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Background: Previous observational studies have shown that a potential 
relationship between anti-Helicobacter pylori (H. pylori) IgG levels and Myocardial 
Infarction (MI). Nevertheless, the evidence for the causal inferences remains 
disputable. To further clarify the relationship between anti-H. pylori IgG levels 
and MI and explore its pathogenesis, we conducted a Mendelian randomization 
(MR) analysis.

Methods: In this study, we used two-sample Mendelian Randomization (MR) to 
assess the causality of anti-H. pylori IgG levels on MI and potential pathogenesis, 
12 single nucleotide polymorphisms (SNPs) related to anti-H. pylori IgG levels 
were obtained from the European Bioinformatics Institute (EBI). Summary data 
from a large-scale GWAS meta-analysis of MI was utilized as the outcome dataset. 
Summary data of mediators was obtained from the FinnGen database, the UK 
Biobank, the EBI database, MRC-IEU database, the International Consortium of 
Blood Pressure, the Consortium of Within family GWAS. Inverse variance weighted 
(IVW) analysis under the fixed effect model was identified as our main method. 
To ensure the reliability of the findings, many sensitivity analyses were performed.

Results: Our study revealed that increases of anti-H. pylori IgG levels were 
significantly related to an increased risk of MI (OR, 1.104; 95% CI,1.042–1.169; 
p  =  7.084  ×  10−4) and decreases in HDL cholesterol levels (β, −0.016; 95% CI, 
−0.026 to −0.006; p  =  2.02  ×  10−3). In addition, there was no heterogeneity or 
pleiotropy in our findings.

Conclusion: This two-sample MR analysis revealed the causality of anti-H. pylori 
IgG levels on MI, which might be  explained by lower HDL cholesterol levels. 
Further research is needed to clarify the results.
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Introduction

Cardiovascular diseases have become one of the leading causes of 
death in adults in recent decades due to an increase in their incidence 
and prevalence (Vaughan et al., 2015; Widmer et al., 2015). Myocardial 
infarction (MI) is an acute and severe cardiovascular disease, that is 
brought on by ischemia of the heart muscle and blockage of the 
coronary arteries, poses a significant threat to patients’ lives, and has 
become a serious public health problem (Lu et al., 2015). MI is caused 
by a variety of factors, including lifestyle, diet, genetics, and 
environmental factors (Anand et  al., 2008; Dahabreh and Paulus, 
2011; Finegold et  al., 2013). Reduced modifiable risk factors can 
improve MI prevention and control (Teo et al., 2009; Colombo et al., 
2014; Smyth et  al., 2016), which has important public health 
implications. There is evidence to suggest that inflammation is a key 
factor in the development and progression of atherosclerosis 
(Ballantyne and Nambi, 2005). Chronic infection with various 
pathogens may trigger inflammatory responses in blood vessel walls, 
which may be crucial in the development of atherosclerosis and the 
progression of coronary heart disease (CHD) (Epstein, 2002; Zhu and 
Liu, 2020; Jung and Lee, 2022).

Helicobacter pylori (H. pylori) is a spiral, gram-negative 
microaerobic bacteria that has infected about half of the world’s 
population (Kotilea et al., 2019; Choi et al., 2020). There are a variety 
of symptoms resulting from H. pylori colonization, including gastritis, 
peptic ulcers, and neoplastic disease (Peek and Blaser, 2002; Buti et al., 
2020; Holleczek et  al., 2020). In recent years, a large number of 
observational studies have indicated that chronic H. pylori infection 
is concerned with cardiovascular and cerebrovascular diseases, such 
as cardiovascular disease, thrombotic cerebrovascular disease, and 
peripheral vascular disease (de Luis et al., 1998; Lee et al., 2018; Wan 
et al., 2018). The earliest evidence between H. pylori infection with 
CHD was proposed by Mendall et al. (1994). During the past decade, 
researchers have examined the association between H. pylori 
seropositivity and CHD using epidemiological methods. Several 
studies have shown a potential relationship between H. pylori 
seropositivity and CHD (Park et  al., 2011; Shmuely et  al., 2014). 
However, numerous studies showed contradictory results on the role 
of H. pylori seropositivity in CHD (Al-Nozha et  al., 2003; 
Rothenbacher et al., 2003). Of course, there may be many unknown 
confounding factors affecting the robustness of the results. Thus, 
whether H. pylori plays a causal role in the MI remains undiscerned. 
It is urgent to further clarify the relationship between H. pylori 
infection and MI and explore its pathogenesis. The underlying 
mechanisms between H. pylori infection and MI remain unclear. A 
substantial quantity of epidemiologic and clinical evidence addressing 
connections between H. pylori infection and risk factors for MI has 
been revealed during recent decades. Firstly, a study conducted by 
Gunji et  al. showed that H. pylori seropositivity was significantly 
associated with higher systolic blood pressure, lower HDL cholesterol 
levels, and higher LDL cholesterol levels (Gunji et al., 2008). Secondly, 
Chen TP et  al. revealed that H. pylori-infected individuals had 
significantly higher body mass index and fasting glucose in cross-
sectional research including 3,578 subjects (Chen et al., 2015). Then, 
a study concluded that there was a remarkable relationship between 
chronic H. pylori infection and high levels of HbA1c and decreased 
insulin secretion (Hsieh et al., 2013). Furthermore, H. pylori infection 

has been revealed to be associated with vitamin deficiency (Franceschi 
et al., 2014). Vitamin levels play an important role in CHD. Finally, 
inflammation reactions can be triggered by H. pylori. High levels of 
the inflammatory cytokines IL-6 and tumor necrosis factor have been 
related to H. pylori infection in individuals with CHD (Schumacher 
et al., 2002).

MR analysis is applied to investigate the relationship between 
exposure and outcome, which can provide robust causality by utilizing 
one or multiple genetic variants, such as single nucleotide 
polymorphisms (SNPs) (Smith and Ebrahim, 2004; Lawlor et  al., 
2008). The MR study was built on the Mendelian inheritance rule, 
which states that the parents’ genetic alleles are randomly dispersed to 
the descendants during the process of meiosis, which is supposed to 
be equivalent to RCT. Using MR, these biases that are common in 
observational studies can be avoided by utilizing genetic variables 
reflecting exposure to verify the causal association of the risk variables 
connected to the disease (Smith and Ebrahim, 2003, 2004). Serum 
immunoglobulin G antibody to H. pylori is most widely adopted in 
population-based research, and its accuracy has been shown in several 
studies across a wide variety of ethnic groups and nations (Feldman 
and Evans, 1995; Roberts et al., 2000). A two-sample MR analysis was 
performed in the present study, hoping to clarify their causal 
relationship, explore its pathogenesis, and provide useful advice for 
clinical practice.

Methods

Mendelian randomization design

A MR study was conducted to evaluate the causality of 
anti-H. pylori IgG levels on MI and mediators. There are three core 
assumptions for determining the genetic instrumental variables (IVs) 
that are at the centre of the MR analysis (Sekula et al., 2016). First, the 
genetic instruments should be strongly concerned with anti-H. pylori 
IgG levels. Second, there is no connection between the SNPs and 
potential confounders. Third, IVs can only induce outcomes through 
anti-H. pylori IgG levels (Figure 1).

Data sources

From the publicly available data source maintained by the 
European Bioinformatics Institute (EBI), we acquired the GWAS 
summary statistics for Anti-H. pylori IgG levels at https://gwas.
mrcieu.ac.uk/datasets/ieu-b-4905/, which included 4,683 
European cases. The MI GWAS summary dataset was obtained 
from the GWAS conducted by Hartiala et  al. (2021), which 
contained 395,795 participants from Europe, both male and 
female. Possible pathogenesis underlying the association between 
H. pylori and MI includes fasting glucose, HbA1c, fasting insulin, 
body mass index (BMI), lipid traits, inflammation factors, 
vitamins, and blood pressure. The GWAS summary statistics for 
fasting glucose and fasting insulin were obtained from the study 
conducted by Chen et al. (2021). HbA1c was obtained from the 
Consortium of Within family GWAS. The GWAS summary 
statistics for inflammation factors were collected from the EBI 
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database. The GWAS summary statistics for BMI and vitamin 
were accessible in the MRC Integrative Epidemiology Unit (MRC-
IEU) database. The GWAS summary statistics for lipid traits were 
available from the United Kingdom Biobank database, containing 
triglyceride, LDL cholesterol, and HDL cholesterol levels 
(Richardson et al., 2020). The GWAS summary statistics for blood 
pressure were accessible to the International Consortium of Blood 
Pressure, including diastolic blood pressure and systolic blood 
pressure. The details of the GWAS data included in this study are 
shown in Table 1.

Selection and validation of SNPs

After we set the threshold of the p value as 5 × 10−8, we did not 
obtain any independent SNPs. In order to contain more SNPs that 
concerned with anti-H. pylori IgG levels, we  used a more lenient 
criterion (p < 5 × 10−6) which had been applied to previous MR 
research (Ong and MacGregor, 2019). At the genome-wide 
significance level (p < 5 × 10−6), we discovered 12 single nucleotide 
polymorphisms (SNPs) related to anti-H. pylori IgG levels. Effective 
MR analyses require no linkage disequilibrium (r2 < 0.001) across 
specific SNPs (Abecasis et al., 2010). Consequently, 12 distinct SNPs 
connected to anti-H. pylori IgG levels were determined. In addition, 
when the F-statistic is greater than 10, the SNPs were regarded as 
adequate to moderate the effect of potential bias, using the following 
formula: F = R2  × (N−2) / (1−R2), R2 = 2 × (1−MAF) × (MAF) × β2 
(Burgess and Thompson, 2011). The F-statistics varied from 26 to 33, 

greater than the traditional level of 10. Details of 12 SNPs can be found 
in the Supplementary material.

Statistical analysis

First, the SNPs for exposure and outcome were harmonized to 
coordinate allelic directions and eliminate palindromic sequences. 
Then we deleted SNPs that were strongly related to the outcomes. In 
this study, no SNPS were eliminated in this step. Before 
we  conducted MR analysis, we  detected outliers using the 
MR-PRESSO method to enhance the robustness of the results. As a 
primary analysis, we used inverse variance weighted (IVW) analysis 
under the fixed effect model as our main method because no 
heterogeneity was found in our study. Additionally, to ensure the 
results are robust, multiple complementary analyses were conducted, 
like IVW under the random effects model, weighted median, and 
MR-egger. In order to verify the reliability of the primary results, 
sensitivity analysis has been crucial for identifying underlying 
pleiotropy and heterogeneity in MR estimates. Pleiotropic bias was 
assumed to exist if the MR-Egger intercept had the p-value of less 
than 0.05 (Bowden et al., 2015). Moreover, we used the MR-PRESSO 
method to detect outliers before MR estimates were proceeded. 
MR-PRESSO eliminated abnormal SNPs (outliers) to detect 
potential horizontal pleiotropic and test whether there is a difference 
between the results before and after correction (Verbanck et al., 
2018). The leave-one-out method was applied to analyze the 
sensitivity of the results by sequentially removing one SNP at a time 

FIGURE 1

Three crucial hypotheses of the Mendelian randomization study. SNPs, single-nucleotide polymorphisms; H. pylori, Helicobacter pylori; LDL, low 
density lipoprotein; HDL, high density lipoprotein; BMI, body mass index.
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to examine whether a single SNP with a large horizontal pleiotropy 
effect might affect the MR estimates. In this research, Cochran’s Q 
was computed to examine the heterogeneity brought on by various 
SNPs. A total of MR analyses was performed using the R package 
“TwosampleMR.”

Results

Causal effects of anti-H. pylori IgG levels 
on MI

Before we conducted MR estimates, an outlier (rs117912702) with 
large pleiotropy was detected by MR-PRESSO analysis, so we got rid of it. 
We finally selected 11 SNPs for this study. According to the IVW analysis 
under fixed effect, there was a significant association between 
anti-H. pylori IgG levels and MI (OR, 1.104; 95% CI, 1.042–1.169; 
p = 7.084 × 10−4). Similar risk estimates were obtained using IVW analysis 
under the random effect approach (OR, 1.104; 95% CI, 1.034–1.178; 
p = 3.116 × 10−3) and the weighted median (OR, 1.178; 95% CI, 1.029–
1.214; p = 8.143 × 10−3). The approaches of the MR-Egger regression could 
not obtain this result (Figure 2A). We then used sensitivity analyses to 
check the reliability of our results. After excluding the pleiotropic variant, 
no horizontal pleiotropy was found by the MR-PRESSO method. For all 
outcomes, according to the MR-Egger regression, there did not appear to 
be horizontal pleiotropy based on the intercept term (intercept = 0.016, 

SE = 0.017, p = 0.358) (Figure 2C). We used the leave-one-out study to test 
the robustness of the results. All error lines are to the left of 0, indicating 
that the results are reliable and demonstrating that there are no SNPs with 
a large horizontal pleiotropic effect (Figure  2B). Then, to test the 
heterogeneity of the study, the Cochran Q-test derived p value as 0.22 of 
MR-Egger and p value as 0.22 of IVW. In general, there is no heterogeneity 
in this study (Figure 2D). Details of the MR estimates and sensitivity 
analyses can be found in the Supplementary material.

Causal effects of anti-H. pylori IgG levels 
on potential pathogenesis

We conducted MR-PRESSO analysis to detect some outliers with 
pleiotropy. Then we conduct MR estimates. In this study, we found 
that the increase of anti-H. pylori IgG levels is associated with the 
decrease of HDL cholesterol levels (β, −0.016; 95% CI, −0.026 to 
−0.006; p = 2.02 × 10−3). Similar results were obtained using IVW 
analyses under random effect model (β, −0.016; 95% CI, −0.026 to 
−0.006; p = 2.02 × 10−3). Using the weighted median method, identical 
risk estimates were obtained as well (β, −0.018; 95% CI, −0.032 to 
−0.004; p = 0.011) (Figure  3A). We  found no evidence of causal 
relationship between anti-H. pylori IgG levels and LDL cholesterol 
levels (β, −0.007; 95% CI, −0.019 to 0.005; p = 0.222), triglyceride (β, 
0.007; 95% CI, −0.004 to 0.018; p = 0.207), fasting glucose (β, 0.005; 
95% CI, −0.005– 0.015; p = 0.356), fasting insulin (β, −0.008; 95% CI, 

TABLE 1 Details of the GWAS data in this study.

Phenotype Data source Ethnicity Sample size Web source

Anti-H. pylori IgG Chong A et al. European 4,683 https://gwas.mrcieu.ac.uk/datasets/ieu-b-4,905/

Myocardial infarction Hartiala et al. European 395,795 https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011364/

Fasting glucose Chen et al. European 200.622 https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90002232/

Fasting insulin Chen et al. European 151.013 https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90002238/

HbA1c Within family GWAS consortium European 45,734 https://gwas.mrcieu.ac.uk/datasets/ieu-b-4842/

BMI MRC-IEU European 461,460 https://gwas.mrcieu.ac.uk/datasets/ukb-b-19953/

Vitamin C MRC-IEU European 460,351 https://gwas.mrcieu.ac.uk/datasets/ukb-b-15175/

Vitamin D MRC-IEU European 460,351 https://gwas.mrcieu.ac.uk/datasets/ukb-b-12648/

Vitamin B12 MRC-IEU European 64,979 https://gwas.mrcieu.ac.uk/datasets/ukb-b-19524/

Interleukin-18 EBI database European 21,758 https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90012024/

Interleukin-6 EBI database European 21,758 https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90012005/

Interleukin-8 EBI database European 21,758 https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90011994/

Interleukin-4 EBI database European 8,124 https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST004453/

Interleukin-10 EBI database European 7,681 https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST004444/

TNF-α EBI database European 3,454 https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST004426/

HDL cholesterol UK Biobank European 403,943 https://gwas.mrcieu.ac.uk/datasets/ieu-b-109/

LDL cholesterol UK Biobank European 440,546 https://gwas.mrcieu.ac.uk/datasets/ieu-b-110/

Triglycerides UK Biobank European 441,016 https://gwas.mrcieu.ac.uk/datasets/ieu-b-111/

Diastolic blood pressure International Consortium of Blood 

Pressure

European 757,601 https://gwas.mrcieu.ac.uk/datasets/ieu-b-39/

Systolic blood pressure International Consortium of Blood 

Pressure

European 757,601 https://gwas.mrcieu.ac.uk/datasets/ieu-b-38/

H. pylori, Helicobacter pylori; LDL, low density lipoprotein; HDL, high density lipoprotein; BMI, body mass index; TNF-α, Tumor necrosis factor alpha.
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−0.019 to 0.003; p = 0.151), HbA1c (β, 0.013; 95% CI, −0.021– 0.048; 
p = 0.457), BMI (β, −0.002; 95% CI, −0.013– 0.008; p = 0.656), vitamin 
C (β, 0.001; 95% CI, −0.002 to 0.004; p = 0.362), vitamin D (β, 0; 95% 
CI, −0.003 to 0.002; p = 0.701), vitamin B12 (β, −0.012; 95% CI, 
−0.040 to 0.016; p = 0.386), interleukin-18 (β, −0.016; 95% CI, −0.071 
to 0.039; p = 0.564), interleukin-6 (β, −0.003; 95% CI, −0.069 to 0.062; 
p = 0.921), interleukin-8 (β, 0.042; 95% CI, −0.016 to 0.102; p = 0.158), 
interleukin-4 (β, −0.002; 95% CI, −0.088 to 0.084; p = 0.968), 
interleukin-10 (β, 0.041; 95% CI, −0.047 to 0.130; p = 0.359), TNF-α 
(β, −0.068; 95% CI, −0.199 to 0.062; p = 0.306), diastolic blood 
pressure (β, −0.015; 95% CI, −0.125 to 0.095; p = 0.789), systolic blood 
pressure (β, 0.034; 95% CI, −0.134 to 0.203; p = 0.689) (Figure 4). To 
verify the robustness of the causal relationship between anti-H. pylori 
IgG levels and HDL cholesterol levels, we also performed sensitivity 
analyses. Leave-one-out sensitivity analysis demonstrated that the MR 

estimations were not driven by a single SNP (Figure 3B). The approach 
of MR-Egger regression did not reveal any horizontal pleiotropy by 
the intercept, which indicated that exposure is less likely to affect the 
outcome through confounders. (intercept = −0.003, SE = 0.005, 
p = 0.336) (Figure 3C). Finally, no heterogeneity was found among 
studies, as demonstrated by the p value of the Cochran Q test 
(Figure 3D). Details of the MR estimates and sensitivity analyses can 
be found in the Supplementary material.

Discussion

In recent years, researchers have focused on the relationship 
between H. pylori infection and MI, but due to residual confounding 
and reverse causation, these studies have difficulty identifying 

FIGURE 2

Forest plot (A), sensitivity analysis (B), scatter plot (C), and funnel plot (D) of the effect of anti-H. pylori IgG levels on MI.
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FIGURE 3

Forest plot (A), sensitivity analysis (B), scatter plot (C), and funnel plot (D) of the effect of anti-H. pylori IgG levels on HDL cholesterol levels.

causality conclusively. MR is founded on the assumption that genetic 
variations in humans occur at random in the population, are 
sufficiently independent of confounders, and can be  identified as 
instrumental variables to evaluate the causal relationship between 
exposure and outcome (Emdin et al., 2017). In this study, we first 
discovered direct proof showing the causal relationship between 
anti-H. pylori IgG levels and MI using MR analysis. Moreover, 
we  revealed the causality of anti-H. pylori IgG levels on HDL 
cholesterol levels. We concluded that increased anti-H. pylori IgG 
levels are associated with increased risks of MI in the European 
population, which might be explained by lower HDL cholesterol levels.

A case–control study conducted by Azarkar et al., including 78 
individuals with no history of heart disease and 73 MI patients, revealed 
that a significant difference in H. pylori IgG levels was shown between 
cases and controls (p = 0.002) (Azarkar et al., 2011). The study consisting 

of 100 consecutive patients verified to have suffered acute myocardial 
infarction, conducted by Kahan et al. (2000), confirmed prior research 
linking H. pylori seropositivity to an increased risk of MI. A meta-
analysis conducted by Rahmani et al. (2017) also reported that H. pylori 
infection increased the occurrence of MI. There are two potential 
assumptions for the significant relationship between H. pylori and the 
risk of MI. First of all, H. pylori deoxyribonucleic acid was discovered 
in the aortic tissue and atherosclerotic plaque of individuals with 
ischemic heart disease, according to the study by Reszka et al. This 
finding suggests a direct involvement for bacteria in the pathophysiology 
of ischemic heart disease and, by extension, MI (Reszka et al., 2008). 
Secondly, H. pylori infection may lower HDL cholesterol levels and raise 
triglyceride levels. In addition, there might be an elevation in blood 
levels of coagulation markers and inflammatory factors, including 
fragments of prothrombin and fibrinogen, tumour necrosis factor, and 
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interleukin 6 and 8. These factors might contribute to the relationship 
between H. pylori and ischemic diseases (Kowalski, 2001).

Notably, our research reveals the causal relationship between 
anti-H. pylori IgG levels and HDL cholesterol, in accordance with a 
cross-sectional study composed of 961 patients showing that a strong 
link between H. pylori seropositivity and HDL cholesterol (Jia et al., 
2009). Hoffmeister et al. (2001) conducted a study that recruited 470 
healthy blood donors and 238 patients, observing that HDL cholesterol 
concentration was substantially reduced in HP-positive (1.36 vs. 
1.44 mmol/L, p = 0.006) healthy participants compared to negatives. 
After multivariable adjustment, the effect of H. pylori infection on 
decreased HDL cholesterol (p = 0.002) remained notably. A study 
conducted by Gunji et al. (2008) showed that H. pylori seropositivity 
was significantly relate to lower HDL cholesterol levels. A large cross-
sectional study conducted by Kim et al. (2016) showed that H. pylori 
infection was significantly connected with lower HDL-C levels 
(coefficient = −1.237, p < 0.001). Similarly, a prospective, open-label, 
single-centre study that consisted of 159 patients indicated that patients 
with H. pylori infection had significantly lower levels of HDL cholesterol 
compared to those without H. pylori infection (p < 0.05) (Gen et al., 
2010). This conclusion is reinforced further by our current analysis.

There is no obvious explanation for how H. pylori infection 
reduces HDL cholesterol levels. Research showed that 
lipopolysaccharides from H. pylori induce the production of 
inflammatory cytokines in the host, such as tumour necrosis factor-α 
(TNF-α), interleukin-1, and interleukin-6 (Manolakis et al., 2007). 
The increase of these inflammatory cytokines may cause H. pylori 
infection to interfere with lipid metabolism (Feingold and Grunfeld, 
1992; Georges et al., 2003), that results in atherosclerosis in H. pylori-
infected individuals (Chen et al., 2016). Lipoprotein lipase activity is 
actually weakened by TNF-α (Makoveichuk et al., 1862), which causes 
the transfer of lipids from the tissue to lower levels of HDL cholesterol 
(Kucukazman et al., 2009). Furthermore, IL-6 and TNF-α disrupt lipid 
metabolism by boosting the production of liver cholesterol. Future 

research is required to determine the potential mechanism between 
H. pylori infection and HDL cholesterol.

This study is the first to examine the causality of anti-H. pylori 
IgG levels on MI and potential pathogenesis using MR analyses. Our 
results are consistent with those from conventional observational 
research, showing that elevated anti-H. pylori IgG levels are 
significantly related to an increased risk of MI (OR, 1.104; 95% CI, 
1.042–1.169; p = 7.084 × 10−4) and decreases in HDL cholesterol levels 
(β, −0.016; 95% CI, −0.026 to −0.006; p = 2.02 × 10−3). This study 
provides a valuable basis for the prevention of CHD patients. There 
are several advantages of our MR research. To begin, we utilized MR 
analyses to examine the causality of anti-H. pylori IgG levels on MI 
and HDL cholesterol levels, supplementing the inadequacies of 
conventional observational studies and providing new evidence for 
causal relationship between chronic infection and the development 
of CHD. Second, we  used multiple independent SNPs as genetic 
variants to lessen the influence of linkage disequilibrium on possible 
relationships. Third, we performed a variety of MR analysis methods 
and conducted comprehensive sensitivity analyses to verify our 
findings. Like with other MR investigations, our research also had 
several limitations that should be taken into account. To begin with, 
our research was conducted on Europeans, so it’s not known if the 
results generalize to other populations. Secondly, when we selected 
IVs, we used a more lenient threshold (p < 5 × 10−6). Although this 
may boost statistical power, the more instrumental variables included 
in the study, the greater the possibility of introducing multi-effect 
instrumental variables. In order to eliminate horizontal pleiotropy, 
we conducted sensitivity analyses such as the MR-Egger intercept, 
MR-PRESSO, and leave-one-out analysis. However, it is very difficult 
to completely exclude directional pleiotropy because SNPs affect 
exposure and outcome by independent approach, which has 
decreased the reliability of the findings. Finally, there is a distinction 
between H. pylori seropositivity and actual persistent infection, since 
either a false-negative or a false-positive result cannot be ruled out 

FIGURE 4

Associations of anti-H. pylori IgG levels with mediators. CI, confidence interval; LDL-C, low density lipoprotein cholesterol; HDL-C, high density 
lipoprotein cholesterol; TG, triglyceride; BMI, body mass index, TNF-α, Tumor necrosis factor alpha; DBP, diastolic blood pressure; SBP, systolic blood 
pressure.
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entirely, which may overstate the relationship between the bacteria 
and the MI.

Conclusion

At the genetic level, our study provides evidence supporting the 
causality of anti-H. pylori IgG levels on MI and HDL cholesterol levels. 
Increased anti-H. pylori IgG levels are significantly associated with an 
increased risk of MI and decreases in HDL cholesterol levels. Further 
clinical research is needed to confirm whether early H. pylori 
eradication can decrease the risk of MI.
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