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Microbiome data predictive analysis within a machine learning (ML) workflow 
presents numerous domain-specific challenges involving preprocessing, feature 
selection, predictive modeling, performance estimation, model interpretation, and 
the extraction of biological information from the results. To assist decision-making, 
we offer a set of recommendations on algorithm selection, pipeline creation and 
evaluation, stemming from the COST Action ML4Microbiome. We  compared 
the suggested approaches on a multi-cohort shotgun metagenomics dataset of 
colorectal cancer patients, focusing on their performance in disease diagnosis 
and biomarker discovery. It is demonstrated that the use of compositional 
transformations and filtering methods as part of data preprocessing does 
not always improve the predictive performance of a model. In contrast, the 
multivariate feature selection, such as the Statistically Equivalent Signatures 
algorithm, was effective in reducing the classification error. When validated on a 
separate test dataset, this algorithm in combination with random forest modeling, 
provided the most accurate performance estimates. Lastly, we  showed how 
linear modeling by logistic regression coupled with visualization techniques such 
as Individual Conditional Expectation (ICE) plots can yield interpretable results 
and offer biological insights. These findings are significant for clinicians and non-
experts alike in translational applications.
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1. Introduction

The microbiome is a highly diverse system that plays a significant 
role in human health. Its composition and function can vary widely 
among individuals, and can be influenced by several factors such as 
host age, lifestyle habits, environmental or nutritional factors. 
Dysbiosis, or an imbalance in the microbiome, has been linked to a 
variety of health conditions (Claesson et al., 2017). For example, the 
gut microbiome is involved in many important physiological 
processes, including digestion, immune function, and metabolism. 
Changes in gut microbiota have been linked to several diseases such 
as inflammatory bowel disease (Glassner et al., 2020), type 2 diabetes 
(Navab-Moghadam et al., 2017), and colorectal cancer (CRC) (Zeller 
et  al., 2014), as well as to mental diseases such as schizophrenia 
through the gut-brain axis (Thirion et al., 2023). Microbiome science 
is now having important implications for drug development and 
personalized medicine (Behrouzi et al., 2019).

The microbiome research community has traditionally relied on 
bioinformatic methods in order to solve important challenges such as 
taxonomic classifications, metagenome assembly and phylogenetic 
binning (Claesson et al., 2017). The use of ML can further support 
clinical applications. The most common ML tasks in microbiome 
research involve disease diagnosis, prognosis or the response to 
treatment (Brouillette, 2023) based on the taxonomic or functional 
composition of samples (Ghannam and Techtmann, 2021). Another 
important task is to predict the response of the microbiome to drug 
treatments, different dietary interventions or environmental exposures 
based on its composition (Thirion et al., 2022). Moreover, ML can 
be  used to discover diagnostic or prognostic biomarkers in the 
microbiome, that is, the informative features (i.e., genes, taxa or 
functions) that are most strongly associated with a disease, phenotype, 
environmental variable or treatment response. Biomarkers can, in 
turn, be used for early detection of a disease, patient stratification, and 
personalized medicine (Flemer et al., 2017; Cammarota et al., 2020; 
Ryan et al., 2020; Berland et al., 2023).

A comprehensive overview of the challenges and solutions 
associated with the application of statistical and ML techniques in 
human microbiome studies has recently, been provided by the 
ML4Microbiome COST action1 (Moreno-Indias et  al., 2021). A 
subsequent review of the applications of ML in human microbiome 
studies (Marcos-Zambrano et al., 2021) addressed the challenges of 
microbiome data analysis, and the importance of feature selection in 
the development of robust and interpretable models.

In this work, we continue in this direction by highlighting the 
specific issues pertaining to optimization and standardizing of state-
of-the-art ML techniques for microbiome data predictive analysis. 
We define a set of initial Standard Operating Procedures (SOPs) in the 
form of practical advices, outline areas suitable for automation, and 
describe processes on how to integrate everything into pipelines. This 
will facilitate the translational usage of the developed models by 
clinicians and non-experts. We consider numerous aspects, ranging 
from tasks, algorithms or combinations of algorithms, hyper-
parameters, to performance estimation protocols for disease 
prediction. We  operationalize these pipelines using shotgun 

1 https://www.ml4microbiome.eu/

metagenomic datasets of gut microbiome and demonstrate the power 
of automated machine learning techniques (AutoML) in finding the 
optimal pipeline.

2. ML tasks and associated analysis 
steps

2.1. Biological, methodological, and 
technical constraints for data analysts

While predictive modeling using ML has the potential to provide 
valuable insights to the biology of the microbiome, several challenges 
and limitations need to be addressed (Table 1). Data preparation, for 
example, is an essential first step to enable predictive modeling. It 
consists of the bioinformatic analysis conversion of sequencing reads 
to tables that quantify genes, operational taxonomic units (OTU) or 
more recently Amplicon Sequence Variants (ASVs), metagenomic 
species (MSP), or functional modules. Two main sequencing methods 
are used to obtain microbiome data, 16S rRNA sequencing and 
shotgun metagenomics. Both of them have advantages and drawbacks. 
Profiling microbial communities using amplified 16S rRNA genes 
involves sequencing this specific gene, which is present in all bacteria, 
in order to identify and quantify the types of bacteria in a sample. It is 
a straightforward and cost-effective method to profile the taxonomic 
composition of a microbial community. The weaknesses of this 
methodology are (Větrovský and Baldrian, 2013; Poretsky et al., 2014; 
Tremblay et al., 2015; Khachatryan et al., 2020): (i) its relatively low 
taxonomic resolution due to the conservation of the target gene, (ii) 
imprecise taxa quantification due to the bias induced by the PCR 
amplification step and the variable gene copy number between and 
within microbial species, (iii) lack of functional information and intra-
species and/or intra-population gene heterogeneity. Shotgun 
sequencing involves sequencing all extracted DNA in a microbiome 
sample, which allows a higher taxonomic resolution of the microbes 
species/strains, along with functional information (Brumfield et al., 
2020; Durazzi et  al., 2021). Analysis using metagenomic species 
reconstructed from non-redundant reference gene catalogs allows 
specific identification and quantification of the microbial species 
(Plaza Oñate et al., 2019). On the other hand, shotgun metagenomics 
sequencing is a much more expensive technique that generates large 
and complex datasets, which can be difficult to process, analyze, or 
interpret (Liu et al., 2021). Shotgun sequencing is also less suitable for 
samples with relatively low bacterial biomass (e.g., intestinal biopsies), 
where 16S rRNA sequencing is able to amplify these genes.

The specificity of the generated microbiome data has several 
implications which depend on the sequencing techniques used: (1) 
The total reads per sample (or depths of coverage) can vary by orders 
of magnitude within a single sequencing run. Comparison across 
samples with different depths of coverage requires specific adjustments 
that depend on the sequencing technique and the purpose of the 
analysis. (2) Microbiome data are sparse (excess of zeros in the feature 
tables) because (i) many species may be present in one individual and 
not in others (ii) species are present but sub-dominant and not found 
at the depth of coverage for a given sample. This feature is present in 
both 16S and shotgun data, but tends to be more severe in shotgun 
data. (3) This excess of zero renders the statistical distribution of the 
quantifications far from gaussian and thus hampers the use of 
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modeling approaches which assume Gaussianity. (4) In high 
throughput sequencing, the total read count represents a fixed-size, 
random sample of the DNA/RNA molecules within the underlying 
habitat. It is crucial to note that this count is independent of the 
absolute number of molecules in the sample and is therefore subject 
to total sum constraints. Consequently, alterations in the abundance 
of one sequence necessitate compensatory changes in the abundance 
of other sequences. The mathematical framework for these data types 
is compositional analysis, however its application to microbiome data 
and the consequences on ML models is still an active research area. 
(5) Microbiome data has a complex inter-dependency structure, 
where the species may interact with each other in many ways, 
including mutualism, parasitism, commensalism, and competition. 
For shotgun data, sequenced genes might belong to the same species 
and as such strongly correlated. Some variables may be correlated 
which requires special attention for some ML algorithms.

Following microbiome quantification in the form of raw 
quantification (feature) tables, the first major challenge for predictive 
modeling is the preprocessing of the tables in order to reduce technical 
biases and render the data suitable for ML modeling. This is because 
differences in preprocessing can have a significant impact on the 
performance of the models and may introduce biases into the analysis. 
Typical preprocessing tasks involve normalization, cleaning, and batch 
effect correction. Normalization is needed for reducing technical 
biases, such as sequencing depth, and for making samples and features 
comparable. To the latter, the normalization strategy should consider 
the compositional nature of microbiome data and appropriate 
transformations should be applied to avoid misleading results (Li, 
2015; Odintsova et al., 2017; Calle, 2019). Accordingly, incorrect or 
absence of scaling can lead to poor performance or even model failure. 
For example, when a distance metric is used like in Support Vector 

Machines (SVMs), scaling must be  performed. Similarly, Linear 
Discriminant Analysis or Gaussian Naive Bayes are statistically 
effective if only the model errors are Gaussian. Modeling approaches 
based on decision trees, like CART, random forest, boosted decision 
trees, do not make such assumptions and work comfortably on raw 
unscaled data as well. Data cleaning, on the other hand, involves 
removing outlier samples or features with the aim to improve the 
quality of the data and reduce the impact of the noise in the modeling 
process. The identified outliers require careful examination before 
taking the decision to eliminate them. In addition, feature cleaning by 
low-abundance filtering often improves the performance of ML 
models and renders more interpretable signatures. However, there is 
no universal consensus of the threshold filter value to apply. Finally, 
batch effect correction, or including batch information as a covariate, 
can help in avoiding spurious associations between microbial features 
or phenotypes and unmasking true biological variation. This is 
particularly important in the case of extensive studies that involve 
samples analyzed at different time points or sequenced in separate 
runs, as well as meta-analyses comprising multiple independent 
studies (Goh et  al., 2017). To this date, only a limited number of 
methods exist for this purpose, and there is a general lack of 
established recommendations for standardized approaches (Dai et al., 
2019; Ling et al., 2022; Wang and Lê Cao, 2023).

Another major challenge is data dimensionality. Microbiome data 
is high-dimensional, meaning that there are often many more features 
than samples, which can lead to overfitting and poor generalization of 
performance. Feature selection and prevalence/abundance filtering 
methods can help to reduce the dimensionality of the data and select 
the most informative features for ML models. However, filtering 
methods do not remove redundant features. Similarly, different feature 
selection methods can optimize different objective functions, which 

TABLE 1 List of challenges/constraints associated with applying machine learning (ML) approaches to microbiome data.

Challenge/Constraint Description

Data acquisition and preparation The process of acquiring and preparing microbiome data for predictive modeling involves bioinformatic analysis to convert raw 

sequencing reads into quantification (feature) tables. There are challenges associated with the sequencing methods used (16S 

rRNA sequencing or Shotgun metagenomics). Sequence data and accompanying metadata are often shared only with a bare 

minimum of detail, which is not always adequate for replication and further exploration.

Variability and sparsity of microbiome 

data

Microbiome data exhibits high variability in read depths per sample, sparsity (excess of zeros), non-Gaussian distributions and 

compositionality. The dependency structures among microbial species further complicates analysis.

Preprocessing tasks Preprocessing tasks such as cleaning, normalization and batch effect correction are crucial for reducing technical biases and 

rendering data suitable for ML models. Challenges include choosing appropriate threshold filters for read quality and sparsity 

reduction, selecting normalization methods based on the model’s assumptions, and accounting for experimental conditions.

Data dimensionality Microbiome data is often high-dimensional, with more features (microbial genes or taxa) than samples. This can lead to overfitting 

and poor generalization, especially with small sample sizes. Feature filtering and selection methods are employed to reduce 

dimensionality, but different methods can yield different results, and correlated features can hinder selection.

Non-linearity Several ML models assume a linear relation between response and predictors. Since non-linear relationships may exist both among 

and between features and the target, the selection of appropriate model is fundamental for analysis.

Interpretability of ML models While ML models can identify predictive patterns, interpreting these patterns in a biological context can be challenging. Using 

inherently interpretable models (e.g., decision trees, linear regression) and integrating metadata, environmental data, or functional 

assays can enhance interpretability. Visualization techniques and explainable AI methods can also aid in understanding the 

relationships between features and outcomes. Nevertheless, there is usually an interpretability/performance trade-off, by which the 

most highly performing models are often harder to interpret.

Limited availability of methods and 

recommendations

There is a limited number of established methods and standardized approaches for tasks such as batch effect correction and feature 

selection. Further research and consensus are needed to address these limitations and provide more robust solutions.
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FIGURE 1

The typical process from data preparation to predictive model building, highlighting the methods to consider during each stage.

may be distinct from the objective functions used in the ML models, 
and can result in different sets of selected features. Highly correlated 
features also hamper the selection of the relevant features. All these 
factors may negatively impact the performance of the model. 
Furthermore, not all feature selection methods are able to scale up to 
the thousands of microbial genes or taxa present in different 
individuals. Along the same lines, not many ML algorithms can scale 
down to low sample sizes. Low sample size can limit the statistical 
power and generalizability of ML models. Special care must therefore 
be given to the performance estimation protocol used during training 
for the best predictive model. The bootstrap bias correction method, 
for example, is such an approach equipped to provide better results 
than traditional cross-validation methods particularly at low sample 
sizes, also reducing the variance in the estimates of model performance 
(Tsamardinos et al., 2018).

A final challenge is that although ML models can identify 
predictive patterns in the data, it is often difficult to interpret these 
patterns in a biological context. This can limit the utility of ML for 
generating hypotheses and guiding experimental research. One way 
to ensure interpretability is to choose predictive modeling algorithms 
that are inherently interpretable, such as decision trees, logistic 
regression or linear SVMs. These models have an intuitive connection 
between the input and the output making it easier to understand the 
relationship between the microbiome features and the outcome. 
However, there is usually a performance/interpretability trade-off in 
ML, by which more complex models (ensembles of trees, neural 
networks) show better predictive power, but their outputs are also 
harder to interpret. Another way to improve interpretability is by the 
combined use of feature selection and the integration between 
metadata, environmental data, or functional assays, to encourage the 
model to use a smaller number of features, making it more 
interpretable and at the same time provide a comprehensive 
understanding of the microbial community. Dimensionality reduction 
methods such as sparse Partial Least Squares regression (PLS) are 
highly interpretable and also provide a visual representation of the 
data and the model’s predictions. Explainable AI techniques such as 
feature importance, partial dependence plots, and SHAP values can 
also help to explain the model’s predictions and how they are 
influenced by the input features (Lê Cao et al., 2009).

2.2. ML steps, and appropriate algorithms 
to use

Once data has been collected and prepared for analysis, the typical 
process of building an ML model able to predict an outcome of 
interest consists of three consecutive steps: data preprocessing, feature 
selection and predictive modeling (Figure 1). For each of these steps 
there are several methods to consider so the optimal choice depends 
on the biological, methodological, and technical constraints of 
microbiome data (Table 2).

2.2.1. Data preprocessing
Regarding data preprocessing, one needs primarily to consider 

how to normalize the data to enable biologically meaningful 
comparisons between samples or features. Normalization methods try 
to eliminate the variability in sampling depth and the sparsity of the 
data. Rarefying has been a widely used normalization method, 
especially for 16S rRNA data, in cases where there are significant 
differences in the library sizes (e.g., more than 10-fold) (Pereira et al., 
2018). However, rarefying may not always be an ideal choice since it 
can reduce statistical power depending on the amount of samples 
being removed and it does not address all challenges of compositional 
data (McMurdie and Holmes, 2014).

Alternatives to rarefying are scaling and transformation. However, 
these are not recommended to be  used at the same time, as this 
practice can invalidate the data, e.g., rescaling may preserve the 
original distributions but transformation may not (Lovell et al., 2015). 
Scaling involves finding a sample-specific factor, i.e., a fixed value or 
proportion, to multiply the matrix counts. Transformation methods, 
on the other hand, will replace values with the normalized ones. 
Several scaling approaches have been proposed based on the total 
sum, trimmed mean (Robinson and Oshlack, 2010), geometric mean 
(Love et al., 2014), upper quartile or a data-driven threshold (Paulson 
et al., 2013). But choosing the most effective one is difficult (McMurdie 
and Holmes, 2014; Weiss et al., 2017; Pereira et al., 2018; Lin and 
Peddada, 2020) because of the possible over- or under-estimation of 
fraction of zero counts and distortion of feature correlations across 
samples due to the data sparsity and differences in sequencing depths. 
Similarly, there are several transformation methods for microbiome 
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data. Since microbiome datasets are essentially compositional, these 
methods follow Aitchison’s methodology for compositional data to 
convert the feature counts to log-ratios within each sample by applying 
an additive, centered or isometric log-ratio transformation (Aitchison, 
1982; Egozcue et al., 2003). Again, a reference feature (gene, taxon, or 
function) is sought to be used for eliminating the effect of the sampling 

fraction. However, one should be cautious on how to replace the zeros 
during calculations for which there is no clear consensus. For example, 
zeroes can be eliminated by either incorporating a pseudo count or 
imputing values using probability or zero-inflated models. However, 
both approaches pose certain challenges. The addition of a pseudo 
count may artificially inflate low-abundance features while imputation 

TABLE 2 Summary of machine learning (ML) algorithms for each workflow step.

Workflow step Task Algorithms

Data preprocessing

Handling outliers

Identify outliers by graphical methods (distribution or dimensionality reduction plots) or by statistical methods 

(Z-score).

Investigate the cause of the outliers. if they are due to measurement errors or sample contamination, they should 

be removed.

Filter out non-

informative features
Threshold filtering, variance filtering or correlation-based filtering.

Normalization

Rarefying.

Scaling (different approaches: total sum, trimmed mean, geometric mean, upper quartile or data-driven threshold).

Transformation (additive, centered or isometric log-ratio transformation).

Batch correction ComBat, limma, RUV, and PLSDA-batch.

Feature selection

Identify the most 

informative genes, taxa 

or functions

Filter methods: supervised (e.g., based on correlation, mutual information or ANOVA), unsupervised (e.g., based on 

dispersion and similarity measures).

Wrapper methods: e.g., Recursive feature elimination (RFE), Statistically equivalent signatures (SES) or genetic 

algorithms.

Embedded methods: feature selection during the model training process incorporating techniques such as Least 

absolute shrinkage and selection operator (LASSO) or Elastic net regularization.

Predictive modeling

Classification

Linear classifiers: logistic regression, linear discriminant analysis, partial least squares discriminant analysis (PLS-

DA).

Non-linear classifiers: SVMs, decision trees, random forests, artificial neural networks, gradient boosting, kernel 

PLS-DA.

Performance estimation 

protocols: evaluate the 

quality of a predictive 

model

Holdout method: typically 70/30 split.

K-fold Cross Validation protocol.

Monte Carlo cross validation.

Handling class 

imbalance

Stratified K-fold Cross Validation.

Oversampling the minority class: random oversampling, synthetic oversampling.

Undersampling the majority class: random undersampling, heuristic or learning models that try to find redundant 

examples for deletion.

Class weighting.

Optimization metrics

Threshold-independent measures: area under the receiver operating characteristic curve (AUROC), and area under 

the precision-recall curve (AUPRC).

Threshold-dependent measures: accuracy, balanced accuracy, f1 score, Matthew’s correlation coefficient (MCC).

Model selection

Hyper-Parameter 

Optimization (HPO) or 

Combined Algorithm 

Selection and HPO 

(CASH)

Optimization techniques: random search, grid search, Bayesian optimization, and evolutionary algorithms. Early 

stopping, model checkpoints

Model interpretability
Explainable artificial 

intelligence (XAI)

Global explainer: feature importance (e.g. permutation feature importance).

Local explainer: Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations 

(SHAP).

Individual Conditional Expectation (ICE) plots.
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introduces artificial values, which can distort the true distribution of 
the data and potentially obscure genuine biological variation (Kaul 
et al., 2017; Lubbe et al., 2021).

Practical advice: Normalization is problem- and algorithm-
dependent. It is advisable to experiment with different types of 
normalization as part of the ML pipeline, and select the one who 
works the best. It is also important that some ML algorithms whose 
representation learning typically has a distance measure, might need 
specific types of normalization to work (e.g., SVMs require 
standardized data).

Apart from normalization, cleaning the data from outliers and 
unnecessary features is an essential preprocessing step to consider. 
Handling outliers requires to identify them typically by graphical 
methods (e.g., distribution or dimensionality reduction plots) or 
statistical ones (e.g., Z-score). For example, sanity checks for outlier 
detection include Principal Component Analysis of microbiome data 
that have been normalized. Subsequent ML tasks might also 
encompass the use of robust methods downweighting outlying 
observations during the estimation procedure (Kurnaz et al., 2018; 
Monti and Filzmoser, 2022; Kurnaz and Filzmoser, 2023). The cause 
of their outlierness must then be investigated. Outliers may be due to 
measurement errors, sample contamination, or biological variation. 
Understanding the cause can help determine the appropriate approach 
to handling outliers. If outlier samples are due to measurement errors 
or sample contamination, it may be appropriate to remove them from 
the dataset.

In terms of non-informative features or taxa that are biologically 
irrelevant or known contaminants, filtering can be based on thresholds 
on their abundance/prevalence, variance or correlation. 
Low-abundance or prevalence filtering involves eliminating features 
present in less than, e.g., 10% of the samples (Cao et  al., 2021). 
Variance filtering involves removing features of zero or low variance 
across the samples as they are less likely to contribute to the overall 
variation in the data and may be less informative. The threshold for 
variance filtering can be determined based on the distribution of the 
variance in the data. Finally, based on the correlation coefficient or the 
mutual information between features, one can detect and filter out 
those that are highly associated with each other as they are redundant 
and may not provide additional information.

Practical advice: Perform exploratory data analysis that includes 
visualization of observations in a reduced dimension subspace for 
the inspection of outliers, correlation maps for the identification of 
highly correlated features, and descriptive statistics for the inspection 
of missing values and non-informative taxa.

After normalization and cleaning, one can perform batch 
correction to account for batch effects that may arise due to technical 
factors such as sequencing platform, library preparation, or batch 
processing. Several batch effect correction methods have been 
proposed in the literature, mainly for RNAseq and microarray data, 
such as ComBat, limma, and RUV that can be used to correct for 
batch effects in the microbiome domain (Wang and LêCao, 2020). 
Very recently, a new and effective approach for correcting batch effects 
called PLSDA-batch has been presented that can effectively correct for 
batch effects and improve the accuracy of downstream analyses (Wang 

and Lê Cao, 2023). Regardless of the chosen batch adjustment method, 
however, it is important to consider the statistical assumptions of the 
method, such as Gaussianity. It is possible that the data transformation 
applied prior to the batch adjustment may not satisfy 
these assumptions.

Practical advice: Before generating sequence data, make sure that 
samples are randomized so that whole study groups do not end up 
in separate batches. Visually inspect the post-sequencing impact of 
all possible batch effects on samples' distribution in a space of 
reduced dimension and in subsequent ML model performance, and 
if needed correct for this using recent appropriate tools.

2.2.2. Feature selection
After preprocessing, feature selection is the next important step 

for microbiome data analysis in order to identify the most informative 
genes, taxa or functions. In principle, feature selection is the process 
of selecting a subset of features from a larger set of available features 
that are most important in predicting the outcome variable. The goal 
is to reduce the number of input features required to achieve good 
model performance, thereby improving the efficiency and 
interpretability of the model. This also helps to avoid overfitting, a 
common problem when analyzing high dimensional datasets where 
the model becomes too complex and starts to memorize the training 
data instead of learning general patterns.

Feature selection techniques can be broadly categorized into three 
types: filter methods, wrapper methods, and embedded methods. 
Filter methods can be either unsupervised (e.g., using dispersion and 
similarity measures) or supervised (e.g., based on correlation, mutual 
information or ANOVA), the latter evaluating the relevance of features 
to the outcome variable (Ferreira and Figueiredo, 2012), which can 
then be used to select the top-ranked features (Segata et al., 2011). 
Wrapper methods, such as recursive feature elimination, statistically 
equivalent signatures or genetic algorithms, employ statistical metrics 
too. However, they do so in combination with a predictive algorithm 
so as to select features based on their impact on the model’s 
performance (Lagani et  al., 2017; Sanz et  al., 2018). Embedded 
methods perform feature selection during the model training process 
by incorporating regularization techniques, such as L1 or L2 
regularization, that automatically penalize the less important features. 
Nevertheless, there is still no consensus on which feature selection 
method should be used (Marcos-Zambrano et al., 2021).

The choice of the appropriate feature selection method remains an 
open problem because microbiome data poses numerous analysis 
challenges, such as noise, high dimensionality and small sample sizes, 
sparsity, and intercorrelated or redundant features. Filter methods can 
handle high-dimensional data relatively well, but they may not 
perform well in the presence of sparsity or low sample size. For 
example, correlation-based methods may suffer from false positives 
when the correlation is driven by sparse features or may select one 
feature from a correlated pair, resulting in suboptimal feature 
selection. Similarly, ANOVA may have low statistical power with few 
samples and may select redundant features that do not contribute 
additional information beyond what is already provided by other 
features. Wrapper methods, on the other hand, can better capture the 
complex interactions between features and may perform better than 
filter methods in the presence of redundancy, sparsity or low sample 
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size. Their main drawback is that they can be  computationally 
intensive and may not scale well to high-dimensional data. Embedded 
methods, such as least absolute shrinkage and selection operator 
(LASSO) or Elastic Net regularization, are well-suited for high-
dimensional, sparse data and can handle low sample size relatively 
well (Tibshirani, 1996). These methods can perform both feature 
selection and regularization during model training, and can often 
identify a small number of highly relevant features that capture the 
underlying patterns in the data.

Regarding linearity, most filtering methods rely on linear 
statistical models to rank and select features based on their association 
with the response variable. Similarly, embedded methods typically use 
linear models to embed the features into a lower-dimensional space 
or to fit a regression model that selects the most informative features. 
To capture more complex relationships, mutual information is such a 
non-linear measure of the association between two random variables 
that can be  used as a filter method. For example, the Minimum 
Redundancy Maximum Relevance (mRMR) selects features that have 
the highest mutual information with the target variable and the lowest 
mutual information with the previously selected features (Chen et al., 
2016). Accordingly, any wrapper method that embeds a non-linear 
statistical metric can be  used for capturing complex associations 
among features.

Lastly, certain feature selection techniques are inherently 
stochastic, implying that they may return different results in successive 
runs. Consequently, it is recommended to run each algorithm 
containing random elements multiple times, to obtain a more accurate 
understanding of its predictions. Alternatively, fixing the random seed 
in each run is guaranteed to provide consistent and 
deterministic results.

Practical advice: Consider testing a conservative filter method as a 
pre-screening stage in the feature selection task, or a more expensive 
multivariate method (e.g., embedded) to remove irrelevant and 
non-informative features in high-dimensional datasets. Another 
good general practice is to consider the objective function which is 
used in the feature selection and try to match it with the objective of 
the subsequently chosen modeling approach. For instance, feature 
selection based on Fisher score is suitable for linear discriminants, 
PCA is a good dimensionality reduction routine for Gaussian 
mixture models, recursive feature elimination is applicable for 
non-linear SVMs, etc.

2.2.3. Predictive modeling
Lastly, the task of modeling involves selecting a predictive 

algorithm, a protocol for performance assessment, a protocol for 
model selection, and a metric for optimizing that performance. The 
choice of algorithm mainly depends on the problem type and the data 
characteristics. In the microbiome domain, classification problems are 
the most prevalent although efforts to address survival ones also exist. 
Regarding data characteristics there are several types of modeling 
algorithms, each having its strengths and weaknesses. Below, 
we explore methods that can handle challenges related to microbiome 
data such as scalability to high-dimensional data and small sample 
sizes, as well as interpretability. This will include both linear and 
nonlinear classifiers commonly employed and methods to estimate 
their performance.

Logistic regression and linear discriminant analysis, for example, 
are linear classifiers that can handle high-dimensional data, but they 
may be sensitive to overfitting when sample sizes are small (e.g., less 
than 100 per class). They may thus be good choices when the data is 
not too complex and the sample sizes are not too small. Partial Least 
Squares Discriminant Analysis (PLS-DA) is a good option for high-
dimensional data with low sample sizes and benefits from 
multicollinearity, although care must be taken to avoid overfitting. On 
the other hand, SVMs are mainly nonlinear classifiers that can handle 
high-dimensional data but can be computationally expensive when 
the number of features is very large. Hence, they may be a good choice 
when the data is more complex, but the computational cost may be an 
issue. In contrast, decision trees and random forests are nonlinear 
classifiers that can handle high-dimensional data and are relatively 
robust to small sample sizes. However, they suffer from overfitting and 
instability when the trees are too deep or the data is noisy. Artificial 
neural networks and gradient boosting are also nonlinear classifiers 
that can handle high-dimensional data and are relatively robust to 
small sample sizes, but can be computationally expensive. Careful 
hyperparameter tuning is therefore important to avoid overfitting.

Unfortunately, due to the curse of dimensionality and the 
unknown patterns in the data, one cannot provide specific guidance 
on choosing a predictive modeling algorithm based on the number of 
features. Moreover, the so-called No Free Lunch Theorem in machine 
learning states that there is no single “best” method that can 
universally excel in solving all types of problems. The selection of an 
appropriate algorithm needs to consider the specific characteristics 
and constraints of the task at hand. Nevertheless, a combination of 
feature selection and a suitable performance estimation protocol can 
enhance a classifier’s performance in a high-dimensional setting 
(Wolpert, 2002). If interpretability is an important consideration, 
logistic regression, PLS-DA or decision trees are highly interpretable, 
while SVMs and artificial neural networks may be less so. Essentially, 
if feature selection is performed and techniques such as feature 
importance measures and visualization are used, insights into the 
behavior of even the most complex models can be gained.

Practical advice: For high-dimensional scenarios, as is the case with 
microbiome data, the choice of the model must consider the sample 
size and the desired computational cost and interpretability level. 
Coupling with a feature selection algorithm may improve 
prediction accuracy.

2.3. Building and evaluating ML workflows

2.3.1. Performance estimation protocols
Performance estimation protocols are methods used to evaluate 

the quality of a predictive model. Their main purpose is to estimate 
the performance of the model on new, unseen data called out-of-
sample performance or generalization error–the error that the model 
will obtain if hypothetically tested on the unseen data of infinite size. 
Estimation of the performance should not be confused with improving 
the performance which is the purpose of the model selection routine. 
The simplest protocol for performance assessment is the holdout 
method which involves splitting the available data into two parts, a 
training set and a test set; typically, a 70/30 split is used. The model is 
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trained on the training set, and its performance is evaluated on the 
testing set. Holdout is suitable when the available data is sufficiently 
large, and the number of features is not too high relative to the number 
of samples. If the sample size is low, the performance on the test set 
will have a large variance. One way to reduce the variance is by 
repeating this protocol, each time by randomly assigning samples to 
training and test sets, and estimating the average model’s performance.

The well-known K-fold Cross-Validation protocol can be used for 
that. It involves dividing the data into K mutually exclusive, equally 
sized sets, or folds. Each time the model is trained on all folds but one 
that is held out for estimating the performance. If the sample size is 
very low, this protocol may be repeated several times with a different 
partitioning to folds, to further reduce the estimation variance. A 
typical value for the number of folds is 5 or 10, but this can be adjusted 
depending on the size of the data. In a similar manner, Monte Carlo 
cross-validation can be suitable when the available data is sufficiently 
large, and the number of features is high relative to the number of 
samples. This method can be useful when the data is noisy or there is 
a high degree of variability in the data, as it allows for multiple random 
splits to be generated. Taking K-fold Cross-Validation to the extreme, 
one can perform leave-one-out (LOO) cross validation, where all but 
a single sample is used for training and the performance is assessed on 
the remaining sample and averaged across all samples. LOO is known 
to be an almost unbiased performance assessment routine (Vapnik, 
2006). The main advantage is its repeatability that comes from the 
deterministic nature of the routine. However, it can be  a time-
consuming process when the number of samples is larger.

A common characteristic of all protocols is that they use a 
portion of the data to train a model and the rest to evaluate its out-of-
sample performance. In cases where the samples are plenty, losing 
some part of the data to estimation is acceptable. If not, as in the 
microbiome case, finding the right balance between training and test 
data is essential. Obviously, the best predictive model is—on average, 
not always—the one trained on all available data. However, since 
there is no more data left, how does one estimate its performance? 
The answer is to use one of the aforementioned protocols, i.e., 
evaluate the model performance on some partitioning protocol but 
train the final model on all available data. This process is called the 
“Train-Test-Retrain” procedure and presents a big change in 
perspective because it uses the performance of a suboptimal model 
as a proxy for the performance of the full model (Tsamardinos et al., 
2022). As a result, the estimate is conservative, which is better than 
being overly optimistic. Essentially, during performance estimation 
we are not evaluating a specific model instance, but the entire ML 
pipeline that produces the final model.

Lastly, a typical methodological problem in predictive modeling 
is that of data leakage which can lead to optimistic or entirely invalid 
models. Data leakage occurs when performing data preprocessing or 
feature selection on the whole dataset before applying cross-validation. 
For example, when standardizing the data using the mean and 
standard deviation of the entire dataset, the rescaling process gains 
knowledge of the full data distribution, introducing bias on the 
rescaled values that can affect the performance of the algorithms on 
the cross-validation test sets. To avoid data leakage, therefore, the 
preprocessing, feature selection and predictive modeling must 
be performed together within each fold of the cross-validation and 
only apply them to the test fold on each cycle, ensuring the integrity 
of the evaluation process.

Practical advice: Evaluate the entire ML pipeline with cross-
validation. For small sample sizes (e.g., 100 per class) use a 
Stratified, Repeated K-fold Cross Validation, of 4–5 repeats, with 
retraining on all data to produce the final model with a maximum 
K the number of samples in the rarest class so that at least one 
sample from each class gets into each fold.

2.3.2. Class imbalance
A data characteristic that often appears in the microbiome 

domain is class imbalance where the number of samples in one class 
is much smaller than the number of samples in the other classes. 
Class imbalance can be problematic and lead to biased models that 
underperform on the minority class. One technique to alleviate this 
is the stratification of samples to cross-validation folds, namely, 
stratified K-fold Cross-Validation. This entails partitioning the data 
with the extra constraint that the distribution of the outcome in 
each fold is close to the distribution of the outcome in all samples. 
Other ways to compensate for the class imbalance include 
oversampling the minority class, undersampling the majority class 
and class weighting. Oversampling methods include random 
oversampling, where instances from the minority class are randomly 
duplicated, and synthetic oversampling, where new instances are 
in-silico synthesized from existing ones of the minority class, 
referred to as data augmentation, e.g., SMOTE (Chawla et al., 2002). 
General concern with oversampling is the increase of likelihood of 
overfitting due to exact or synthetic copies of the existing data 
(Fernández et al., 2018). Undersampling methods include random 
undersampling, where instances from the majority class are 
randomly removed, and methods that involve heuristics or learning 
models trying to find redundant examples for deletion or useful 
examples for non-deletion. However, removing too many samples 
from the majority class can be a problem, especially if the dataset is 
small. Oversampling and undersampling techniques can potentially 
enhance model performance when applied either as preprocessing 
steps or as integral components of the model itself (Mihajlović 
et al., 2021).

On the other hand, class weighting regards the assignment of 
weights to the classes to balance their contributions to the loss 
function during training. By assigning higher weights to the minority 
class, the algorithm can redistribute its capacity to focus more on 
correctly predicting the minority class, thus improving the overall 
performance on the imbalanced dataset. However, finding the right 
weights can be quite challenging. This strategy, also known as cost-
sensitive learning strategy encourages the model to focus on correctly 
predicting the minority class, as misclassifying instances of this class 
incurs a higher cost (Ling and Sheng, 2010).

Regardless of how class imbalance is approached when 
evaluating the performance of a model on an imbalanced dataset, 
it is important to use appropriate performance metrics that 
consider the imbalance (e.g., balanced accuracy; averaged versions 
of precision, recall, F1-score etc.).

Practical advice: Data stratification during performance estimation 
and appropriate choice of performance metric should be practiced. 
Test several over/under-sampling options is suggested but always 
validate the similarity between synthetic samples and actual data. 
Alternatively consider class weighing or cost-sensitive methods.
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2.3.3. Performance metrics
Performance measures play a crucial role in evaluating and 

quantifying the predictive capabilities of classifiers. For example, 
threshold-independent measures like Area Under the Receiver 
Operating Characteristic Curve (AUROC or AUC) and Area Under 
the Precision-Recall Curve (AUPRC) are advantageous in assessing 
overall classifier performance. The AUC quantifies the ability of a 
classifier to discriminate between positive and negative instances 
across all possible decision thresholds. In other words, it measures the 
classifier discriminative capacity. Intuitively, AUC denotes the 
probability that a randomly chosen positive instance is ranked by a 
classifier higher than a randomly chosen negative instance. AUC is 
robust to moderate class imbalance and useful when the relative costs 
of false positives and false negatives are equal (Bewick et al., 2004). In 
contrast, AUPR focuses on the precision-recall trade-off and is 
particularly useful in imbalanced datasets, when the positive class is 
of greater interest. It denotes the probability of correct detection of 
positive instances (Saito and Rehmsmeier, 2015). Threshold-
dependent measures, on the other hand, assess classifier performance 
at a specific decision threshold between 0 and 1. Threshold tuning 
does not change the classifier quality but can improve the performance 
metric, while also being one of the simplest approaches to handle a 
severe class imbalance (Fernández et al., 2018). Accuracy, for example, 
calculates the proportion of correctly classified instances over the total 
number of instances. However, it can be  misleading under class 
imbalance, as it may achieve a high accuracy score by simply 
predicting that all observations belong to the majority class (Akosa, 
2017). In contrast, balanced accuracy measures the average accuracy 
obtained from both the minority and majority classes. However, it 
treats all misclassifications equally and does not provide information 
about the performance of the classifier on individual classes. The F1 
score is defined as the harmonic mean of precision and recall, which 
considers both false positives and false negatives. Nevertheless, F1 
score does not capture true negatives, which can be crucial in certain 
applications. In contrast, Matthew’s Correlation Coefficient considers 
all four outcomes of a binary classification, true positive, true negative, 
false positive, and false negative rates. This is especially useful when 
the class distribution is imbalanced or when the costs associated with 
different types of errors vary (Chicco and Jurman, 2020).

Practical advice: Selecting an appropriate performance metric 
depends on the specific requirements of the task, the prevalence of 
class imbalance, and the trade-offs between different types of 
classification errors. Although AUC is widely used, different metrics 
highlight different performance aspects. Using multiple ones may help 
in analysis and better understanding of the classifier performance.

2.3.4. Hyperparameter tuning
Several different candidate algorithms should typically be tried for 

each of the analysis steps based on the aforementioned factors to find 
the optimal ML pipeline. Nonetheless, each algorithm comes with 
several settings, referred to as hyper-parameters, that need to be set 
before training. Examples of hyperparameters include the learning 
rate of a neural network, its early stopping or model checkpoint 
parameters, the regularization strength of a linear model, or the depth 
of a decision tree. Optimizing for these choices is called Tuning, or 
else, Hyper-Parameter Optimization (HPO) or Combined Algorithm 

Selection and HPO (CASH) (Thornton et al., 2013; Feurer et al., 2015). 
In a nutshell, HPO selects the best hyperparameter values to achieve 
optimal performance while CASH involves selecting the best machine 
learning algorithm and its hyperparameters. CASH aims to automate 
the process by searching over a large space of possible algorithm and 
hyperparameter combinations. This is particularly useful when there 
is no clear choice of algorithm, or when the performance of different 
algorithms is highly dependent on the choice of hyperparameters.

Both HPO and CASH require training and evaluating many 
different ML pipelines with different hyperparameters or algorithms. 
To this end, various optimization techniques have been proposed, 
such as random search, grid search, Bayesian optimization, and 
evolutionary algorithms, among others. These techniques aim to 
efficiently search the hyperparameter or algorithm space to find the 
best combination that optimizes the desired performance metric. 
Random and grid search are simple to implement and parallelize but 
can be  inefficient for high-dimensional search spaces. Bayesian 
optimization and evolutionary algorithms are more efficient, can use 
past evaluations to guide the search and also handle non-continuous 
and non-convex search spaces. Evolutionary algorithms can also 
search for multiple optima but can be computationally expensive. The 
downside of Bayesian optimization is that it requires a well-defined 
prior over the search space and can be  sensitive to the choice of 
function to determine the next set of hyperparameters to evaluate.

2.3.5. Model selection process while tuning
When trying multiple ML pipelines, it is tempting to select as best 

the one with the highest estimated performance. Practitioners 
sometimes confuse or mix up the error estimation process with the 
error reduction process. The performance assessment aims to estimate 
the error while model selection aims to reduce the error. When these 
procedures are mixed up a selection bias occurs leading to the 
respective performance estimate becoming compromised (usually 
over-optimistic). This problem is called the “winner’s curse” and is 
conceptually equivalent to the multiple hypothesis testing problem in 
statistics (Jensen and Cohen, 2000). Essentially, this phenomenon 
occurs since each performance protocol simulates an ideal scenario 
by pretending that the test sets come from the future, but in reality, 
these test sets are used to select the winning model and thus the 
process that aimed to estimate the performance is now used to 
improve it. This problem becomes more pronounced in low sample 
sizes, where the optimism could be as much as 20 AUC points (Ding 
et  al., 2014; Tsamardinos et  al., 2014). Therefore, appropriate 
performance estimation protocols should be used to correct for the 
winner’s curse.

The simplest solution to this problem is to hold out a second set 
of samples to be used for model selection. That is, extend the Train-
Test protocol into the Train-Validate-Test protocol. The samples in the 
Validation may be used several times, but only for selecting the best 
model while those in the test set are used once, for performance 
estimation. Obviously, as before, this procedure is preferable when the 
sample size is large. In cases of low sample sizes, several alternatives 
have been proposed such as the nested cross validation (Salzberg, 
1997), the Tibshirani-Tibshirani procedure (Tibshirani and 
Tibshirani, 2009) and the Bootstrap bias corrected cross validation 
(BBC-CV) (Tsamardinos et al., 2018) among others (Ding et al., 2014).

The nested cross validation involves a double loop procedure, 
where an inner cross-validation loop is run over the training data and 
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is used for hyperparameter tuning, and an outer one for estimating the 
performance. Although nested cross-validation is very useful when 
the dataset is small and the number of hyperparameters is large it is 
computationally very expensive. The Tibshirani and Tibshirani 
method does not employ a separate hold out set. Rather it employs 
traditional K-fold cross-validation estimates to calculate the bias and 
subtract it from the performance estimates. A similar, but 
computationally more efficient method that has smaller variance and 
bias, is the BBC-CV method that was recently presented (Tsamardinos 
et al., 2018). Here, in order to calculate the bias, bootstrap resampling 
is employed on the pooled out-of-sample estimates collected during 
cross-validation of multiple pipelines.

Practical advice: Combined Algorithm Selection and HPO allows 
finding the optimal ML pipeline when this combines different 
algorithms and hyperparameters. Start exploring the space by grid 
or random search, and always correct for the “winner’s curse.” If the 
sample size is sufficient, use nested-CV due to its simplicity of 
implementation, otherwise use BBC-CV.

2.3.6. AutoML: challenges and best practices
The above information suggests that implementing a complete 

machine learning workflow typically requires a substantial amount of 
skilled manual effort. In addition to being time-consuming, it also 
requires an expert to make informed decisions about which methods 
to incorporate into the pipelines. However, the lack of such experts 
and the associated high costs have paved the way for the emergence of 
automated machine learning (AutoML) (Hutter et al., 2019). AutoML 
aims to automate various stages of the machine learning process, 
including data preprocessing, feature selection, model training, 
hyperparameter tuning, and model evaluation. By doing so, AutoML 
enables objective and data-driven analysis decisions, resulting in high-
quality models that can be  utilized even by inexperienced users 
(Xanthopoulos et al., 2020).

AutoML is frequently used synonymously with the 
aforementioned CASH and HPO approaches that focus on solving a 
particular optimization problem. However, these solely aim to deliver 
predictive models and do not encompass the entire machine learning 
workflow necessary for microbiome data analysis. While various 
AutoML systems such as the well-known auto-sklearn (Feurer et al., 
2022) or GAMA (Gijsbers and Vanschoren, 2019) exist, only TPOT 
(Olson and Moore, 2019) and JADBio (Tsamardinos et al., 2022) have 
the capability to extend their functionality to include the feature 
selection step. Notably, JADBio goes even further by encompassing all 
the necessary steps, including the estimation of out-of-sample 
predictive performance, which most AutoML systems do not 
automate, thereby providing a comprehensive solution for the ML 
analysis of microbiome data.

While AutoML offers significant advantages by automating 
various steps of the machine learning workflow, it may also have 
certain challenges. Firstly, AutoML may lack transparency, making it 
challenging to understand and explain the underlying decisions made 
by the automated processes. This opacity can limit the ability to detect 
and address biases or errors. AutoML tools may also have limited 
customization options, as they are designed to cater to a wide range of 
users and tasks, restricting flexibility and domain-specific adaptations. 
Furthermore, it can increase computational cost due to extensive 

model exploration and lastly, relying solely on AutoML can diminish 
the essential role of human expertise and domain knowledge, which 
are crucial in understanding the context, interpreting results, and 
making informed decisions. It is therefore essential to strike a balance 
between the advantages of automation and the need for human 
involvement (Gijsbers et al., 2019; Romero et al., 2022).

Practical advice: AutoML is becoming increasingly popular, but most 
approaches primarily focus on solving the CASH problem to provide 
an optimal predictive model. As a result, researchers still need to 
decide on performance estimation methods and protect against the 
“winner’s curse”.

2.4. Model interpretability and explainability 
of results

Model explainability involves understanding how algorithms 
learn the relationship between inputs and outputs. In classification 
models, there are three main goals: to create an accurate model, to 
accurately estimate how good the model is and interpretability. 
However, there is often a tradeoff between these objectives whereby 
linear models are interpretable but may underperform compared to 
nonlinear models. Complex nonlinear models achieve better 
performance but are less interpretable. This lack of interpretability 
limits their use in biomedical research where understanding the 
classification process is crucial.

For this reason, explainable artificial intelligence is a growing field 
that focuses on explaining the output or decisions of ML models 
(Carrieri et al., 2021; Lombardi et al., 2021, 2022; Bellantuono et al., 
2022). One prominent technique in this respect is the measurement 
of feature importance. Feature importance methods aim to quantify 
the contribution of each feature to the model’s predictions. Particularly, 
global methods provide an overall ranking of features while local 
methods try to explain the contribution of each feature to a specific 
prediction. For example, permutation importance is a global method 
that evaluates importance by disrupting the relationship between the 
feature and the true outcome. The underlying concept is simple: if 
permuting a feature’s values results in higher prediction error, it 
indicates its importance. Conversely, if permuting the feature does not 
affect the error, it is classified as unimportant. Regarding local 
methods, Local Interpretable Model-agnostic Explanations (LIME) is 
a technique that approximates model behavior with an interpretable 
(linear) model at the neighborhood around each individual prediction 
(Ribeiro et  al., 2016). Similarly, SHapley Additive exPlanations 
(SHAP) is a local explainer algorithm that uses a concept from game 
theory called Shapley values (Lundberg and Lee, 2017). Shapley values 
measure how much each feature contributes to the prediction by 
considering all possible combinations of features in a fair share 
manner. SHAP can work with any kind of model and can show the 
impact of each feature visually. Finally, some methods combine a 
stepwise forward strategy to identify a minimal subset of interpretable 
variables from a permutation-based score of importance (Genuer 
et al., 2015).

Individual Conditional Expectation (ICE) plots also provide a way 
to explore and understand the relationship between a specific input 
feature and the output of a model, while considering the influence of 
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other features (Tsamardinos et al., 2022). In an ICE plot, the x-axis 
represents the range of values for the chosen input feature. Each line 
in the plot corresponds to how the model prediction changes while 
varying all the remaining input features. In this way ICE plots help 
identify non-linear patterns, interactions, and heterogeneity in the 
model’s behavior across instances, aiding in model interpretation at 
the individual level.

Practical advice: Start with a simple, interpretable model; more 
complex models can be used to achieve better performance, for which 
model explanation techniques can be used, such as calculation of 
feature importances, LIME, SHAP values, and ICE plots.

3. Comparative evaluation of ML 
approaches

To showcase the effectiveness of various ML approaches in 
enhancing predictive performance, we  collected a set of CRC 
benchmark data on a two-class (healthy/cancer) classification problem. 
To this direction, we first evaluated the effect of typical preprocessing 
steps such as normalization and filtering. Then we  used AutoML, 
namely JADBio, to find the best performing and best interpretable 
pipelines in terms of feature selection and predictive modeling.

3.1. Description of the data

This dataset (Barbet et  al., 2023) gathers 2090 human stool 
samples characterized by shotgun metagenomic sequencing from 13 
public cohorts spanning nine countries (Table 3). This data provides 

the gut microbiota composition in healthy controls and patients with 
adenoma or CRC.

Data were prepared as follows. Sequencing data was downloaded 
from the European Nucleotide Archive. Reads were quality trimmed 
and filtered from sequencing adapters using fastp. Remaining 
contamination by the host genome was filtered out by mapping reads 
against the human reference genome (T2T-CHM13v2.0) with 
bowtie2. Microbial species identification and quantification was 
estimated according to both human gut reference gene catalog (IGC2, 
10.4 M genes, Wen et al., 2017) and human oral gene catalog (8.4 M 
genes, Le Chatelier et al., 2021) with the METEOR software (Pons 
et al., 2010), and clustered into Metagenomic Species Pangenomes 
taxonomically and functionally annotated (Plaza Oñate et al., 2019).

3.2. Evaluation of the preprocessing steps

We evaluated the effect of two typical preprocessing steps on the 
performance of various standard ML algorithms implemented in a 
caret workflow (Kuhn, 2015): RF—Random Forest, PLS—Partial least 
square, Earth—spline regression (can be applied to classification also), 
Pam—Partition around medoids (normally a clustering algorithm), 
Glmboost—Gradient Boosting with Component-wise Linear Models, 
Glmnet—Generalized linear model with elastic net penalty, GBM—
Gradient boosting machine. The data were split in a training set (75%) 
used to tune the hyperparameters of the models and a test set (25%) 
used to evaluate the model performance. The split of the data has been 
repeated 100 times (Fromentin et al., 2021).

We first applied a fixed threshold on abundance values (retained 
features with a total abundance across samples >5e-06). A variable 
threshold of prevalence across samples in [0–0.5], with 0.05 steps was 
applied to remove features with low prevalence. Figure 2 shows the 
sensitivity and specificity results for the two best performing models: 
GBM and RF. We observed that a small filtering slightly improved the 
performances both on accuracy and computing resources criteria. 
However, it is noteworthy that no filtering on prevalence at all is also 
a valid option in terms of performances. As expected, strong filtering 
on prevalence (>0.15–0.2) decreases the sensitivity for GBM and the 
specificity for RF. Additional analyses of other microbiome datasets 
(Supplementary material 1 and Supplementary Figure S1), showed 
that performance was not affected by 0.2 prevalence filter with regard 
to 0 prevalence filter in RF models. However, other models such as 
PLS-DA got better classification error rates when 0.2 prevalence filter 
was applied. The results from these additional datasets indicate that 
the effect on performance of the low-abundance filter depends both 
on the ML model applied and on the characteristics of each dataset, 
being the level of sparsity of the database a key factor to consider. All 
in all, this fact highlights the importance of including the 
low-abundance filter as another hyperparameter to tune while training 
the model by cross-validation strategies.

Figure 3 shows the sensitivity and specificity results for all the 
models with or without the CLR logratio transformation before the 
modeling process. We observed that for the majority of the models, 
the CLR transformation decreased the sensitivity of the models, and 
it was particularly striking for the Glmnet and Glmboost models. It 
only improved the sensitivity for the PLS and Earth models. It 
improved the specificity of the PLS and Glmboost models, 
nevertheless, RF and GBM remained the top performing models. 

TABLE 3 Compilation of datasets from nine distinct countries, including 
2,090 human stool samples characterized via shotgun metagenomic 
sequencing.

BioProject Country Nb all Nb CRC

PRJDB4176 Japan 645 286

PRJEB10878 China 128 74

PRJEB12449 USA 104 52

PRJEB27928 Germany 82 22

PRJEB6070 France 156 53

PRJEB6070 Germany 43 38

PRJEB7774 Austria 156 46

PRJNA389927 USA 56 26

PRJNA389927 Canada 28 2

PRJNA397112 India 110 0

PRJNA447983 Italy 140 61

PRJNA531273 India 30 30

PRJNA608088 China 18 6

PRJNA429097 China 194 98

PRJNA763023 China 200 100

All cohorts 9 countries 2090 894
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In contrast, results obtained from other datasets 
(Supplementary material 1 and Supplementary Figure S1) pointed out 
that, in general, CLR transformation rendered a better performance 
when compared to TSS normalization followed by logarithmic 
transformation. Again, RF was less affected by the type of 
normalization applied than PLS-DA. Taken together, as with threshold 
filtering, it is important to cross-validate transformation options in 
order to enhance the predictive performance and extract the best 
modeling pipeline.

3.3. Evaluation of feature selection and 
predictive modeling

To evaluate the performance of different ML pipelines we used the 
JADBio automl approach. JADBio is specifically designed for 

biomedical data and is able to fully automate the production of 
customizable ML pipelines that simultaneously integrate 
preprocessing, feature selection and predictive modeling algorithms 
(Table  4). Specifically, for preprocessing, we  performed 
standardization. For feature selection we evaluated LASSO regularized 
regression (Tibshirani, 1996) and the Statistical Equivalent Signatures 
(SES) algorithm (Lagani et al., 2017). Both methods can handle the 
high-dimensionality of microbiome data. Regarding sample size and 
expected signature size, LASSO tends to perform better when sample 
sizes are larger but returns a greater number of features. SES, on the 
other hand, drawing inspiration from causal modeling theory, 
demonstrates better performance at low sample sizes and leads to 
smaller feature subsets at the expense of predictive performance. SES 
also produces multiple signatures that exhibit statistically 
indistinguishable predictive performances. For modeling, 
we employed well known linear/interpretable algorithms such as ridge 

FIGURE 2

Sensitivity and specificity of the two best performing ML models (GBM and RF) on 100 data split repetitions applied on the CRC dataset with a range of 
filter on prevalence (shades of blue) or no filter on prevalence (gray).

FIGURE 3

Sensitivity and specificity of 7 ML models across 100 data split repetitions applied on the CRC dataset with a CLR logratio transformation before (blue) 
or no transformation (red).
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regression (Hoerl and Kennard, 1970) and decision trees (Breiman, 
2017) as well as non-linear ones such as random forests (Breiman, 
2001) and SVMs (Chang and Lin, 2011). To find the best model, 
we  employed grid search and the Generalized Cross-validation 
approach, while the BBC-CV algorithm was used to correct for testing 
multiple ML pipelines. More details about the architecture can 
be found in Tsamardinos et al. (2022).

Table  5 summarizes the results from analyzing the collected 
shotgun data. Initially, our aim was to uncover any classification bias 
from technical or demographic covariates, through feature selection. 
Indeed, when we  employed JADBio on the complete, all-cohorts, 
dataset we observed that the cohort ID/country exhibited predictive 
power, indicating inherent variations in gut species between different 
countries (Figure 4A). Furthermore, we found that the timepoint of 
measurement, the instrument model, and the westernization status of 
samples also possessed predictive value, pointing toward the existence 
of batch effects (the full description of the metadata features used in 
the models are provided in Supplementary Table S1).

To address these variabilities, we conducted a series of subsequent 
analyses by splitting the data into the different cohorts. Feature 
selection identified that the timepoint feature was predictive in the 
Japanese cohort, the instrument model in the German cohort and the 
westernization status in the Indian cohort (Table  5). Therefore, 
we repeated the analysis on the entire sample set after excluding the 
problematic samples coming from these cohorts. This time, the 
revised data we divided into two parts: one for training and the other 
for testing. The revised findings indicated the absence of latent 
variabilities, suggesting that our modifications successfully controlled 
for the previously observed effects.

The best performing pipeline on the revised data was a 
combination of SES and random forests, consistent with the majority 
of separate cohort analyses. A total of 596 different pipelines were 
evaluated by a repeated 10-fold CV approach (see 
Supplementary report for details). As shown in Figure 4B, pipelines 
incorporating SES for feature selection demonstrated higher average 
performance during training than those with LASSO. Among the 
predictive modeling algorithms tested, Random Forests exhibited the 
highest predictive performance, followed by Ridge Logistic Regression. 
Figure 5A illustrates the ROC curves of the best performing model. 
The achieved performance in terms of AUC on the test data was 0.758; 
on par with the training performance of 0.777 (C.I. [0.708, 0.822]). 
Figure 5B also presents the out-of-sample predictions during training.

In terms of feature selection, the best performing pipeline 
resulted in a signature comprising 70 features, primarily consisting 
of microbiome species, with the addition of gender. Figure  5C 
illustrates the importance of these features in predicting the 
outcome (see Supplementary Table S2 for the corresponding 
species names). While SES and RFs demonstrated superior 
performance in most of the analyses, Table 5 reveals the significant 
variation in predictive performances and generated signatures that 
was found. The detailed taxonomy of the species involved is 
provided in Supplementary Table S3. Variability in performance 
was also highlighted by Wirbel et  al. (2019) where only the 
predictive performance on several cohorts was examined. This 
suggests the need for further investigation into the specificity of 
these microbiome signatures. Interestingly, however, 20 species 
present in the revised dataset’s signature were also found in the 
signatures generated when analyzing each cohort independently, 
indicating their potential importance across diverse 
geographic communities.

Among the selected species in the revised dataset’s signature, their 
relevance is in agreement with previous reports in the literature 
regarding their predictive role in CRC. In particular, considering the 
top five most important species identified for the revised dataset, 
excluding gender (Figure  5C), Fusobacterium gonidiaformans 
(msp_1081) was detected in colorectal carcinoma relative to normal 
colon (Castellarin et  al., 2012; Kostic et  al., 2012), and found to 
be enriched in adenomas (Gevers et al., 2014). Several Clostridium 
species (msp_0578) have been associated with CRC (i.e., Clostridium 
symbiosum, Clostridium hylemonae, and Clostridium scindens) (Zeller 
et  al., 2014). In addition, an increased risk of CRC was found in 
patients with bacteremia from Clostridium septicum, Clostridium 
perfringens or other species, such as Fusobacterium nucleatum and 
Peptostreptococcus species (Kwong et al., 2018). Christensenellales 
(msp_0622) has shown to be associated with both host genetic status 
CRC and risk (Waters and Ley, 2019), while Streptococcus thermophilus 
(msp_0833) has been identified to be  depleted in patients with 
colorectal cancer (Qing et  al., 2021). Regarding Fusobacterium 
nucleatum subspecies animalis (msp_0610), also selected when 
independently analyzing the Austrian, French, German and Japanese 
cohorts, Fusobacterium nucleatum was associated with stages of 
colorectal neoplasia development, colorectal cancer and disease 
outcome (Flanagan et al., 2014).

Figure 5D visualizes how well the selected features separate the 
two classes on a low dimensional space representation. Furthermore, 
it indicates a few samples that could be considered as outliers and 
would need further investigation.

Figure 6A displays the ROC curves of the best interpretable model 
on both training and test sets. This model, based on Ridge Regression, 
demonstrates performance that is comparable to the best-performing 
model (training AUC 0.754, C.I. [0.693, 0.811], test AUC 0.731). The 
linear nature of the predictive algorithm enables direct interpretation 
of the generated model. In Figure  6B, the species selected by the 
interpretable model are showcased alongside their corresponding 
linear coefficient values in the log-odd formula.

For instance, the identified association of Peptostreptococcus 
stomatis (msp_1327) corroborates findings from the French cohort’s 
original data publication (Zeller et  al., 2014). Furthermore, while 
msp_0937 corresponds to an unclassified Duodenibacillus species, it is 
noteworthy that Duodenibacillus massiliensis is linked with treatment 

TABLE 4 Algorithms used for comparative evaluation of ML pipelines.

Algorithm Used for

Standardization Preprocessing

LASSO (Single) feature selection

SES (Multiple) feature selection

Decision trees Predictive modeling

Ridge regression Predictive modeling

Random forests Predictive modeling

Support vector machines Predictive modeling

Generalized cross-validation Performance estimation

Grid search with heuristics Configuration space search

BBC-CV Performance correction
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TABLE 5 Summarized results from the analysis of the collected CRC shotgun datasets with 2014 features using JADBio.

Cohort Samples Training 
AUC

Validation 
AUC

Feature 
selection

Predictive 
algorithm

Report 
link

Features

Austrian 109 0.90 SES RF Report 1

msp_0041, msp_0610, msp_1600, msp_1721, 

msp_0304,msp_0376, msp_0831, msp_0417, 

msp_0869, msp_1017, msp_0350, msp_1101a, 

msp_0717, msp_0215, msp_1176b, msp_1587a, 

msp_1195b

French 114 0.79 SES RF Report 2

msp_0024, msp_0554, msp_0006, msp_1158, 

msp_1327, msp_0610, msp_0800, msp_0168, 

msp_1402, msp_0350, msp_0835, msp_0317a, 

msp_1,193, msp_0541b, msp_1037, msp_1060ca, 

msp_1213b

Chinese 128 0.74 SES RF Report 3

age, msp_0033a, msp_0990, msp_1028cb, 

msp_0468, msp_0044, msp_0457, msp_0713, 

msp_0235, msp_0178, msp_1206, msp_0236, 

msp_0318, msp_0126, msp_0542, msp_0639, 

msp_0864, msp_1603c, msp_0154, msp_1901a, 

msp_1193b

Italian 113 0.63 SES RF Report 4

msp_1234, msp_0258, msp_0100, msp_0275, 

msp_1489c, msp_0562, msp_0199a, msp_0338, 

msp_0340, msp_0125b, msp_0369aa, msp_0215b, 

msp_0906b

Indian 140 1.00 LASSO RF Report 5
study_accession, age, msp_0027, msp_0128, 

msp_0258, msp_0585, msp_0841, msp_1459

German 125 0.98 SES RF Report 6

HQ_clean_read_counta, msp_1234, msp_0722, 

instrument_model, msp_0610, msp_1018, 

msp_1428, mapped_read_counta

USA 104 0.64 SES SVM Report 7

msp_0147, msp_1293, msp_1522, msp_0679a, 

msp_0035, msp_1,193, msp_0766, msp_0747, 

msp_1,038, msp_0083, msp_1850, msp_0566, 

msp_0180, msp_1069b, msp_1621, msp_1241, 

msp_0845, msp_0854a, msp_1110b

Japanese 577 0.69 SES RF Report 8

timepoint, msp_1327, msp_0003, msp_0749, 

msp_1315, msp_0132, msp_0935, msp_0436, 

msp_0574c, msp_0468, msp_0152, msp_0126, 

msp_1276, msp_1049, msp_1004, msp_1156, 

msp_0887, msp_0323, msp_0525, msp_0118, 

msp_1590c, msp_1028c, msp_0635, msp_0062, 

msp_0610

All cohorts 1,410 0.85 SES RF Report 9

study_accessiona, timepoint, age, msp_0610, 

msp_1327, msp_1112, msp_0454, msp_0668, 

msp_0910, msp_0129, msp_0128, msp_1,193, 

msp_0305, msp_0054, msp_0757, msp_0100, 

msp_1028c, msp_1682c, msp_0357, msp_1172, 

msp_0032, msp_0297, msp_0105, msp_1158, 

msp_0389, msp_0935, msp_1173c, msp_1946, 

msp_0546, msp_1234, msp_0574c, msp_0468, 

msp_0110, msp_0833, msp_0484, msp_1790, 

msp_1188, msp_0172, msp_0864, msp_1600, 

msp_0853c, msp_0831, msp_0258, msp_0077, 

msp_0126, msp_0062, msp_1156, msp_0204, 

msp_0034, msp_0542, instrument_modela, 

westerniseda, countrya

(Continued)
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response for patients with rectal cancer (Jang et al., 2020). Similarly, 
concerning the unknown msp_1245 (Parvimonas species), Parvimonas 
micra together with Fusobacterium nucleatum (msp_0574c), 
Peptostreptococcus stomatis (msp_1327), and Akkermansia muciniphila 
were found to be  over-represented in CRC patients compared to 
non-CRC controls (Osman et al., 2021). In another confirmatory study 
Peptostreptococcus anaerobius (msp_0935) has been implicated in 
modulating colorectal carcinogenesis and tumor immunity. 
Additionally, Prevotella intermedia (msp_1028) and Fusobacterium 
nucleatum (msp_0574c) were found to act synergistically, enhancing the 
migration and invasion of CRC cells (Long et al., 2019; Lo et al., 2022).

The sign of the coefficient indicates whether the species is considered 
a risk factor or not by the model. For instance, Ruthenibacterium 
lactatiformans (msp_0172) has been previously identified as putative 
candidate non-invasive biomarkers in CRC patients (Trivieri et al., 2020). 
Figure  6C illustrates how its abundance influences the prediction. 
Specifically, the greater the abundance, the more the risk for a sample to 
be  classified as a patient case (P). In contrast, species Clostridiales 
bacterium (msp_0835) is found to have a protective effect against CRC, 
as evidenced by its ICE plot (Figure 6D). The higher its abundance, the 
lower the probability to be in the patient class. Indeed, a recent study 
demonstrated the effectiveness of this species in both prophylactic and 
therapeutic contexts speculating its applicability to primary prevention 

in patient populations with a strong genetic predisposition or family 
history of CRC (Montalban-Arques et  al., 2021). Taken together, 
combining feature selection results with interpretable modeling and 
visualization techniques, meaningful conclusions can be drawn about the 
predictive significance of different species.

4. Discussion

Our objectives in this work have been to: (1) review the 
challenges for an analyst when performing predictive modeling of 
microbiome data, (2) create a comprehensive set of practical 
advices, and (3) explore opportunities for automating various 
aspects of ML analysis to construct pipelines suitable for clinicians 
and non-experts in translational applications. To achieve these 
goals, we  considered a typical ML workflow that starts after 
microbiome-related profiles are organized in a two-dimensional 
table format, such as OTUs, ASV, or MSP (metagenomic species) 
tables. This process involves multiple steps, including data 
preprocessing (e.g., normalization, filtering), feature selection, 
predictive modeling, and performance estimation. Our objective 
was to address the challenges associated with each of these steps 
considering diverse algorithms, their combinations, as well as our 

TABLE 5 (Continued)

Cohort Samples Training 
AUC

Validation 
AUC

Feature 
selection

Predictive 
algorithm

Report 
link

Features

Revised 

data (best 

perf.)

1,117 0.77 0.758 SES RF Report 10

msp_1081, gender, msp_0578, msp_0622, 

msp_0833, msp_0610, msp_0100, msp_1579c, 

msp_0676, msp_0236, msp_1010, msp_0317, 

msp_0757, msp_0910, msp_0496, msp_0574c, 

msp_1327, msp_1028c, msp_0938, msp_0126, 

msp_0129, msp_1188, msp_0172, msp_1069, 

msp_0257, msp_0835, msp_1324, msp_1682c, 

msp_0864, msp_1102, msp_1467, msp_1245, 

msp_0668, msp_1158, msp_0305, msp_0937, 

msp_1671c, msp_1790, msp_0110, msp_1754, 

msp_0062, msp_0814, msp_0853c, msp_1322, 

msp_1217, msp_1156, msp_1036, msp_0805, 

msp_1712, msp_1231, msp_0454, msp_0935, 

msp_1657, msp_1234, msp_0076, msp_1487, 

msp_1570, msp_1042, msp_0118, msp_1112, 

msp_0457, msp_1048, msp_0232, msp_0542, 

msp_0468, msp_0258, msp_1789, msp_1173c, 

msp_0347, msp_0089

Revised 

data (best 

inter.)

1,117 0.75 0.73 SES LR Report 11

msp_0100, msp_0118, msp_0126, msp_0129, 

msp_0172, msp_0257, msp_0258, msp_0317, 

msp_0468, msp_0542, msp_0574c, msp_0610, 

msp_0676, msp_0805, msp_0833, msp_0835, 

msp_0910, msp_0935, msp_0937, msp_1028c, 

msp_1112, msp_1156, msp_1158, msp_1188, 

msp_1231, msp_1245, msp_1327, msp_1570, 

msp_1754, msp_1789

Full description of the metadata and species features can be found in Supplementary Tables S1, S2. The variable health_status was set as the outcome to be predicted with classification (binary) 
as the analysis type. Samples from the same country were merged together. Detailed signatures, including the lists of selected features, can be accessed via the links to the respective JADBio 
analysis reports. Superscript letters denote statistical equivalence of features, i.e., replacing one feature with another feature labeled with the same superscript letter will, on average, yield the 
same predictive performance. RF, Random Forest; SVM, Support Vector Machine; LR, Logistic Regression.
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capacity to interpret and explain their results. Through the 
utilization of benchmark dataset(s) and automated machine 
learning techniques (AutoML), we  were able to derive several 
noteworthy conclusions regarding the optimal utilization of ML 
methods toward disease diagnosis, prognosis, and 
biomarker discovery.

In the context of data preprocessing, a major challenge lies in 
selecting the appropriate normalization and filtering approaches due 
to variations in sampling depth, data sparsity (represented by an 
excess of zeros in the tables), and data compositionality. To mitigate 
sampling variability, rarefaction is used to remove samples. However, 
this may decrease statistical power and does not address 
compositionality (McMurdie and Holmes, 2014). Alternatively, 
researchers incorporate the sampled variation as covariates in data 
analysis. On the other hand, sparsity hampers models that rely on 
Gaussian assumptions. Certain algorithms, like decision trees and 
random forests, can handle sparsity, while others may fail. Filtering 
rare features and removing near-zero variance ones is a successful 
strategy, outperforming imputation methods in the context of 
logarithmic transformations that can introduce aberrant observations 
and depend on imputation algorithm quality. Finally, regarding 

normalization, contemporary sequencing cannot capture the total 
number of bacterial species, only their proportions. Compositional 
analysis is the appropriate mathematical framework, but its 
application and impact on ML models are still actively researched 
(Greenacre et al., 2021; Hron et al., 2021). From our observations, 
the CLR transformation seems to be useful for the PLS regression, 
although it was not in the top performing models. For the other 
models, the CLR transformation globally decreased the 
performances. However, these observations are based on the specific 
data set used in our experiments, and further evaluation will 
be necessary to assess their generalizability to other data sets before 
providing general recommendations regarding the choice 
of transformations.

For feature selection and predictive modeling, the primary 
challenges revolve around the high dimensionality of the data and the 
complex interactions inherent to microbial species, including 
co-occurrence and partial correlation. Building models that 
incorporate the thousands of microbiome features in a multivariate 
manner while maintaining predictive performance with limited 
sample sizes is undeniably demanding. It requires the utilization of 
scalable methods that account for the intricate dependency structure 

FIGURE 4

(A) Features detected by feature selection that generate classification bias. (B) Comparative evaluation of tested pipelines.
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of microbiome data, as well as appropriate performance estimation 
protocols to generate an optimal final model. Neglecting these 
considerations can result in overestimated conclusions and misleading 
insights. Using the JADBio autoML approach our observations 
indicate that multivariate feature selection methods such as the 
Statistically Equivalent Signatures algorithm combined with Random 
Forests can yield optimal balance between performance and results 
interpretability and explainability. These suggest a good starting point 
for an analyst.

However, it must be acknowledged that no single ML pipeline 
can universally accommodate all predictive modeling scenarios. As 
demonstrated here, there are several algorithms that account for 

the biological, methodological, and technical challenges in 
microbiome data. Additionally, different ML methods with 
different strengths and limitations exist for addressing the 
dimensionality and complexity of the problem and the underlying 
patterns in the data. Therefore, a highly advisable approach is to 
explore a diverse range of methods at each stage of the ML pipeline, 
and communicate the results according to the open science 
principles to facilitate transparency, verification, and reuse. Then, 
only through rigorous performance evaluation can the optimal 
predictive model and biomarkers be  effectively identified, 
specifically tailored to address the particular microbiome problem 
at hand.

FIGURE 5

(A) Train (blue) and test (green) AUCROC after analyzing the revised dataset. ROC Curve considering CRC patients (P) as the positive class. (B) Out-of-
sample (training) predictions for Healthy (H) and CRC patients class (P). (C) Feature importance defined as the percentage drop in predictive 
performance when the feature is removed from the model. Gray lines indicate 95% confidence intervals. (D) Supervised PCA on the selected features 
depicts the model performance in separating the two classes and also outlier samples.
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