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Objectives: The aim of our study was to investigate the impact of long-term 
exposure to heavy metals on the microbiome of the buccal mucosa, to unveil 
the link between environmental contamination and the oral microbial ecosystem, 
and to comprehend its potential health implications.

Methods: Subjects were divided into two groups: the exposure group and the 
control group. We collected samples of buccal mucosa, soil, and blood, and 
conducted microbial diversity analysis on both groups of oral samples using 16S 
rRNA gene sequencing. The concentrations of heavy metals in blood and soil 
samples were also determined. Additionally, microbial networks were constructed 
for the purpose of topological analysis.

Results: Due to long-term exposure to heavy metals, the relative abundance 
of Rhodococcus, Delftia, Fusobacterium, and Peptostreptococcus increased, 
while the abundance of Streptococcus, Gemella, Prevotella, Granulicatella, and 
Porphyromonas decreased. The concentrations of heavy metals in the blood 
(Pb, Cd, Hg, and Mo) were associated with the growth of Rhodococcus, Delftia, 
Porphyromonas, and Gemella. In addition, the relative abundances of some 
pathogenic bacteria, such as Streptococcus anginosus, S. gordonii, and S. mutans, 
were found to be enriched in the exposure group. Compared to the exposure 
group network, the control group network had a greater number of nodes, 
modules, interactive species, and keystone taxa. Module hubs and connectors 
in the control group converted into peripherals in the exposure group, indicating 
that keystone taxa changed. Metals in the blood (Pb, Cd, Hg, and Mo) were drivers 
of the microbial network of the buccal mucosa, which can have adverse effects 
on the network, thus providing conditions for the occurrence of certain diseases.

Conclusion: Long-term exposure to multiple metals perturbs normal bacterial 
communities in the buccal mucosa of residents in contaminated areas. This 
exposure reduces the complexity and stability of the microbial network and 
increases the risk of developing various diseases.
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1. Introduction

As one of the most important components of the national 
economy over the past several decades, the mining industry has 
played a major role in the rapid industrial transformation of China. 
However, due to a number of factors (e.g., lack of pollution control 
and ineffective enforcement of regulations), the metal mining industry 
has caused severe heavy metal contamination (Chen L. et al., 2022; Shi 
et al., 2022). These metal pollutants not only cause serious damage to 
natural resources such as land, water, and air but also pose a great 
threat to human health (Shao and Zhu, 2020).

Metal pollution is covert, persistent, and irreversible (Ghnaya 
et  al., 2015). Once uncontrolledly discharged into soil and water, 
metals can persist for a long time (Li et al., 2014; Xia et al., 2019). 
Heavy metals that have been discharged accumulate in soil and water 
and eventually enter the human body through the food chain or in 
direct contact with the skin (Liu et al., 2013; Azimi et al., 2017). High 
concentrations of lead (Pb) can damage the human blood and nervous 
system (Ahamed and Siddiqui, 2007; Kumar et al., 2020). Mercury 
(Hg) can damage the nervous system when present in excess amounts 
(Driscoll et  al., 2013), while cadmium (Cd) can impair kidney 
function and even cause cancer (Matović et al., 2015; García-Pérez 
et al., 2016). In addition, recent research has shown that heavy metal 
pollution also affects the structure of human microbial communities 
(Shao and Zhu, 2020; Zhang et al., 2023).

The oral cavity is one of the earliest organs in the body to 
be exposed to the external environment, and its internal microbiome 
is more susceptible to changes due to external factors such as diet, 
medicines, pollutants in the environment, and geographical location 
(Thomas et  al., 2014; Dong et  al., 2021; Gupta et  al., 2022). Oral 
microbial communities are closely related to human health, affecting 
not only oral health but also the health of the whole body (Gao et al., 
2018; Zhang Y. et al., 2018). Currently, it is believed that a number of 
diseases, including dental caries and periodontal diseases, are 
associated with imbalances in oral microorganisms (Wade, 2013; 
Curtis et al., 2020; Hajishengallis and Lamont, 2021). According to a 
previous report (Zhang et al., 2023), heavy metal pollution altered the 
abundance and diversity of the oral microbiome of mining residents 
and promoted the development of periodontitis. Studies have also 
shown that oral microbial disorders can lead to diabetes, Alzheimer’s 
disease, cardiovascular disease, and cancer (Sudhakara et al., 2018; 
Irfan et al., 2020; Zhang et al., 2020). In addition, because they are at 
the beginning of the digestive tract, oral microbes have a close 
connection with intestinal microbes. Some oral bacteria were able to 
enter the gut through the enteral route or hematogenous route, 
affecting the intestinal microbiome and immune responses (Lu et al., 
2023). For instance, Porphyromonas gingivalis, an oral anaerobic 
bacterium in the oral cavity, altered the composition of the intestinal 
microbiota when administered orally in mouse experiments (with an 
increased proportion of Bacteroidetes and a decreased proportion of 
Firmicutes), and this alteration is considered to be attributed to the 
increase of the serum endotoxin level resulting from P. gingivalis 
infection (Nakajima et al., 2015). Simultaneously, P. gingivalis also 
induces inflammation in intestinal tissues and disrupts the ratio of the 
T-helper 17 cell/T-regulatory cells in the colon (Wang T. et al., 2022).

Exposure to heavy metals can affect the structure of microbial 
communities in the oral cavity. Although many studies have 
investigated this topic in recent years, most have been limited to saliva 

and plaque samples. However, the oral mucosa is an important 
component of the oral cavity, has an extremely rich microbial 
population, and is closely associated with a variety of diseases (Chen 
J. et al., 2022; Wang S. et al., 2022). Therefore, studying changes in the 
structure of microbial communities in the oral mucosa under the 
influence of metal exposure is important for us to gain a deeper 
understanding of the effects of heavy metal exposure on oral microbial 
communities and the occurrence of related diseases.

Baiyin City, located in the province of Gansu, China, is known as 
the “Chinese Copper City” because of its rich resources of nonferrous 
metals. Due to the frequent mining activities of the last century, heavy 
metals have been released into the environment, causing severe 
pollution in the soil, water sources, and air (Yue et  al., 2020). 
Contaminated crops, vegetables and animal foods enter the human 
body through the food chain, eventually causing heavy metals to 
accumulate in the local residents (Li et al., 2006; Zhao et al., 2020). In 
previous studies, the harmful effects of metal exposure on human and 
animal health in the area have been reported (Zhang et al., 2016; 
Zhang Q. et al., 2018). However, the effect of metal exposure on the 
human oral mucous microbiome is still unclear. Therefore, this paper 
reports the effects of long-term metal exposure on the microbial 
community structure and co-occurrence patterns of the oral mucous 
of local residents, filling the gap in epidemiological research on the 
interaction of heavy metals and buccal mucosal bacteria.

2. Materials and methods

2.1. Study area

Due to long-term nonferrous metal smelting and mining in the 
last century, the air, soil, surface water, and groundwater of Baiyin city, 
Gansu Province, are seriously polluted. We  selected two adjacent 
villages in the region as representative contaminated areas: Minqin 
village and Shuanghe village (36°28′38.188″ N, 104°18′47.870″ E; 
36°27′24.650″ N, 104°21′22.057″ E). For comparison, we  selected 
another two adjacent villages, namely, Hewan village and Yangwa 
village (35°46′41.541″ N, 104°0′37.443″ E; 35°45′54.661″ N, 
104°1′28.117″ E), located in Yuzhong County of Lanzhou City as 
control areas, which are 100 km away from Baiyin City and 
characterized by relatively low levels of heavy metal pollution. The two 
selected regions have similar levels of socioeconomic development 
and residents with similar lifestyles and dietary habits.

2.2. Collection of soil samples and heavy 
metal analysis

Soil samples were collected in April 2021 from the contaminated 
and control areas to assess the levels of heavy metal pollution. A total 
of 13 sampling points were selected in this study (B1–B6, L1–L7), with 
B1–B6 located in the field in the vicinity of Minqin village and 
Shuanghe village (Figure 1A) and L1–L7 located in the field near 
Yangwa village and Hewan village (Figure  1B). At each sampling 
point, areas of approximately 10 × 10 meters were randomly selected 
in the fields, and five subsampling sites were set up in each selected 
field using a five-point sampling method. After removing gravel and 
impurities at the surface, soil from five subsampling points (at 20 cm 
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depths) was collected using a sterile wooden spatula and thoroughly 
mixed into a composite sample. A total of 13 samples were collected. 
The samples were sent to the laboratory on the same day. To determine 
the heavy metal content in soil, each soil sample was first air-dried at 
room temperature, and then biological debris, plant roots, leaves, and 
stones were removed, followed by sieving through a 200-mesh nylon 
sieve. Finally, each sample was thoroughly mixed and stored in a 
polyethylene bag for further analysis. Each sample of approximately 
0.5 g was digested using a microwave digestion system (Sartorius, 
PB-10, Germany). Then, the content of heavy metals (Mn, Sb, Cu, Cd, 
Zn, Hg, Pb, Mo, Co, and Ni) was measured using inductively coupled 
plasma–mass spectrometry (ICP–MS, Agilent, United States). Quality 
assurance/control procedures were conducted using standard 
reference materials (Chinese Academy of Measurement Science) with 
each batch of samples (one blank and one standard).

2.3. The collection of oral buccal mucosa 
and blood samples

In this study, a total of 137 subjects were enrolled for the collection 
of both buccal mucosa and blood samples. Among these, 92 subjects 
were from Baiyin City (i.e., Minqin and Shuanghe villages), and the 
remaining 45 were from Yuzhong County (i.e., Hewan and Yangwa 
villages). Subjects were further divided into two groups according to 
heavy metal exposure: (1) the exposure group (n = 92), comprised of 
residents residing in Baiyin District; and (2) the control group (n = 45), 
comprised of residents residing in Yuzhong District. The enrolled 
subjects had an average age of 60.03 ± 6.47 years (mean ± SD; range 
42–72 years old). All participants fulfilled the following four criteria: 

(i) subjects signed informed consent and had not used any antibiotics 
for at least 3 months prior to sampling; (ii) subjects had no oral 
diseases, such as halitosis, chronic xerostomia, untreated cavitated 
caries lesions, abscesses, cancer, or candidiasis; (iii) subjects who 
reported being ill or unwell on the day of sampling were excluded; and 
(iv) subjects had at least 24 teeth. Prior to sample collection, the 
participants were restrained from drinking or eating and were asked 
to wash their mouth with drinking water 30 min before samples were 
taken. Then, using a sterile cotton-wool swab, we scraped the buccal 
mucosa on the left and right sides of their mouths for 10 s. After oral 
sampling, all samples were preserved immediately at −80°C until 
subsequent processing in the laboratory.

To investigate the association between the concentration of heavy 
metals in the blood and the composition of the buccal mucosa 
microbiota, blood samples were collected from the peripheral veins of 
some of the enrolled research subjects (n = 79). We collected 15 mL of 
heparinized venous blood, removed 2 mL of whole blood, and stored 
it at −80°C. The contents of heavy metals in blood were measured 
using an inductively coupled-mass spectrometer (ICP–MS, Elan 
DRC-II ICP–MS, PerkinElmer Sciex, United States). Survey subjects 
agreed to informed consent, and the study was approved by the Ethical 
Committees of the Public Health School of Lanzhou University.

2.4. DNA extraction, sequencing and 
bioinformatic analyses

DNA was extracted from each buccal mucosa sample using an 
E.Z.N.A. Soil DNA Kit (Omega Bio-Tek, Norcross, GA, United States) 
following the manufacturer’s instructions, and its concentration and 

FIGURE 1

Location of sampling points in the contaminated (A) and control areas (B).
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purity were assessed on a 1% agarose gel. The hypervariable region 
V3–V4 of the bacterial 16S rRNA gene were amplified with primer 
pairs 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R 
(5′-GGACTACHVGGGTWTCTAAT-3′) by an ABI GeneAmp® 9700 
PCR thermocycler (ABI, CA, United  States). Thermocycling 
conditions consisted of 3 min at 95°C followed by 30 amplification 
cycles of 30 s denaturation at 95°C, 30 s annealing at 55°C, 72°C for 
45 s, and a final extension of 72°C for 10 min. All amplification 
reactions were performed in a total volume of 20 μL containing 4 μL 
of 5× FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL of both the forward 
and reverse primers, 10 ng of template DNA, and 0.4 μL of FastPfu 
DNA Polymerase. To mitigate individual PCR biases, each sample was 
amplified in triplicate and pooled together. The amplicon quality of 
the PCR products was assessed on a 2% agarose gel, followed by 
purification with an AxyPrep Gel Extraction Kit (Axygen Biosciences, 
United  States). Purified amplicons were combined at equimolar 
concentrations and paired-end sequenced (2 × 300 bp) on an Illumina 
MiSeq platform (Illumina, United States) at the Majorbio Bio-pharm 
Technology Co., Ltd. (Shanghai, China) according to standard 
protocols. Raw sequencing data of the bacterial 16S rRNA gene have 
been deposited in the NCBI Sequence Read Archive under BioProject 
accession number PRJNA979792. The resulting sequences were 
processed using the QIIME pipeline (Caporaso et al., 2010). Briefly, 
low-quality sequences were trimmed with Cutadapt and quality-
filtered. Paired-end reads were assembled using FLASH version 1.2.11 
(Magoč and Salzberg, 2011). USEARCH was used to remove chimeric 
sequences based on the UCHIME algorithm (Edgar et al., 2011), and 
the remaining sequences were allocated to operational taxonomic 
units (OTUs) with 97% similarity using the UPARSE pipeline. OTUs 
with fewer than two sequences were eliminated, and their 
representative sequences were assigned to taxonomic lineages using 
the RDP classifier version 2.2 (Wang et al., 2007) against the SILVA 
database (version 138) using confidence threshold of 0.7.

2.5. Construction and analysis of the 
bacterial molecular ecological network of 
the buccal mucosa

The bacterial molecular ecological networks (MENs) of the buccal 
mucosa were constructed using an online tool called the Molecular 
Ecosystem Network Analysis Pipeline (MENAP; Feng et al., 2022).1 In 
the process of network construction, OTUs with a frequency of less 
than 10% were discarded. Based on the SparCC method with the 
default parameters, the filtered OTU table was utilized to calculate 
pairwise correlation (Friedman and Alm, 2012). Based on random 
matrix theory (RMT), the appropriate cut-off value was selected as a 
threshold and combined with a significance level of p-value adjusted 
using the Benjamini-Hochberg FDR correction method less than 0.05 
to filter out unrelated associations in the matrix. The IDIRECT 
method was used to remove unreliable and indirect associations from 
the network (Xiao et al., 2022). After networks were built, the analysis 
of network properties [e.g., nodes, links, average degree (avgK), 
average path distance (GD), average clustering coefficient (avgCC), 

1 http://mem.rcees.ac.cn:8081

connectedness (Con), and modularity], and randomization were 
carried out using the default parameters (Deng et al., 2012). Network 
modules were then determined by using greedy modularity 
optimization. In this study, a total of three networks were constructed. 
Among them, networks with sample sizes of 92 and 45 were employed 
for the comparison between the exposure (n = 92) and control (n = 45) 
groups. Additionally, to investigate the impact of blood heavy metals 
on network structure, a network with a sample size of 79 was utilized 
to calculate the correlation between module-based eigenvalues and 
the concentration of heavy metals in blood. Furthermore, the 
functions of the modules were predicted by PICRUSt (Douglas et al., 
2020) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
database (Kanehisa et al., 2017) in terms of metabolic pathways. All 
obtained networks were visualized using Gephi 0.9.72 and 
Cytoscape 3.9.1.3

2.6. Statistical analyses

Prior to analyses, the OTU table was subsequently rarefied to the 
lowest number of sequences (28367) found within an individual 
sample. Our resampled dataset included a total of 2,315 bacterial 
OTUs. We first calculated the α diversity index (i.e., Sobs, Shannon–
Wiener, Simpson, ACE and Chao1 indices) for each buccal mucosa 
sample using the QIIME pipeline and then tested the differences 
between the exposure and control groups using the Wilcoxon 
rank-sum test. Principal coordinate analysis (PCoA) was then 
performed at OTU level to investigate the dissimilarities in bacterial 
community composition between the groups based on both weighted 
and unweighted UniFrac algorithms, and statistical significance was 
assessed by analysis of similarities (ANOSIM). We also compared the 
relative abundance of dominant bacterial taxa at both the phylum and 
genus levels (phyla with relative abundance above 1% and genera with 
relative abundance above 3% were considered dominant) between the 
groups using the Wilcoxon rank-sum test, and their p values were 
adjusted by using the false discovery rate. To identify the taxa most 
likely to account for the variations between exposure and control 
samples, we employed linear discriminant analysis effect size (LEfSe) 
analysis. An LDA score of greater than 3.5 was established as the 
threshold to identify discriminative taxa (from phylum to species). 
The Spearman correlation between the genera and the concentrations 
of heavy metals in blood was analyzed and visualized to further 
investigate whether the genera exhibiting differences between the 
exposed and control groups were correlated with the concentrations 
of heavy metals in blood. To assess the functional differences in terms 
of metabolic pathways between the microbial communities of the 
exposure and control groups, we used PICRUSt24 based on the SILVA 
database of 16S rRNA sequences (Langille et al., 2013) and the Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) database (Kanehisa 
et  al., 2017) to predict microbial functional genes. The Wilcoxon 
rank-sum test was used for comparison of the KEGG pathway 
abundances between the two groups. All above analyses were 

2 https://gephi.org/

3 https://cytoscape.org/

4 https://github.com/picrust/picrust2
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conducted by using SPSS (version 26.0; IBM SPSS Inc., United States) 
and R (version 4.2.2; http://cran.r-project.org/).

3. Results and discussion

3.1. The heavy metal pollution of the study 
area

To assess whether there are differences in metal pollution levels 
between the contaminated and control areas, the concentrations of 
heavy metals in the soil and the blood of the subjects in the two areas 
were compared using the Wilcoxon rank-sum test. In the ploughed 
soil of the contaminated area, our results showed that the mean values 
of seven metals (Mo, Cd, Sb, Cu, Hg, Pb, and Zn) were substantially 
higher than those of the control area (all p < 0.05), whereas the levels 
of Co, Ni, and Mn were similar between the two areas (all p > 0.05; 
Supplementary Table S1). The concentrations of four metals (Zn, Hg, 
Cd and Pb) in the blood of subjects living in contaminated areas were 
significantly higher than those in the control area (all p < 0.05; 
Supplementary Table S2).

3.2. Bacterial diversity of buccal mucosa

The rarefaction curves stabilized, indicating that the sequencing 
depth was sufficient to reflect the bacterial diversity in the majority of 
samples (Figure 2A). The bacterial Sobs, Chao1 and ACE indices of 
the exposure group were significantly higher than those of the control 
group (all p < 0.001), whereas we did not observe significant differences 

between the two groups for the Shannon–Wiener and Simpson 
indices (both p > 0.05; Figures  2B–F). The bacterial community 
structure of the buccal mucosa samples was analyzed using principal 
coordinate analysis (PCoA), which is based on both weighted and 
unweighted UniFrac distances, to see whether there were significant 
differences between the exposure and control groups. The first and 
second principal components together explained 45.51% and 22.28% 
of the total variation in bacterial communities based on weighted and 
unweighted UniFrac distances, respectively (Figures  2G,H). Our 
results revealed significant differences in bacterial community 
composition between the two groups (ANOSIM R > 0.257, both 
p = 0.001), although their distributions were found to partially overlap.

3.3. Bacterial community structure of 
buccal mucosa

The dominant bacterial phyla observed in the exposure and 
control groups were Firmicutes (45.41% vs. 60.45%), Actinobacteriota 
(31.75% vs. 15.54%), Proteobacteria (13.19% vs. 9.74%), 
Fusobacteriota (5.00% vs. 4.98%), Bacteroidota (2.50% vs. 6.30%), 
and Patescibacteria (1.74% vs. 2.16%; Figure  3A). The relative 
abundances of Actinobacteriota and Proteobacteria were significantly 
higher in the exposure group than in the control group (Wilcoxon 
rank-sum test, both p < 0.01), whereas the relative abundances of 
Firmicutes and Bacteroidota appeared to be significantly higher in 
the control group (both p < 0.001; Figure 3B). Moreover, the dominant 
bacterial genera in the control group were Streptococcus (41.64%), 
Gemella (7.45%), Rothia (4.72%), Actinomyces (4.71%), Rhodococcus 
(4.18%), Neisseria (3.53%), and Prevotella (3.34%), while the exposure 

FIGURE 2

Analysis of α-diversity and principal coordinate analysis of buccal mucosal bacterial communities. (A) Rarefaction curves for the bacterial community 
dataset. The flat curve indicated that the sequence number used for analyses was adequate. (B–F) Differences in bacterial α diversity indices between 
the exposure and control groups. Significant differences were determined by using the Wilcoxon rank-sum test. *p  ≤  0.05; **p  ≤  0.01; ***p  ≤  0.001. 
(G,H) Principal coordinate analysis (PCoA) of bacterial community dissimilarities based on the weighted (G) and unweighted (H) UniFrac distances. 
Significant differences in bacterial β diversity between the exposure and control groups were determined by using ANOSIM statistics.
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group exhibited dominant genera including Streptococcus (27.86%), 
Rhodococcus (20.57%), Gemella (5.71%), Delftia (5.09%), Rothia 
(4.53%), Actinomyces (4.40%), Haemophilus (3.70%), and 
Fusobacterium (3.13%; Figure  3C). Among the aforementioned 
dominant genera, the relative abundances of Streptococcus, Gemella, 
and Prevotella were significantly higher in the control group than in 
the exposure group (all p < 0.05), whereas those of Rhodococcus, 
Delftia, and Fusobacterium were significantly higher in the exposure 
group (all p < 0.05; Figure 3D). No significant differences were found 
in the relative abundance of Rothia, Actinomyces, Haemophilus, and 
Neisseria between the two groups. Furthermore, bacteria of the 
genera Granulicatella and Porphyromonas were significantly  
enriched in the control group (both p < 0.001), while 
Peptostreptococcus exhibited significant enrichment in the exposure 
group (p < 0.05).

We further used Spearman’s correlation to evaluate the 
responses of the relative abundance of bacterial genera to 
concentrations of heavy metals in the blood (Figure 4). Our results 
showed that the relative abundances of Rhodococcus and Delftia 
were positively correlated with the concentrations of Cd and Pb, 
whereas those of Granulicatella, Streptococcus, Neisseria, Gemella, 
Haemophilus, and Porphyromonas exhibited negative associations 
with the concentration of Cd. Porphyromonas exhibited not only a 
negative correlation with Cd but also negative correlations with Hg 
and Pb. Moreover, the relative abundance of Peptostreptococcus was 
found to be positively correlated with the amount of Zn, and those 
of Gemella and Abiotrophia showed positive correlations with the 
content of Mo. There were no significant associations observed 

between the relative abundances of Prevotella, Leptotrichia, 
Fusobacterium, Rothia, Actinomyces, norank_f_Saccharimonadaceae, 
and Veillonella with the concentrations of any heavy metals in 
the blood.

A portion of the bacteria at the species level are presented in 
Supplementary Figure S1. We found that the relative abundances of 
Rhodococcus erythropolis, Delftia tsuruhatensis, and Streptococcus 
anginosus in the exposure group were significantly higher than those 
in the control group. The relative abundances of Streptococcus gordonii, 
S. gordonii, S. mutans, and Porphyromonas gingivalis were enriched in 
the exposed group, although the difference was not significant 
compared to the control group.

Linear discriminant analysis effect size (LEfSe) analysis was used 
to identify taxa effect size. The circles that radiate outwards from the 
center of the branch diagram represent the various levels of 
classification, from phylum to species (Supplementary Figure S2). 
These results showed significant enrichment of Corynebacteriales, 
Rhodococcus, Nocardiaceae, Actinobacteriota, and Actinobacteria in 
the exposure group. We  also found that Streptococcus, Bacilli, 
Firmicutes, Lactobacillales, and Streptococcaceae, were more abundant 
in the control group than in the exposure group 
(Supplementary Figure S3). Furthermore, Firmicutes, which is 
thought to be the most prevalent phylum of bacteria in the buccal 
mucosa (Wang S. et al., 2022), was significantly decreased in the 
exposure group. However, the cladogram for this phylum suggests 
that Streptococcus, Gemella, and Granulicatella were primarily 
accountable for this difference, and other genera belonging to the 
Firmicutes phylum did not show a preference for metal exposure.

FIGURE 3

The bacterial community composition of the exposure and control groups and the correlations between bacterial community composition and blood 
heavy metal levels. Compositional differences in bacterial communities of the buccal mucosa at the phylum (A,B) and genus (C,D) levels. The p-value 
was calculated using the Wilcoxon rank-sum test and adjusted by using the false discovery rate. *p  <  0.05; **p  <  0.01; ***p  <  0.001.
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3.4. Functional predictions of buccal 
mucosal bacterial communities

We predicted the functions of buccal mucosal bacterial 
communities based on the KEGG pathway database and then 
tested their functional differences in terms of metabolic pathways 
between the exposure and control groups (Figure 5). Overall, the 
two groups showed obvious functional differences, with a greater 
number of upregulated genes than downregulated genes (43 vs. 1 
at KEGG level 2 and 258 vs. 64 at KEGG level 3). Specifically, 
predictions based on the KEGG level 2 pathway revealed that the 
top five upregulated genes in terms of fold change were involved 
in substance dependence, xenobiotic biodegradation and 
metabolism, lipid metabolism and catabolism, excretory system, 
and cancer: specific types were upregulated in the exposure group 
(Wilcoxon rank-sum test, all p < 0.05; Figure 5A), while sensory 
system-related genes were upregulated in the control group 
(p < 0.05). For the KEGG level 3 pathway, the top five upregulated 
genes in terms of fold change observed in the exposure group were 
involved in hematopoietic cell lineage, steroid degradation, 
caffeine metabolism, steroid biosynthesis and cAMP signaling 
pathway (Wilcoxon rank-sum test, all p < 0.05; Figure  5B). In 
contrast, the upregulated genes in the control group were involved 
in biosynthesis of enediyne antibiotics, isoflavonoid biosynthesis, 
aldosterone-regulated sodium reabsorption, endocrine and other 
factor-regulated calcium reabsorption, and insulin secretion (all 
p < 0.05).

3.5. Patterns of bacterial co-occurrence 
networks

We constructed molecular ecological networks (MENs) to 
compare the interaction and co-occurrence pattern of buccal mucosal 
bacterial communities between the exposure and control groups 
(Figure 6; Table 1). The network of the exposure group produced 66 
nodes and 56 edges, while the network of the control group included 
123 nodes and 135 edges (Table 1). For the network edges of the two 
groups, the proportion of positive interactions was much higher than 
that of negative interactions (98.21% vs. 1.79% in the exposure group, 
and 91.85% vs. 9.15% in the control group). To ascertain whether the 
networks of the two groups differ from random networks, 
we  compared the empirical network with the random network 
generated using the Maslov-Sneppen procedure by rewiring the same 
number of nodes and edges to the corresponding empirical network 
(Zhou et  al., 2011). The values of average clustering coefficient 
(avgCC), average path distance (GD), and modularity in both 
networks appeared to be significantly different from random ones 
(Supplementary Table S3), indicating nonrandom patterns of 
co-occurrence network.

Network topological properties revealed that degree distributions 
conformed to the power-law model (both R2  > 0.941; Table  1), 
indicating the scale-free property of the two networks. The empirical 
networks exhibited higher average clustering coefficients compared 
to their corresponding random networks, which suggested the small-
world property of the two networks (Deng et al., 2012). Modularity 

FIGURE 4

Scatter plots presenting the correlation between the genera and the concentrations of heavy metals in blood. (A) Scatter plot of the correlation 
between the genera and Cd. (B) Scatter plot of the correlation between the genera and Co. (C) Scatter plot of the correlation between the genera and 
Zn. (D) Scatter plot of the correlation between the genera and Hg. (E) Scatter plot of the correlation between the genera and Mo. (F) Scatter plot of the 
correlation between the genera and Pd.
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was utilized as a quantitative measure to evaluate the degree to which 
a network is organized into delimited modules. The modularity 
values for the exposure group (0.848) and the control group (0.793) 
were higher than for the corresponding random network (0.799 and 
0.728), indicating that the two networks are modular (Newman, 
2006; Deng et al., 2012). There were 6 and 9 modules (with >4 nodes) 
observed in the exposure and control groups, respectively 
(Figures 6C,D). Not only is the number of modules in the exposure 
group reduced compared to the control group pattern, but there are 
also fewer nodes and links within each module. These results 
suggested that the two networks possessed scale-free, small-world, 
and modular properties.

The network nodes of the exposure and control groups were 
mostly affiliated with 8 different bacterial phyla (Figure 7A). Among 
these, the relative abundances of Firmicutes, Fusobacteriota, and 
Synerqistota were higher in the network of the exposure group than 
in that of the control group. In contrast, there was a higher relative 
abundance of Bacteroidota, Proteobacteria, Actinobacteriota, 
Patescibacteria, and Spirochaetota in the network of the control group. 
A total of 73 nodes were unshared by the two networks (Figure 7B), 
indicating that most buccal mucosal bacterial species had unique 
niches in both networks (Qi et  al., 2019). Therefore, these results 
indicated that the taxonomic composition of nodes was very different 
between the two networks.

We then determined the network topological roles of bacterial 
OTUs according to their locations in their respective modules and the 
extent to which they are connected to OTUs in other modules 
(Guimerà and Nunes Amaral, 2005). Specifically, the nodes were 
divided into four categories based on the indicators of within-module 
connectivity (Zi) and among-module connectivity (Pi): peripherals 
(Zi ≤ 2.5, Pi ≤0.62), connectors (Zi ≤ 2,5, Pi ≥ 0.62), module hubs 
(Zi ≥ 2.5, Pi ≤ 0.62), and network hubs (Zi ≥ 2.5, Pi ≥ 0.62; Guimerà 
and Nunes Amaral, 2005; Zhou et al., 2011; Figure 8).

Our results showed that none of the nodes within networks of the 
exposure and control groups were classified as network hubs, and all 
nodes within the network of the exposure group were peripherals with 
most of them (i.e., 92%) having no connections with nodes in other 
modules (Pi = 0). In contrast, approximately 4% of nodes within the 
network of the control groups were generalists (Olesen et al., 2007), 
with 1.6% being module hubs and 2.4% being connectors. Notably, 
module hubs and connectors, which are commonly thought to play an 
important role in the topological nature of co-occurrence networks, 
are considered keystone taxa (Li et al., 2017). The five keystone taxa 
detected in the network of the control group were affiliated with the 
species Filifactor alocis (OTU201), Schaalia odontolytica (OTU2018), 
Prevotella salivae (OTU367), Solobacterium moorei (OTU2014), and 
Streptococcus vestibularis (OTU339). Interestingly, among them, only 
OTU339 and OTU2018, belonging to the species Streptococcus 
vestibularis and Schaalia odontolytica, represented dominant taxa in 
the buccal mucosal bacterial community. The relative abundances of 
OTU339 and OTU2018 were 3.06% and 1.97%, respectively. However, 
the remaining three OTUs belonging to the species Filifactor alocis, 
Prevotella salivae and Solobacterium moorei only accounted for very 
low relative abundance in bacterial communities (averages of 0.58%, 
0.13%, and 0.20%, respectively).

3.6. Correlations between network 
modules and the concentrations of heavy 
metals in the blood

We further tested the responses of network modules to 
intraexposure (i.e., the heavy metals in blood) using a subdataset that 
included 79 subjects. The topological properties of the empirical 
network are shown in Supplementary Table S4. There were obvious 
differences in both the average clustering coefficient (avgCC) and 

FIGURE 5

KEGG pathway volcano to predict differences in metabolic pathways of microbial communities. Volcano plot showing the predictive functional 
differences between the exposure and control groups based on the KEGG metabolic pathway at the second (A) and third (B) levels (fold change > 1 
and adjusted p-value < 0.05). The red, blue and gray circles indicate upregulated, downregulated and insignificantly changed genes, respectively.
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average path distance (GD) between the empirical and random 
networks (Supplementary Table S5). The empirical network had 112 
nodes and 101 edges (average degree of 1.804 and average path 
distance of 5.537). For the network edges, the proportion of positive 
interactions was higher than that of negative interactions (94.06% vs. 
5.94%; Supplementary Figure S4). There were 9 modules (with >4 
nodes) observed in the network (Figure 9A). After modules were 
determined, we further used eigengene analysis to reveal the higher 
order organizations in the network structure (Langfelder and Horvath, 
2007). Our results indicated that many sets of modules eigengenes 
were closely correlated with each other and were clustered together as 
supergroups, such as #3 and #7 and #1, #4 and #5 (Figure 9C). More 
importantly, we  observed significant correlations between several 
modules and the concentrations of heavy metals in the blood 
(Figure 9D). Specifically, the contents of Cd and Pb were significantly 
and negatively correlated with module #2 (both p ≤ 0.02) and 
positively correlated with module #5 (both p ≤ 0.03). Module #7 was 
positively correlated with the concentration of Sb in the blood 
(p = 0.02), and module #4 was negatively correlated with that of Hg 
(p = 0.04). Collectively, these results suggest that different network 
modules respond differently to the concentrations of heavy metals in 
the blood, and changes in heavy metal content may have a significant 
impact on members of certain modules (such as #2, #4, #5, and #7).

3.7. Functional predictions of network 
modules

We used the PICRUSt pipeline to predict the bacterial gene 
functions for the main network modules based on KEGG metabolic 
pathways (Figure 9B). The predominant functions were those related 
to metabolism and the processing of genetic information. Our results 
further showed that genes related to amino acid metabolism, 
carbohydrate metabolism, metabolism of cofactors and vitamins, 
metabolism of other amino acids, and replication and repair were 
richest in the categories of the level 2 KEGG pathway 
(Supplementary Figure S5). Interestingly, some functions were unique 
to individual modules, such as chemical structure transformation 
maps, which were unique to module 3 and module 9; substance 
dependence, which was unique to module 5 and module 9; and the 
circulatory system, which was detected only in module 9. Additionally, 
we also calculated the correlations between the contents of heavy 
metals in the blood and the relative abundance of the level 2 KEGG 
pathway of some network modules (i.e., #2, #4, #5, and #7; 
Supplementary Figure S6). Our results showed that among the gene 
functions that were associated with the contents of heavy metals, the 
strongest positive correlation between Cd and Pb was cell motility, and 
the most negative correlations were glycan biosynthesis and 

FIGURE 6

Molecular ecological networks were built on the basis of correlation among bacterial OTUs. The networks for the exposure (A) and control groups 
(B) are displayed. Node sizes are proportional to the number of connections. Panels (C,D) present the network modules determined by the fast greedy 
modularity optimization method (only showing nodes larger than 4) for the exposure and control groups, respectively, as well as their taxonomic 
composition at the phylum level. Each node represents a bacterial OTU and is colored by its phylum-level taxonomic affiliation. Red lines represent 
negative interactions among bacterial OTUs, whereas blue lines represent positive interactions.
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metabolism and the digestive system. The strongest positive 
correlation with Sb was in the digestive system, and the strongest 
negative correlation with Hg was in cancer: specific types.

4. Discussion

The oral cavity, as the beginning of the digestive tract, contains a 
complex population of microbes (Lamont et al., 2018; Zhang Y. et al., 
2018). As part of the microbial community, the microbes of the buccal 
mucosa play an important role in human health (Du et al., 2020; Jung 
and Jang, 2022), but the impact of the environment, diet, and lifestyle 
habits on its composition is still poorly understood. MiSeq 16S rRNA 
gene sequencing was performed in this study on buccal mucosal 
samples from a total of 137 residents living in two villages. In 
summary, we found differences in microbial diversity, community 
composition, and co-occurrence patterns between the two groups.

Microbiota analysis showed that the structure and abundance of 
the buccal mucosal bacteria were significantly different between the 
exposure and control groups. The Sobs, Ace, and Chao1 indices in the 
control group are significantly higher than those in the exposure 
group, indicating that the species richness of buccal mucosal bacteria 
in residents living in the contaminated area was diminished. However, 

the Shannon and Simpson indices show no significant differences 
between the two groups. We  speculate that this is because, even 
though the number of species has decreased in the exposure group, 
the relative abundance distribution of species remains stable between 
the two groups, and there are no significant dominant species. 
According to the PCoA based on the weighted and unweighted 
UniFrac distance analysis, the microbiota distribution varied 
significantly between the two groups (both p = 0.001). These results 
were consistent with previous studies showing that metal exposure can 
alter the composition of the oral bacterial spectrum (Eshed et al., 
2012; Espinosa-Cristóbal et al., 2013; Khan et al., 2013), abundance, 
and diversity (Youravong et al., 2011; Davis et al., 2020). In terms of 
the composition of the microbiota, Firmicutes, Actinobacteriota, 
Proteobacteria, Fusobacteriota, and Bacteroidota were the dominant 
phyla. This is consistent with the dominant phyla of the oral 
microbiome identified by the Human Microbiome Project (HMP), 
indicating the reliability of the results (Human Microbiome Project 
Consortium, 2012). Firmicutes was the most abundant phylum in the 
buccal mucosa, although the relative abundance in the exposed group 
was significantly lower than that in the control group. At the genus 
level, we  found that Rhodococcus, Delftia, Fusobacterium, and 
Peptostreptococcus were significantly enriched in the exposure group, 
whereas the relative abundances of Streptococcus, Gemella, Prevotella, 

TABLE 1 Topological properties of the empirical and 100 random MENs of microbial communities in the exposure and control groups; n.a denotes no 
data available in the random algorithm.

Network indices Exposure group Control group Exposure group Control group

Empirical Random (mean  ±  SD)

Total nodes 66 123 n.a n.a

Total links 56 135 n.a n.a

RMT cut-off 0.45 0.45 n.a n.a

R square of power-law 0.992 0.941 n.a n.a

Average degree (avgK) 1.697 2.195 n.a n.a

Average clustering coefficient (avgCC) 0.075 0.072 0 ± 0.005 0 ± 0.002

Average path distance (GD) 3.021 6.838 4.611 ± 0.928 5.814 ± 0.331

Geodesic efficiency (E) 0.460 0.199 0.321 ± 0.05 0.218 ± 0.009

Harmonic geodesic distance (HD) 2.174 5.027 3.188 ± 0.49 4.589 ± 0.199

Centralization of degree (CD) 0.082 0.048 0.082 ± 0 0.048 ± 0

Centralization of betweenness (CB) 0.058 0.246 0.16 ± 0.063 0.194 ± 0.048

Centralization of stress centrality (CS) 0.058 0.523 0.004 ± 0.002 0.004 ± 0.002

Centralization of eigenvector centrality 

(CE)
0.920 0.934 0.921 ± 0.015 0.89 ± 0.027

Centralization of closeness centrality 

(CCL)
0.006 0.015 0.014 ± 0.004 0.019 ± 0.004

Density (D) 0.026 0.018 0.026 ± 0 0.018 ± 0

Reciprocity 1 1 1 ± 0 1 ± 0

Transitivity (Trans) 0.146 0.065 0.014 ± 0.021 0.014 ± 0.012

Connectedness (Con) 0.136 0.675 0.311 ± 0.088 0.753 ± 0.065

Efficiency 0.887 0.984 0.999 ± 0.001 0.998 ± 0

Hierarchy 0 0 0.026 ± 0 0.018 ± 0

Lubness 1 1 0.142 ± 0.045 0.085 ± 0.018

Modularity 0.848 (17) 0.793 (18) 0.799 ± 0.018 0.725 ± 0.014
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Granulicatella, and Porphyromonas were significantly reduced in that 
group. This result confirmed the idea that the variation in bacterial 
abundance may be associated with metal exposure and that exogenous 
factors control which bacteria may settle, grow, and develop in the 
dominant population (Sedghi et al., 2021; Akimbekov et al., 2022). 
Correlation analysis showed that the majority of genera that exhibited 
a significant increase in relative abundance in the exposed group had 
positive correlations with the concentration of heavy metals in the 
blood, such as between Rhodococcus and Delftia with Cd and Pb. 
Conversely, in the control group, most genera with a significant 
increase in relative abundance were negatively correlated with the 

concentration of heavy metals in blood such as Cd with Streptococcus, 
Porphyromonas, and Granulicatella. Therefore, we  speculated that 
long-term residence in areas contaminated with heavy metals leads to 
heavy metal accumulation in the body and further affects the 
microbial community structure of the buccal mucosa.

Oral lichen planus (OLP) is considered to be  a chronic 
inflammatory disease associated with the buccal mucosa (Jung and 
Jang, 2022), and although the mechanism and cause of OLP are not 
yet explained, studies have found that the bacteria that settle on the 
surface of the buccal mucosa are related to OLP (Choi et al., 2016; He 
et al., 2017). In their study of the composition of the bacteria in the 
buccal mucosa of OLP patients and healthy controls, Hijazi et al. 
found that although there were no significant differences in the 
bacterial diversity between the two groups, alpha diversity decreased 
as the severity of OLP increased (Hijazi et al., 2020). Additionally, 
studies have shown that people with OLP have a more diverse 
microbiota in their buccal mucosa than healthy controls (He et al., 
2017; Baek and Choi, 2018). In summary, although some studies 
report that the bacterial composition of healthy controls was similar 
to that of OLP patients (Hijazi et al., 2020), most of the studies on the 
microbial composition of the buccal mucosa have found that the 
bacterial structure of OLP patients can be distinguished from that of 
healthy controls (Du et al., 2020; Wang et al., 2020). In a previous 
study, a total of 19 different genera were found to have significant 
differences in abundance between OLP patients and healthy controls, 
with a significant increase in Fusobacterium, Leptotrichia, and 
Lautropia in patients, while Streptococcus was lower compared to the 
healthy control group (He et al., 2017). We created a combinatorial 
marker panel composed of four genera (Fusobacterium, Leptotrichia, 
Lautropia, and Streptococcus) and employed random forest analysis 
to investigate whether these genera could differentiate between the 
exposed and control groups (Supplementary Figure S7A). In the 
receiver-operating characteristic (ROC) curve, this result highlights 

FIGURE 7

Relative abundances of different nodes in networks of the exposure and control groups. (A) Relative abundances of nodes belonging to different phyla 
categories in networks of exposure and control groups. (B) Venn charts showing the number of nodes shared and not shared by the networks of the 
exposure and control groups.

FIGURE 8

Z-P plot showing the topological roles of bacterial OTUs in the 
networks of the exposure and control groups. Each dot represents a 
bacterial OTU, and the ZP scatter plot was used to estimate the 
topological role of each OTU. The module hubs and connectors are 
labeled with OTU IDs, and in parentheses are the module IDs and 
species name.

https://doi.org/10.3389/fmicb.2023.1264619
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Pei et al. 10.3389/fmicb.2023.1264619

Frontiers in Microbiology 12 frontiersin.org

the diagnostic potential of the combinatorial marker panel 
(AUC = 0.81, 95%CI: 0.73–0.89). It is reported that Streptococcus was 
closely associated with the development of oral cancer, and the 
relative abundances of Streptococcus anginosus and S. gordonii were 
significantly enriched in the buccal mucosa in patients with oral 
squamous cell carcinoma (OSCC; Karpiński, 2019). Moreover, 
Streptococcus (including S. salivarius, S. mutans, S. milleri/anginosus, 
and S. mitis) is alpha-hemolytic and opportunistic pathogenic (Nobbs 
et al., 2009). In this study, we found that the abundance of S. anginosus 
increased significantly in the exposure group, and that of S. gordonii 
and S. mutans increased but not significantly. However, in the ROC 
analysis, the combinatorial marker panel composed of S. anginosus, 
S. gordonii, and S. mutans cannot accurately distinguish between the 
exposure group and control group (AUC = 0.58, 95%CI: 0.48–0.868; 
Supplementary Figure S7B). Thus, our findings reveal that people 
who live in different environments have different microbial 
communities in the buccal mucosa and that living in areas 
contaminated with heavy metals may increase the risk of several 
diseases, including oral lichen planus.

PICRUSt analysis was used to predict the function of bacterial 
communities. In this study, there were significant differences in the 
metabolic function of buccal mucosal bacteria in the two groups, 

with most functions being upregulated in the exposure group. Metal 
ions may improve the adaptability of bacteria to different 
environments by regulating the function of bacterial cells in terms of 
substance dependence, xenobiotic biodegradation and metabolism, 
lipid metabolism, the excretory system, and the sensory system. 
According to findings from a previous study, during succession under 
the impact of the environment, microbes can develop adaptive 
mechanisms (Zhu et al., 2019). Due to the limitations of PICRUSt 
functional predictions (Langille et  al., 2013), this study is only a 
preliminary prediction of bacterial function, and further verification 
should be  carried out in future studies using methods such as 
metagenomics to better understand the function of buccal mucosal 
bacteria from different populations.

Based on high-throughput 16S rRNA sequencing data, 
we  constructed microbial networks in this study. Most previous 
studies only analyzed the community composition, abundance, and 
diversity of oral microbes (Dong et al., 2021; Zhang et al., 2023), but 
the interactions between microbial species are critical to ecosystem 
stability. Therefore, microbial networks, as a new approach to 
analyzing the interactions between microbiota populations, can help 
us better understand the changes between the exposure and 
control groups.

FIGURE 9

Correlation between modules, as well as the correlation of each module with the concentrations of heavy metals in the blood. Panel (A) presents the 
network module determined by the fast greedy modularity optimization method (only showing nodes larger than 4), as well as their taxonomic 
composition at the phylum level. Each node represents a bacterial OTU and is colored by its phylum-level taxonomic affiliation. Red lines represent 
negative interactions among bacterial OTUs, whereas blue lines represent positive interactions. (B) Relative abundance of KEGG categories of each 
network module. (C) Showing the correlations and heatmap of module eigengenes. The hierarchical clustering in the upper part is based on the 
Pearson correlations between module eigengenes, and the coefficient values (r) are shown in the lower part of the figure. (D) The Pearson correlations 
between module eigengenes and the content of heavy metals in blood. r in different colors, and the right side of the legend is the color range of 
different r values. The numbers represent the correlation coefficient (r) and significance (P) in parentheses.
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Through bacterial molecular ecological network analysis, 
we observed that the network of the control group exhibited a greater 
number of interacting microbial species compared to the exposed 
group. In general, more interactive bacteria are present in the network, 
suggesting that there is more metabolism and information exchange 
between species, which allows the network work more efficiently 
(Faust and Raes, 2012). Modularity is one of the key topological 
features of network structures (Newman, 2006) and nodes in the same 
module usually have similar functions, metabolic pathways, niches, or 
phenotypic features (Qin et al., 2012; Layeghifard et al., 2017; Lurgi 
et al., 2019). In this study, both the number of modules and nodes 
within each module were found to be lower in the network of the 
exposure group than in the network of the control group, which 
means that the microbial network of the control group has a higher 
complexity and ecological diversity, and the interactions between 
microbes are more complex and tighter. Furthermore, a higher average 
connectivity implies a network of greater complexity (Qi et al., 2019). 
The average degree values for the exposure and control groups were 
1.697 and 2.195, respectively. All of the aforementioned results 
indicated that exposure to heavy metals would reduce the complexity 
of the buccal mucosal bacterial network.

Keystone taxa were believed to play an important role in the 
network, making it more stable and ordered (Qi et al., 2019). Studies 
have shown that keystone taxa are important for the stability of 
ecosystems, and their extinction may lead to the fragmentation of the 
entire microbiome (Lupatini et al., 2014). In the network of the control 
group, we  found 5 keystone taxa, while in the exposure group all 
nodes were identified as peripherals. In addition, the role of microbial 
species changed in the network of the exposure group compared to 
the control group. For example, module hubs in the network of the 
control group (OTU201 and OTU2018) and connectors (OTU367, 
OTU2014, and OTU339) were converted to peripherals in the 
exposure group. Shifts in the roles of these keystone taxa may lead to 
instability of the exposure group network and a weakening of the 
ability to suppress the growth of pathogens (such as S. anginosus, 
S. gordonii, and P. gingivalis). Interestingly, of the keystone taxa found 
in the control group, Filifactoralocis, Prevotella salivae, and 
Solobacterium moorei together accounted for less than 1% of the total 
relative abundance. These findings suggest that these relatively 
low-abundance bacteria occupy a very important place in the 
ecological network and therefore may exert a greater influence on 
microbial structure and function than some bacteria with relatively 
high abundances, despite the fact that their presence can have either 
beneficial or detrimental effects on humans and human activities 
(Zhang S. et al., 2018; Qi et al., 2019). Furthermore, we did not identify 
any keystone taxa in the network of the exposure group, indicating 
that heavy metal exposure would alter the initial structure of the 
network, causing the loss of the activities of taxa that were in key 
positions before and thereby making the entire network more 
vulnerable to damage. We also found that the concentrations of Cd, 
Pb, Sb, and Hg in blood were correlated with the microbial network 
structure of the buccal mucosa. Previous studies have shown that 
heavy metal ions, especially divalent ions such as lead and cadmium, 
affect the growth and vitality of oral bacterial communities (Youravong 
et al., 2011; Breton et al., 2013; Steiger et al., 2020). Thus, we speculate 
that Cd, Pb, Sb, and Hg in the blood are the main drivers of the 
bacterial network and may adversely affect the stability of the 

microbial network of the buccal mucosa in residents with long-term 
exposure to heavy metals.

5. Conclusion

 (1) Long-term exposure to multiple metals perturbs normal buccal 
mucosal bacterial communities in inhabitants of contaminated 
areas and may increase their risk of developing a variety of 
diseases, including OLP.

 (2) The concentrations of heavy metals (Pb, Cd, Hg, and Mo) in 
the blood are associated with the growth of Rhodococcus, 
Delftia, Porphyromonas, and Gemella.

 (3) Long-term exposure to metals, reduces the complexity and 
stability of the microbial network of the buccal mucosa.

 (4) As the main drivers of the network, Pb, Cd, Hg, and Mo in the 
blood can adversely affect the microbial network of the buccal 
mucosa in residents with long-term exposure to heavy metals.

 (5) Some low-abundance bacteria may exert a greater influence on 
microbial structure than some bacteria with a relatively 
high abundance.
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