,2-
fucosyltransferase II that is responsible for the fucosylation of mucosal 
surfaces of the gut. It lately described the association of the lack of a 
functional FUT2 gene in children with infant microbial colonization 
and metabolic activity (Thorman et al., 2023).

In this study, we leveraged the in-depth longitudinal, phenotypic, 
and genotypic information available in children from the INMA-
Sabadell birth cohort to address these research gaps. We evaluated the 
influence of tobacco smoke and mercury environmental exposures 
during pregnancy and childhood on diversity and genus abundance 
of the gut microbiome of 7-year-old children, considering other 
important early life determinants listed above. The wealth of data on 
the exposure assessment side and the gut microbiota profiling data 
generated makes this project a unique opportunity to investigate early 
life pollutant toxicity.

2 Materials and methods

2.1 Study population

A population-based birth cohort was established in the city of 
Sabadell (Catalonia, Spain) as part of the INMA Project (Guxens et al., 
2012). Between July 2004 and July 2006, 657 pregnant women who 
visited the primary health center of Sabadell for an ultrasound in the 1st 
trimester were recruited. Inclusion criteria were: age at least 16 years, 
intention to give birth in the reference hospital, no problems in 
communication, singleton pregnancy, and no assisted conception. 
Informed consent was signed, and the study was approved by the ethics 
committee of the Institut Municipal d’Investigacio Medica (IMIM), 
Barcelona, Spain.

Among 657 mother–infant pairs initially enrolled, 622 
participated in the follow-up and conducted at the time of delivery. 
The mother–child pairs were later followed in the third trimester of 
pregnancy, at delivery, and at ages of 6 months and 1, 4, and 7 years 
(participation rate in the last follow-up, 76%). As part of the 7-year 
follow-up, 154 out of 473 children (32.6%) provided stool samples and 
were included in the present analysis. A total of 152 children yielded 
good quality microbiome sequencing data, but only fecal microbiome 
data from 151 children with the required determinant information 
were further analyzed. A graphic representation of the workflow is 
presented in Figure 1.

2.2 Determinants and pollutant exposures

We considered all the variables collected as part of the INMA 
study from pregnancy to childhood and filtered them based on 
previous associations in the literature, prevalence, repeat measures 
(for diet and pollutants), missingness, and collinearity, resulting in 69 
variables to be  included in the association analyses (Figure  2), 
pertaining to six categories: pollutants (14 exposure variables), diet, 
demographics, quality of living/social environment, clinical records 
(49 non-genetic determinants), and genetics (6 genetic determinants). 
Full description of the variables is presented in Supplementary File 1; 
Table S1.

Some of them were related to birth and early life conditions, such 
as cesarean section delivery, predominant breastfeeding, siblings at 
birth, having pets at 14 months, attending day care center at age of 
2 years, and maternal BMI during pre-pregnancy and pollutants. 
Others were related to factors at age of 4 or 7 years (number of 
servings/day of animal protein, dairy products, fruits and vegetables, 
fiber foods or sweet products, physical activity, asthma, vaccination, 
viral infections, and pollutants— mercury and tobacco smoke 
exposure sections) or specifically at 7 years of age [grade of adherence 
to Mediterranean diet measured by the Mediterranean Diet Quality 
Index (Serra-Majem et al., 2004)—KIDMED index, children BMI, and 
siblings]. General conditions such as sex, ethnic origin, and maternal 
education level were also collected.

Data for each non-genetic determinant and pollutant exposures 
were available for 151 children. In the case of missing values, the value 
was imputed, as explained in the statistical analysis section. Original 
genetic data were available for a subset of 107 children. The very 
specific dietary data obtained from the mothers (fish intake at 
32 weeks of pregnancy), available for 148 children, was used only for 
adjustment in one specific mercury analysis, avoiding 
multiple imputation.

2.2.1 Determinants
The individual determinants were reported by clinicians or available 

during face-to-face interview. Ethnic origin, maternal education 
(categorized as low-medium or high), and the presence of siblings at 
birth were obtained through questionnaires administered to the 
mothers during pregnancy, while the type of delivery (natural birth or 
cesarean delivery) was reported by the mother at birth. The fish intake 
at 32 weeks of pregnancy was obtained by face-to-face interview. Pet 
ownership, breastfeeding practices, and day care attendance at the age 
of 2 years were reported by the mothers in the questionnaires 
administered at 14 months and at 2 years, respectively. Predominant 
breastfeeding, defined as breast milk being the main source of 
nourishment accompanied by certain liquids, was categorized in: no 
predominant, only in the first 16 weeks, or for a longer period.

Dietary variables were extracted from a semi-quantitative food 
frequency questionnaire of 46 food items completed by parents at the 
age of 4 and/or 7 years. This questionnaire was adapted from a 
validated, child-specific food frequency questionnaire (Vioque et al., 
2019). We evaluated animal protein foods, dairy products, fruits and 
vegetables, high-fiber foods, and sweet products as servings per day. 
Animal protein foods, dairy products, fruits and vegetables, high-fiber 
foods, and sweet products are expressed as g/day. We also evaluated a 
dietary score, representative of healthy eating, the Mediterranean Diet 
Quality Index for children and adolescents (KIDMED index), based 
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on the principles of Mediterranean dietary patterns. The KIDMED 
index includes consumption of oil, fish, fruits, vegetables, cereals, nuts, 
pulses, pasta or rice, dairy products, and yogurt, which score positively 

and questions related to consumption of fast food, baked goods, 
sweets, and skipping breakfast which score negatively using a 
previously validated questionnaire (Štefan et al., 2017).

FIGURE 1

Graphic representation of the gut microbiome association analysis workflow in the Sabadell-INMA cohort (Sabadell, Catalonia, Spain). Data for gut 
microbiome at the genus level, exposure to pollutants (tobacco and mercury) and possible non-genetic determinants (clinical records, demographics, 
diet, and quality of living) were available for 151 children and were used in the main association analysis. For pollutant exposure and non-genetic 
determinants, missing data were imputed and included in the β-diversity association study, whereas the original data were included in the genus 
association study. When using imputations, an association was considered significant when a p-value <0.05 was observed in more than 17 out of 20 
imputations. Sensitivity analysis was performed including genetic data of a subset of 107 children. A p-value or q-value (adjusted by confounders)  
<0.05 was considered, as appropriate. Full description of the statistical analysis is available in the materials and methods section.

FIGURE 2

Early life and childhood determinants and pollutant exposures investigated in this study. In the pie chart, the number of variables each period and type 
are indicated. Data for each pollutant exposure and non-genetic determinant, or the imputed value in the case of missing value, were available for 151 
children (see statistical analysis section). Original data of fish intake at 32 weeks of pregnancy were also available for 148 children. Original genetic data 
were available for a subset of 107 children. Full description of the variables is presented in Supplementary File 1; Table S1.
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We measured children’s weight and height at the age of 7 years 
and calculated sex-specific and age-specific z-score body mass 
index, and overweight and obesity were defined following the 
World Health Organization standards (WHO, 2023). Obese and 
overweight children were analyzed together and compared with 
normal weight individuals. Ethnic origin, based on questionnaire 
data, was reclassified in the two groups: white European children 
(both parents white Europeans) and others (at least one parent not 
white European).

Genetic information was obtained from cord blood using the 
Omni1 Quad array from Illumina, as previously described 
(Bustamante et al., 2016). Information about the fucosyltransferase 2 
(FUT2) gene was also available from the genetic data (Bustamante 
et  al., 2016); children were classified as homozygous or 
non-homozygous for the “non-secretor” allele (AA) based on the 
polymorphism rs601338 G > A at the fucosyltransferase 2 (FUT2) 
gene. Finally, FUT2 rs601338 polymorphism was genotyped. The first 
five principal components of the genetic data were used in the 
sensitivity analysis.

2.2.2 Tobacco smoke exposure
Tobacco smoke exposure was assessed through two 

complementary methods, by biomonitoring (cotinine measurements) 
and harmonized questionnaires, as previously evaluated (Vives-Usano 
et  al., 2020). In brief, both were used for pregnant mothers and 
children of 4 years old, while only questionnaires were used for 
children of 7 years old. Active maternal smoking during pregnancy 
and exposure to SHS during pregnancy or childhood can be assessed 
through the combination of both methods.

Cotinine, the primary metabolite of nicotine, is a good 
biomarker of tobacco smoke exposure due to its medium half-life 
(16–18h) and its excretion in urine during the day. As urinary 
cotinine levels are highly correlated with plasma cotinine levels, 
they provide a valid measure of exposure to environmental 
tobacco smoke. Cotinine was determined in urine samples 
collected from mothers at week 32 of pregnancy and children of 
4–5 years old. The laboratory method for urinary cotinine (UC) 
quantification was described in a previous study (Benowitz et al., 
2009; Aurrekoetxea et  al., 2013). Cotinine concentration was 
divided by total creatinine in urine to account for spot urine 
dilution. This exposure was also included as a dichotomized 
variable (exposed or not exposed) considering whether cotinine 
was detected in urine over the LOQ, indicating SHS exposure.

Tobacco smoke exposure was also collected through 
questionnaires during pregnancy and summarized as the mean 
number of cigarettes/day during pregnancy, maternal active smoking 
at any time during pregnancy, and sustained maternal smoking (first 
trimester and third trimester); maternal smoking dose-duration 
classified as: (Peterson and Hecht, 2017) unexposed, (Jenssen et al., 
2023) only SHS and (Ruggieri et al., 2017) non-sustained smoker/
sustained smoker at low dose (≤9 cigarettes per day, c/d)/sustained 
smoker at high dose (>9 c/d).

Childhood passive smoking exposure at 4 and 7 years was 
available through a harmonized questionnaire administered to the 
parents and summarized as secondhand smoke exposure at home 
(yes/no) and global second-hand smoke exposure (yes/no) (Vives-
Usano et al., 2020).

2.2.3 Mercury exposure
Mercury level was assessed by biomonitoring at two time points 

using different biological samples; whole cord blood samples were 
used to study the intra-utero exposure while hair was used to study 
the exposure of children of 4 years old.

The recommended samples to quantify the exposure to mercury 
are blood and urine. Detection of mercury in hair samples may 
be particularly useful to know the prior exposure to methyl-mercury. 
Hair from the initial 0.5 cm could be representative of the exposure 
before 1 to 3 weeks of collection. It is important to know that hair 
levels are not correlated with the blood levels or symptoms of toxicity 
by this pollutant. In addition, reports of hair levels related to 
exogenous contamination are not rare (Nuttall, 2006).

At birth, whole cord blood samples were collected using 
venipuncture of cord vessels before the placenta was delivered. Blood 
cord samples were processed, separated into aliquots of 1 mL, and then 
frozen at −80°C until analysis. Hair samples were collected from the 
occipital scalp when children were 4 years old, placed in a plastic bag, 
and stored at room temperature until analysis. The analyses of total 
mercury were carried out in the Public Health Laboratory of Alava 
(Basque Country, Spain) using, for both types of samples, thermal 
decomposition, amalgamation, and atomic absorption spectrometry. 
The laboratory method for cord blood and hair total mercury 
quantification was described in previous studies (Llop et al., 2012). 
The limit of quantification of the method (LOQ) was 2 μg/L for cord 
blood samples and 0.01 μg/g for hair samples.

2.3 Microbial 16S rRNA gene sequencing

2.3.1 Sample processing and sequencing
Fecal samples collected in sterile containers were initially kept at 

home at 4°C and stored at −20°C within the first 2 days (1.5 h to 49 h) 
after collection. Genomic DNA extraction was performed using the 
NucliSENSⓇ EasyMAGⓇ instrument (bioMérieux). According to the 
manufacturer’s instructions, a portion of each fecal sample was 
collected with a sterile loop (approximately 40 mg) and lysed 
“on-board” in 2 mL of lysis buffer. The specific protocol B was used 
with 50 μL of magnetic silica. The total nucleic acids were recovered 
in 50 μL of elution buffer and stored at −20°C until use.

Microbial genomic DNA was used at a concentration of 5 ng/μl in 
10 mMTris (pH 8.5). The library preparation of the 16S ribosomal RNA 
gene was performed according to the 16S Metagenomic Sequencing 
Library Preparation Illumina protocol (Part # 15044223 Rev. A, 
Illumina, San Diego, CA, USA). In brief, the V3-V4 hypervariable 
regions of the 16S rRNA gene were amplified using the forward primer 
5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGG 
GNGGCWGCAG-3′ and the reverse primer 5′-GTCTCGTGGGCT 
CGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATC 
C-3′, including the Illumina adapter overhang sequences. The Nextera 
XT DNA Library Preparation Kit (FC-131-1096, Illumina Inc, San 
Diego, USA) was used according to the manufacturer’s instructions. 
Amplification PCR conditions were: 95°C for 3 min, 25 cycles of 95°C 
for 30 s, 55°C for 30 s followed by 72°C for 30 s, and 72°C for 5 min. 
Positive and negative controls were included in the PCR. Index PCR 
conditions were: 95°C for 3 min, 8 cycles of 95°C for 30 s, 55°C for 30 s, 
and 72°C for 30 s followed by 72°C for 5 min.
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After 16S rRNA gene amplification, 2 sets of 77 amplicons were 
multiplexed, and 1 μL of each amplicon pool was run on a Bioanalyzer 
DNA 1000 chip to verify amplicon size (~550 bp). After size 
verification, libraries were sequenced in an Illumina MiSeq platform, 
according to the manufacturer’s instructions, using two 2 × 300 cycle 
paired-end runs (MiSeq Reagent Kit v3 600 cycles) (MS-102-3001, 
Illumina Inc). Positive and negative controls were included in 
the PCR.

2.3.2 Sequence data analysis
Reads were quality filtered and trimmed by the DADA2 R package 

version 1.12.1 and R version 3.5.11 using truncating of forward reads 
set to 250 bp and truncating of reverse reads set to 200 bp. Quality 
control was performed by removing all the sequences with ambiguous 
bases and a quality score lower than 2 or with more than 2 or 5 
expected errors in the forward or reverse sequences, respectively. 
Chimeras were removed. Denoised pairs of forward and reverse reads 
overlapping 20 nucleotides were merged, resulting in unique amplicon 
sequence variants (ASVs) (Callahan et  al., 2016). For taxonomic 
analysis, the Naive Bayes classifier was pre-trained on the silva 138 
database. Phylogenetic analysis was performed with FastTree (Price 
et al., 2009).

For the analysis of microbiota data, the Phyloseq R package 
version 1.26.1 was used. Only taxa with at least 10 counts present in 
20% of samples were selected for analysis. ASVs were agglomerated to 
class, phylum, genus, and species levels.

2.4 Statistical analysis

All statistical analyses were performed using R software. 
Descriptive statistics of the original metadata were calculated as 
median (first quartile, third quartile) for continuous variables and as 
frequency (percentage) for categorical variables.

To avoid calculations of β-diversity with missing values, 
continuous variables were transformed and standardized to logarithm 
(log), interquartile range (IQR), or log of IQR, as appropriate. Then, 
missing values for exposures and determinants (excluding genetic, 
FUT2, and fish intake at 32 weeks of pregnancy data) were imputed 
using multiple imputations by chained equations to generate 20 
imputed data sets (mice R package). Original data were used for 
genetic, FUT2, and fish intake at 32 weeks of pregnancy.

β-Diversity association analysis: In the first place, a multi-
determinant analysis using the envfit function (vegan R package, 999 
permutations) was employed to identify determinants, which were 
significantly correlated with the gut microbiome β-diversity. 
We included the following dissimilarity matrices at the genus level: 
wUnifrac, Bray–Curtis, and Aitchison (Gloor et al., 2017), which were 
calculated as the Euclidean distance of centered log ratio-transformed 
data after Bayesian Multiplicative replacement of count zeros. The 
envfit function performs multivariate analysis of variance (MANOVA) 
and linear correlations for categorical and continuous variables, 
respectively. It calculates the effect size (R2) and significance (p-value) 
of each variable, comparing the difference in the centroids of each 

1 http://www.R-project.org/

group relative to the total variation. Mean and standard deviation of 
the R2 values obtained along the 20 imputations for 14 tobacco and 
mercury exposure variables and 49 non-genetic determinants were 
calculated. The mean of p-values was also calculated. An association 
was considered statistically significant if a p-value < 0.05 was obtained 
in 17 out of the 20 imputations. In addition, for a sensitivity analysis, 
genetic data were included in an additional envfit analysis considering 
the Aitchison distance in a subset of 107 children in the 
same conditions.

In the second place, additional analyses were performed for each 
pollutant exposure variable without adjustment (crude model) for 
potentially important determinants. Exposures to tobacco were 
adjusted by maternal education, maternal BMI, and the envfit-selected 
variables. Exposure to mercury during pregnancy was adjusted by fish 
intake at 32 weeks of pregnancy, maternal education, and the envfit-
selected variables. Exposure to mercury at 4 years was adjusted by fish 
intake at 4 years, maternal education, and the envfit-selected variables. 
A permutational multivariate analysis of variance (PERMANOVA) 
test by distance matrices with Benjamini & Hochberg (BH) correction 
for multiple testing using the adonis function (vegan R package, 999 
permutations) was used. Mean and standard deviation of R2 values 
obtained for the imputed datasets considering Aitchison distance were 
calculated. An association was considered significant when a 
BH-corrected q-value <0.05 was obtained for more than 17 out of the 
20 imputed datasets. The mean of adjusted q-values was also 
calculated. The principal component analysis (PCA) plot with the 
clr-transformed features was obtained with the microViz R package 
for one imputation. Ellipses corresponding to 95% confidence 
intervals (CI) between categories were calculated.

Genus association study: At the genus level, taxa were normalized 
to relative abundance and regressed against individual tobacco and 
mercury exposures in a crude model, adjusting for the potentially 
important determinants selected for the PERMANOVA analysis, 
including the most important covariates selected by the envfit analysis, 
as described above (MaAsLin2 R package, by default conditions). 
Then, we selected individual exposures and their corresponding taxa 
from the raw MaAsLin2 output table and calculated the BH-corrected 
q-value. For the screening of significant taxa, a q-value <0.05 was 
considered statistically significant, as described previously (Shen 
et al., 2022).

3 Results

3.1 Characterizing the gut microbiome and 
pollutant exposures of early school-age 
children

After performing 16S rRNA sequencing and quality control, 
we  acquired 34,444 to 285,423 sequencing reads per sample 
(mean ± SD: 83,143 ± 35,329 reads). Sequence data that support the 
findings of this study have been deposited in the EBI EMBL database 
(PRJEB69271). A total of 4,904 ASVs were detected, corresponding to 
2 kingdoms, 13 phyla, 20 classes, 52 orders, 80 families, 228 genera, 
and 186 species. The core microbiota in Sabadell-INMA children at 
the phylum level, defined as phyla found in more than 85% of the 
samples, comprised 5 phyla with the following mean relative 
abundance: Bacteroidota 44.65%, Firmicutes 39.28%, 
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Verrucomicrobiota 11.02%, Actinobacteria 2.74%, Proteobacteria 
2.29%. The core microbiota at the genus level, defined as genera found 
in 95% of the samples, comprised 15 genera. The most abundant 
genera were Bacteroides (30.9%), Akkermansia (11.2%), Alistipes 
(11.1%), and Faecalibacterium (10.8%). We considered 207 ASVs for 
the association study corresponding to 2 kingdoms, 6 phyla, 9 classes, 
20 orders, 30 families, 61 genera, and 58 species that were present in 
20% of samples.

The description of the characteristics of the studied Sabadell-
INMA birth cohort is shown in Supplementary File 2: Table S2. 
Exposures to pollutants (tobacco and mercury) were of particular 
interest. In the studied population, 46.6% of children were exposed to 
tobacco smoke in-utero, 30.3% during childhood based on the 
4 year-old children data, and 17.9% along the full period (sustained 
exposure) based on questionnaires. The mean corrected cotinine 
levels were 224.1 μg/g for mothers and 17.5 μg/g for children. The 
median cotinine levels were 6.0 μg/g for mothers and 5.5 μg/g 
for children.

In this study, 65% of children had mercury levels in cord blood 
samples above 5.8 μg/L. At the age of 4 years, 38.4% of the children had 
hair mercury levels above 1 μg/g.

3.2 Associations of environmental 
determinants with gut microbiome 
ß-diversity

In the multi-determinant model, active smoking during 
pregnancy and SHS at 4 years based on detectable urinary cotinine 
levels (≥4 ng/mL) were associated with the β-diversity, explaining 
2–4% of the variability (Aitchison distance, p-values: 0.0045 and 
0.0322, respectively, Table  1). Having siblings at birth was also 
associated with the β-diversity (Bray–Curtis and Aitchison distances, 
p-values: 0.0214 and 0.0065, respectively). In the sensitivity analysis 
performed in a subset of 107 children considering also genetic data 
and Aitchison distance, active smoking during pregnancy and having 
siblings at birth remained associated with the β-diversity (p-values: 
0.0016 and 0.0080, respectively). Genetic variables explained less than 
5% of the β-diversity (Aitchison).

Only the statistically significant results are shown in Table 1. All 
results for the analysis of childhood and prenatal determinants for the 
three distances and the sensitivity analysis are presented in 

Supplementary Table S3. We  found no significant associations of 
β-diversity with mercury or other tobacco exposure variables.

The corresponding mean of R2 for 20 imputations obtained with 
the envfit analysis for all determinants and pollutant exposures are 
represented in Figure  3. All R2 and p-values are presented in 
Supplementary File 3: Table S3 and Supplementary File 4: Table S4.

On the other hand, β-diversity measured by the Aitchison distance 
was not significantly associated with the 12 tobacco exposure variables 
or the 2 mercury exposure variables included in this study in the 
single pollutant model (PERMANOVA). An unadjusted model was 
considered and a model adjusting by the covariates above-listed (see 
Material and methods section), considering “having siblings at birth” 
as the covariate selected by the envfit analysis. The results obtained for 
each of the 20 imputations and both models are shown in 
Supplementary File 5: Table S5. Plots of PCA with the clr-transformed 
features are shown by the exposure to active smoking of their mothers 
at any time during pregnancy and having siblings at birth in 
Figures 4 and 5, respectively.

3.3 Associations of exposure to tobacco 
and mercury with microbiome taxa (genus)

Tobacco smoking during pregnancy was associated with the 
microbiota at 7 years of age at the genus level. The significant results 
are shown in Table 2. Active smoking at any time during pregnancy 
was associated with a decrease in the relative abundance of 
Akkermansia both in the unadjusted and the adjusted models 
(coef = −3.76, q-value 0.004, coef = −3.75, q-value 0.005, respectively). 
Sustained maternal smoking from first to third trimester of pregnancy 
was associated with an increased relative abundance of Dorea both in 
the unadjusted and adjusted models (coef = 2.01, q-value 0.006, 
coef = 2.04, q-value 0.01, respectively). Figure 6 shows the changes in 
the abundance of Akkermansia and Dorea associated with tobacco 
smoking during pregnancy considering the adjusted model. In 
addition, maternal smoking categorized as non-sustained, low dose, 
or high dose was associated with an increased relative abundance of 
Dorea (coef = 1.79, q-value = 0.03), although only in the unadjusted 
model. Mercury or tobacco exposure from pregnancy to childhood 
measured by other variables considered in this study were not 
associated with significant changes in the abundance of genus in the 
children’s gut microbiome at 7 years of age. The best 10 results (genus) 

TABLE 1 Pollutants and determinants significantly associated with children gut microbiome β-diversity in a multi-determinant model (envfit analysis) 
encompassing 48 determinants.

β-diversity 
distance

Sample 
size

Variable Mean R2 (%, SD) Mean p-value

Bray–Curtis n = 151 Having siblings at birth (yes/no) 2.48, 0.26 0.0214

Aitchison Active tobacco smoking during pregnancy (yes/no) 3.81, 0.64 0.0045

SHS based on urinary cotinine levels at 4 years (yes/no) 2.31, 0.18 0.0322

Having siblings at birth (yes/no) 3.40, 0.13 0.0065

Aitchison Sensitivity 

analysis 

(n = 107)

Active tobacco smoking during pregnancy (yes/no) 6.77, 0.09 0.0016

Having siblings at birth (yes/no) 4.55, 0.21 0.0080

Mean and standard deviation of R2 and mean of the p-value obtained for 20 imputations. Sensitivity analysis considering also genetic data was performed in a subset of 107 children. An 
association was considered significant when a p-value < 0.05 was obtained in more than 17 out of the 20 imputed datasets. SHS, second-hand  smoking.
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with the smallest q-values obtained by the MaAsLin2 analysis are 
shown in Supplementary material 6: Supplementary Table 6.

4 Discussion

In this study, we explored the association of childhood or perinatal 
exposure to tobacco and mercury with children’s gut microbial 
community diversity measures and taxa. We considered a large range 
of important co-factors such as sociodemographic, clinical, dietary, 
and environmental factors of the fecal microbiome in a well-studied 
cohort of healthy children. Exposures to tobacco smoke and mercury 
are frequent in this population and have been well characterized 
throughout pregnancy and childhood. A potential persistent influence 
of prenatal exposure to tobacco smoke could be established on the 
abundance of specific taxa of the gut microbiota during childhood.

Most previous studies on the early-life determinants of the 
children’s gut microbiota have focused on their influence from birth 
to the age of 3 years, when the microbial population is changing. By 
contrast, we studied the microbiota of older children, at 7 years old, 
when its composition is more stable. Previous studies had investigated 
the influence of breastfeeding, antibiotics, or diet on child microbiota 
but we added the influence of two common pollutant exposures at 
birth and during childhood. We determined the community structure 

of the gut microbiota in this 151 children population and investigated 
associations of accurately measured main pollutant exposures with the 
gut microbiota.

4.1 Distribution of tobacco smoke and 
mercury exposures

In the studied population, a high level exposure to tobacco smoke 
in utero and during childhood was found.

Median quantification of mercury from cord blood was equivalent 
to 4.5 μg/L in maternal blood, which was above the maximum mean 
value reported through the HELIX cohort (0.7–3.9 μg/L) (Aurrekoetxea 
et al., 2013). In this study, Mercury levels in cord blood samples were 
above 5.8 μg/L for a high proportion (65%) of children as found in 
communities with high fish intake such as Japan, Hong Kong, Taiwan, 
and Polynesia (geometric median 9.8, 8.8, 9.2, and 10.5 μg/L, 
respectively) (Ruggieri et al., 2017). Higher blood cord mercury levels 
have only been found in Canada or Greenland (geometric median 18.5 
and 25.3 μg/L, respectively). Hair mercury levels above 1 μg/g were 
detected for a high proportion of children (almost 40%). These high 
values could be  related to the place of residence of the studied 
population, where high fish and other aquatic food intake was the rule. 
Exposure to both tobacco smoke and upper quartile level of mercury 

FIGURE 3

Effect size (R2) of microbiome β-diversity multiple determinants identified in the school-aged children of the Sabadell-INMA cohort. The analysis was 
based on the envfit function in the vegan R package. Factors are sorted according to their effect size and colored based on metadata category. Mean 
R2 was obtained for 20 imputed datasets considering, Aitchison distance (n  =  151 children) Aitchison. Active smoking during pregnancy and SHS at 
4  years based on urinary cotinine levels were associated with the β-diversity (Aitchison distance, p-value: 0.0045 and 0.0322, respectively). Having 
siblings at birth was also associated with the β-diversity (Aitchison distance, p-value: 0.0065).
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was found in 12.1% of children at birth and 3.45% of 4-year-old 
children. For example, in comparison, only 8% of the children included 
in the DEMOCOPHES cohort implemented in 17 European countries 
exceeded this health-based value (Esteban et al., 2015).

4.2 Impact of tobacco smoke exposure and 
mercury on gut microbiota composition

The gut microbiota in healthy children of 7 years old showed a 
predominance of Bacteroides, Akkermansia, Alistipes, and 
Faecalibacterium, as described previously (Xiong et al., 2022). Based 
on the results of a multideterminant model, active smoking during 
pregnancy was the most associated determinant with the children’s gut 
microbiome β-diversity (Aitchison distance). Among all the other 
possible determinants included in the study, having siblings at birth 
was significantly associated with the β-diversity. Nevertheless, no 
significant associations between smoking variables with the β-diversity 
were observed in the univariate adjusted model.

We tried to determine the significant factors driving differences 
in the individual gut microbiota at the genus level. Maternal smoking 
during pregnancy was related to a decreased relative abundance of 
beneficial genus (Akkermansia) and an increased relative abundance 
of potentially pathogenic genus (Dorea), suggesting the importance of 
the environmental determinants during pregnancy, as a potential 
window of vulnerability. We did not find any other persistent effects 
at the genus level for tobacco exposure during childhood.

This study assessed cord blood and hair mercury levels as markers 
for mercury absorption and, consequently, mercury exposure. These 
levels elevate in correlation with the mother’s and child’s fish 
consumption, respectively, as well as the mercury content in the 
consumed fish species. Therefore, fish intake was regarded as a 
confounding factor in the analysis. It has been well established that 
intestinal microbiota can influence methylmercury intestinal 
absorption and the induction of intestinal dysbiosis (Pinto et al., 2020). 
On the other hand, methylmercury could have adverse effects on gut 
bacteria and accelerated accumulation of mercury in organs due to 
disruption of gut microbiota. Nevertheless, a sustained influence of 
early life mercury exposure could not be demonstrated in this study at 
the genus level. As it was suggested that mercury could decrease the 
growth of Lactobacillus in different proportions depending on the 
species (Seki et al., 2021), an additional study at the species level using 
a shotgun strategy could be relevant. In addition, as changes in the 
overall composition of the microbiome have been described for 
mercury exposure during early gestation, but not at late gestation 
(Rothenberg et  al., 2016), it would be  interesting to study other 
indicators of early exposure to mercury. Finally, the exposure to 
mercury at the most vulnerable stage of growth, during brain 
development, could lead to neurotoxicity in the unborn infant by a 
mechanism independent of permanent changes in microbiota. Higher 
childhood or perinatal blood mercury has been related to higher 
relative abundance of potential pathogens (e.g., Flavonifractor plautii), 
beneficial species (e.g., Bifidobacterium longum, Faecalibacterium 
prausnitzii), and both potentially pathogenic and beneficial species (e.g., 

FIGURE 4

Fecal microbiome β-diversity from 7-year-old children, categorized by the exposure to active smoking of their mothers at any time during pregnancy. 
Plots of principal component analysis (PCA) with the clr-transformed features from children’s feces were calculated for one imputation set. The 95% 
confidence interval prediction ellipses were calculated for each category. Amplicon sequence variants (ASVs) were collapsed at the genus level. Each 
children’s microbial community is represented by a dot. Length of the arrows shows the strength of the association between each genus and the 
differences in microbiota composition: the arrow length is proportional to the variance explained by each specific genus; the arrow angle is correlated 
with the distribution of this variance between PC1 and PC2. Akkermansia, Phascolarctobacterium, Dialister, Clostridium sensu-stricto_1, and 
Haemophilus were driving the differences between children’s gut microbiomes. No significant association was found (PERMANOVA, p-value  >  0.05 in 
the crude or adjusted univariate model).
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Bacteriodes vulgatus, Eubacterium rectale), but these results were not 
found in our study (Shen et al., 2022).

Cigarette smoking has been consistently linked to alterations in the 
gut microbiome among adults (Cicchinelli et al., 2023). The impact of 
maternal smoking during gestation on the prenatal and perinatal gut 
environment is also suspected. These alterations may be influenced by 
shifts in the mother’s own microbiome or variations in the in utero 
chemical environment. Consequently, such changes could potentially 
reshape the trajectory of the microbiome development of offspring, 
rendering them more susceptible to inflammation. For example, changes 
in the abundances of several genera of the child microbiome of the finger, 

nose, mouth, and ear canal have been reported after exposure to third-
hand smoke. These genera are also affected by active smoking and 
second-hand smoke (e.g., Corynebacterium, Staphylococcus, Streptococcus) 
(Kelley et  al., 2021). Similarly, the abundance of Serratia, Moraxella, 
Haemophilus, and Staphylococcus aureus in tracheal aspirate changed after 
tobacco exposure (Leroue et  al., 2023). The longitudinal effects of 
environmental tobacco smoke exposure on gut microbiota of young 
children have been previously reported. Tobacco was correlated with 
Megasphaera abundance. Breastfeeding was correlated with Lactobacillus 
abundance and negatively correlated with Clostridium_sensu_stricto_1 
abundance (Xie et al., 2021).

FIGURE 5

Fecal microbiome β-diversity from 7-year-old children, categorized by having siblings at birth. Plots of principal component analysis (PCA) with the 
clr-transformed features from children’s feces were calculated for one imputation set. The 95% confidence interval prediction ellipses were calculated 
for each category. Amplicon sequence variants (ASVs) were collapsed at the genus level. Each children’s microbial community is represented by a dot. 
Length of the arrows shows the strength of the association between each genus and the differences in microbiota composition: the arrow length is 
proportional to the variance explained by each specific genus; the arrow angle is correlated with the distribution of this variance between PC1 and 
PC2. Akkermansia, Phascolarctobacterium, Dialister, Clostridium sensu-stricto_1, and Haemophilus were driving the differences between children’s gut 
microbiomes. No significant association was found (PERMANOVA, p-value  >  0.05 in the crude or adjusted univariate model).

TABLE 2 Association of perinatal tobacco exposure with child gut microbiome at the genus level in the multivariable association model (MaAsLin2 
analysis).

Genus Metadata Value coef stderr pval qByGenus Model

Akkermansia Maternal active smoking at any time during 

pregnancy

Yes −3.7643 0.9188 0.0001 0.0042 Unadjusted

Dorea Sustained maternal smoking (T1 and T3) Yes 2.0100 0.5049 0.0001 0.0065 Unadjusted

Dorea Maternal smoking dose-duration Non-sustained/low/

high

1.7873 0.4788 0.0003 0.0326 Unadjusted

Akkermansia Maternal active smoking at any time during 

pregnancy

Yes −3.7498 0.9279 0.0001 0.0052 Adjusted

Dorea Sustained maternal smoking (T1 and T3) Yes 2.0427 0.5279 0.0002 0.0100 Adjusted

Active smoking at any time during pregnancy was associated with a decrease in the relative abundance of Akkermansia. Sustained maternal smoking from the first to the third trimester of 
pregnancy was associated with an increased relative abundance of Dorea. Exposures to tobacco (151 children) were adjusted by maternal education, maternal BMI, and having siblings at birth 
(previously selected by the envfit function). Exposure to mercury during pregnancy (148 children) was adjusted by original data of fish intake at 32 weeks of pregnancy, maternal education, 
and having siblings at birth. Exposure to mercury at 4 years (151 children) was adjusted by fish intake at 4 years, maternal education, and having siblings at birth.
qByGenus, q-value obtained from the raw MaAsLin2 output table and calculated with the BH correction. MaAsLin2, multivariable association model.
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Previous microbiome studies have also shown the inverse 
relationship between the abundance of Akkermansia muciniphila, a 
mucus-layer-degrading bacterium, and diseases such as inflammatory 
bowel disease, obesity, and diabetes. Its potential as immunomodulatory 
probiotic for autoimmune and chronic inflammatory diseases has been 
explored in experimental models. This species seems to slow down the 
development and progression of diabetes, obesity, and IBD in mice 
(Rodrigues et al., 2022). On the other side, Phascolarctobacterium has 
been previously associated with colorectal cancer (Bucher-Johannessen 
et  al., 2023). This suggests a long term effect of tobacco early-life 
exposure on gut microbiome of children.

It was previously reported that at 1, 3, and 6 months of age, 
Staphylococcus, Ruminococcus, Akkermansia, Lachnospiraceae, and 
Bacteroides were more dominant in the gut microbiota of infants and 
neonates exposed to tobacco smoke (McLean et al., 2019). Further 
studies would be necessary to explore the effect of smoking on specific 
species or strains of these genera by using shotgun metagenomic 
analysis, allowing a more detailed view of the microbiome and 
its function.

Several strengths of our study can be highlighted. First, highly 
sensitive biomonitoring methods were used for tobacco and mercury 
assessment, combined with a longitudinal design (repeated 
measurements). In addition, this population has particularly high 
exposure to tobacco and mercury, which makes it more likely to detect 
potential effects, even for a relatively small size in the omics field. The 
INMA children are a well-characterized, general population, where 
the width of parameters was measured, which is relevant for gut 
microbial diversity description. It was particularly important to 
be able to compare the effect of pollutants of interest, a novelty in the 
field of microbiome determinants, with established factors, such as 
diet and clinical factors.

The main limitations of this study are that samples were 
stored at 4°C for more than 1.5 h, and that the information of 

antibiotic intake in the previous month was not recorded. 
Considering that strong clustering by individual is expected in 
fecal samples because inter-individual variability could be greater 
than the variability associated with storage time (Holzhausen 
et al., 2021) and based on the results of alpha diversity of this 
dataset (data not shown), we considered that our samples were 
adequate for an exploratory analysis. Besides, unknown exposures 
that could be  influencing the microbial composition as other 
chemicals, endocrine disruptors, heavy metals, air pollution, 
pesticides, food additives, air pollution in the place where 
children were raised were not included.

The causal link between the determinants and gut microbiota 
composition could not be  inferred from this association study, as 
associations might be confounded by other factors. Exposure data 
collected at the age of 4 years might have changed at microbiota 
assessment age.

5 Conclusion

Our findings suggest that early life exposome determinants, in 
particular, tobacco exposure during pregnancy, could have a long-
term sustainable effect on the gut microbiota of children, at least at the 
same level as the diet, an established determinant of the gut microbiota 
diversity. Assessing the role of tobacco and mercury exposure on the 
microbiota of children, considering multiple environmental 
exposures, should be further investigated.

Clinical follow-up of individuals of this birth cohort, and 
increasing the sample size by combining other cohorts with similar 
protocols, would contribute to determining if these changes would 
impact the health of children. The influence of exposures on the 
gut microbiota of children seems to be  a promising topic to 
focus on.

FIGURE 6

Akkermansia and Dorea abundances were associated with tobacco exposure through active smoking during pregnancy. The results of genus 
association with the multivariable association model (MaAsLin2) analysis in a model adjusted by maternal education, maternal BMI, and having siblings 
at birth. Active smoking at any time during pregnancy was associated with a decrease in the relative abundance of Akkermansia (q-value 0.005, BH 
adjusted by genus). Sustained maternal smoking from the first to the third trimester of pregnancy was associated with an increased relative abundance 
of Dorea (q-value 0.01, BH adjusted by genus).
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