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Green mold disease, caused by Trichoderma spp., is one of the most 
devastating diseases of mushrooms in China. The application of fungicides 
remains one of the important control methods among the integrated pest 
management tools for disease management in mushroom farms. This study 
aimed to identify Trichoderma spp., isolated from G. sichuanense fruiting 
bodies displaying green mold symptoms collected from mushroom farms in 
Zhejiang, Hubei, and Jilin Province, China, and evaluate their in vitro sensitivity 
to six fungicides. A total of 47 isolates were obtained and classified into nine 
Trichoderma spp. namely, T. asperellum, T. citrinoviride, T. ganodermatiderum, 
T. guizhouense, T. hamatum, T. harzianum, T. koningiopsis, T. paratroviride, 
and T. virens, through morphological characteristics and phylogenetic 
analysis of concatenated sequences of translation elongation factor 1-alpha 
(TEF) and DNA-dependent RNA polymerase II subunit (RPB2) genes. The 
pathogenicity test was repeated two times, and re-isolation of the nine 
Trichoderma spp. from the fruiting bodies of G. sichuanense fulfilled Koch’s 
postulates. Prochloraz manganese showed the best performance against 
most species. This research contributes to our understanding of green mold 
disease, reveals the phylogenetic relationships among Trichoderma species, 
and expands our knowledge of Trichoderma species diversity associated with 
green mold disease in G. sichuanense.
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Introduction

Ganoderma sichuanense is a widely distributed pore fungus that holds ecological and 
economic significance (Zhao et  al., 1983; Wang et  al., 2012). With its valuable medicinal 
properties, it has been cultivated for centuries in China, Japan, South Korea, and other regions 
(Zhu et al., 2019; Wang et al., 2020). In China, G. sichuanense has been cultivated for over 
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100 years, primarily in provinces such as Jilin, Heilongjiang, Shandong, 
Anhui, Guangdong, Guangxi, Fujian, Jiangxi, and Zhejiang. Recent 
studies have highlighted its medicinal benefits, including anti-tumor 
activity, antioxidant effects, blood sugar and lipid regulation, blood 
pressure reduction, antiviral activity, liver protection, and anti-aging 
effects (Xiao et al., 2016; Chiu et al., 2017; Rahman et al., 2018, 2020; 
Pan and Lin, 2019; Qiu et  al., 2019; Wu et  al., 2019; Krobthong 
et al., 2021).

The commercial expansion of G. sichuanense cultivation has 
become crucial due to limited wild germplasm resources. In 2020, 
China’s Ganoderma production exceeded 189,000 tons, representing 
significant economic value (China Edible Fungi Association, 2020). 
However, this expansion has also led to increased disease occurrences, 
resulting in substantial economic losses by impacting the quality and 
yield of G. sichuanense. Among the various fungal pathogens affecting 
G. sichuanense production, Trichoderma spp., Xylogone 
ganodermophthora, and Cladobotryum spp. pose significant challenges 
(Kang et al., 2010; Zuo et al., 2016; Yan et al., 2019; Cai et al., 2020).

Green mold disease, primarily caused by Trichoderma species, is 
particularly concerning as it hampers the growth and productivity of 
G. sichuanense (Wang et al., 2016). While Trichoderma is known for 
its biocontrol effects, it can also act as a pathogen, posing a serious 
threat to edible fungi during cultivation (Shah et al., 2013; Kosanović 
et  al., 2020). The occurrence of green mold disease caused by 
Trichoderma species in China has raised significant concerns, resulting 
in contamination and losses in yield and quality (Seaby, 1987; Choi 
et al., 1998; Wang et al., 2016; Seung et al., 2018). The impact of this 
disease on G. sichuanense cultivation in China is of particular concern 
given the economic importance of this valuable medicinal fungus (Pan 
and Lin, 2019; Rahman et al., 2020).

In the context of Ganoderma cultivation, Trichoderma-induced 
diseases are particularly problematic during the mycelial growth 
and emergence stages of G. sichuanense. However, limited research 
has been conducted on the diversity and pathogenicity of 
Trichoderma species isolated from G. sichuanense in China, and the 
establishment of effective control measures against Ganoderma-
related diseases remains a challenge (Seaby, 1987; Chen and 
Zhuang, 2017; Yan et al., 2019; Cai et al., 2020; An et al., 2022). 
Therefore, identifying the causal agent and understanding its 
pathogenicity are crucial prerequisites for the development of 
effective disease management strategies.

Although fungicides are effective in controlling green mold 
disease, their use can lead to the development of resistance and pose 
environmental risks. Nevertheless, fungicides remain the most 
effective measure for disease control (Shah et al., 2013; Kosanović 
et al., 2015; Innocenti et al., 2019). Understanding the sensitivity of 
Trichoderma species to various fungicides can significantly contribute 
to disease management strategies. However, the fungicide sensitivities 
of Trichoderma isolates causing green mold disease in G. sichuanense 
in China have not been thoroughly investigated.

In this study, we aimed to investigate the Trichoderma species 
associated with G. sichuanense and their impact on disease 
development. Our findings revealed a disease incidence ranging from 
3 to 15%, which significantly affected the growth and development of 
G. sichuanense, leading to direct economic consequences. The rapid 
germination and spread of Trichoderma spores underscored the 
potential for irreparable damage if the disease is not promptly 

controlled. We focused on the identification and characterization of 
these Trichoderma species, the assessment of their pathogenicity in 
G. sichuanense, and the evaluation of their sensitivity to fungicides. 
Through these comprehensive analyses, our objective was to provide 
valuable insights into disease management strategies for 
G. sichuanense cultivation.

Materials and methods

Sample collection and fungal isolation

During the period from 2021 to 2022, we collected fruiting bodies 
(basidiomata) of G. sichuanense displaying symptoms of green mold 
disease from three farms situated in Zhejiang, Hubei, and Jilin 
Province, China. The incidence of the disease ranged from 3 to 15%, 
significantly impacting the growth and development of G. sichuanense.

To conduct a comprehensive investigation of the disease, 
we isolated the fungus from the infected fruiting bodies using the 
tissue-isolation method. This involved carefully excising small 
pieces (0.3 cm) from the edges of the lesions on the diseased fruiting 
bodies using a sterile scalpel. The excised tissues were then 
subjected to surface sterilization by treating them with 75% ethanol 
(vol/vol) for 30 s, followed by 1% NaOCl (wt/vol) for 10 s. 
Subsequently, the tissues underwent three rinses with sterilized 
distilled water.

The tissues were placed onto dried and sterilized potato 
dextrose agar (PDA) plates and incubated in darkness at 25°C for 
three to 5 days. Regular inspections were carried out to monitor any 
fungal growth. Colonies that developed from the infected tissues 
were transferred to new PDA plates using the hyphal tip culture 
method to obtain pure cultures. All purified isolates were further 
subcultured on PDA medium for 3 days and preserved on PDA 
slants at 4°C.

Morphological characterization

To evaluate the characteristics of the isolates, mycelia plug with a 
diameter of 5.0 mm were obtained from the edges of actively growing 
cultures aged 5 days. These plugs were then placed at the center of agar 
plates containing potato dextrose agar (PDA), cornmeal dextrose agar 
(CMD), and synthetic low-nutrient agar (SNA). The plates were 
incubated at 25°C with a 12-h light/dark photoperiod for a duration 
of 5–7 days.

During the incubation period, careful observations and 
recordings were made on various colony characteristics, including 
color, shape, radial growth, and texture. The colony diameters were 
measured in two perpendicular directions. The daily growth rate 
was determined by calculating the average mean daily growth 
(mm/day).

For further analysis, one-week-old colonies cultivated on SNA 
plates were utilized to examine the conidia and conidiophores 
following the methods outlined by Chaverri et al. (2015). The shape 
and color of the conidia were observed, and the sizes of 20 randomly 
selected conidia from each isolate were measured under a Zeiss Axio 
lab. A1 microscope equipped with a differential interference contrast 
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(DIC) optics camera (Carl Zeiss Microscopy GmbH, Germany), 
utilizing 1,000× magnification.

DNA extraction and sequence analysis

To obtain DNA for analysis, mycelia were collected from colonies 
cultivated on potato dextrose agar (PDA) for 3–5 days. DNA 
extraction was performed using the NuClean Plant Genomic DNA Kit 
(Cowin Biotech Co., Ltd., Taizhou, China).

For amplification of the target genes, specific primer pairs were 
used. The primer pair fRPB2-5f and fRPB2-7cr (Liu et al., 1999) 
amplified a 1 kb fragment of the RNA polymerase II second largest 
subunit (RPB2) gene. Additionally, the primer pair EF1-728F and 
TEF1LLErev (Chaverri et al., 2003; Jaklitsch et al., 2005) amplified 
a 1.3 kb fragment of the translation elongation factor 1-alpha 
(TEF1-a) gene. PCR amplification was conducted in a 30 μL 
reaction system comprising 15 μL of 10× PCR mix, 1.5 μL of each 
primer, 1.5 μL of template DNA, and 10.5 μL of ddH2O. For both 
RPB2 and TEF1-a genes, PCR conditions included an initial 
denaturation step at 95°C for 5 min, followed by 30 cycles of 
denaturation at 95°C for 1 min, annealing at 59°C for RPB2 or 
55°C for TEF1-a for 90 s, extension at 72°C for 90 s, and a final 
extension at 72°C for 10 min. The PCR products were purified 
using the PCR Product Purification Kit, and gel electrophoresis 
was performed to confirm successful amplification.

Sequencing of the PCR products was carried out bidirectionally 
using the fRPB2-5f/fRPB2-7cr and TEF1/TEF2 primers (Jaklitsch, 
2009) at Comate Biosciences Co. Ltd (Changchun, Jilin, China). 
The obtained sequences were assembled using CAP3 software 
(Huang and Madan, 1999) to generate consensus sequences. 
BioEdit software (version 7.0.0) was used to remove 20 to 30 bp 
from the terminal ends. Basic Local Alignment Search Tool 
(BLAST) analysis1 was conducted for each gene locus to confirm 
the identity of the isolates. The consensus sequences were deposited 
in GenBank (Table 1).2

Phylogenetic analyses

After performing a BLAST search using the obtained ITS, RPB2, 
and TEF1-a sequences in the NCBI GenBank database, sequences that 
met specific criteria: ≥ 99% similarity for RPB2, ≥ 97% for TEF1-a, 
and ≥ 76% for ITS, were utilized to verify the identity of Trichoderma 
species in our phylogenetic analysis (Cai and Druzhinina, 2021). 
We retrieved homologous RPB2, TEF1-a, and ITS gene sequences of 
the isolates from GenBank. These sequences were aligned using the 
MUSCLE program (Edgar, 2004), and the resulting alignment was 
further refined using BioEdit 7.2.5 (Hall, 1999; Hall, 2011). Finally, 
we concatenated the gene sequences using Phylosuit V1.2.2 (Zhang 
et  al., 2020). For the phylogenetic analysis, we  employed the 
Maximum-Likelihood (ML) method using PhyML 3.0 (Guindon 
et  al., 2010). The best substitution model was determined with 

1 https://www.ncbi.nlm.nih.gov/BLAST/

2 http://www.ncbi.nlm.nih.gov/genbank

PartitionFinder v2.1.1 (Lanfear et  al., 2017). To assess statistical 
support, we  conducted bootstrapping with 1,000 replicates (ML). 
Detailed lists of the fungal isolates used in this study can be found in 
Table  1 and Supplementary Table S1. The resulting ML tree was 
visualized using Figtree v1.4.4,3 providing a clear representation of the 
phylogenetic relationships among the isolates.

Pathogenicity tests

Pathogenicity experiments were conducted following Koch’s 
postulates, with each experiment replicated twice to ensure accuracy. 
Fully colonized substrate bags containing G. sichuanense were sourced 
from the Panshi Mushroom Base in Jilin Province, China. These bags 
were placed in a growth room with controlled conditions, including a 
temperature range of 25–30°C and humidity levels set between 80 and 
90%, to promote fruiting. Once the fruiting bodies were formed, the 
bottom surface of the cap and the stipe were meticulously damaged 
using a sterilized needle. Subsequently, they were inoculated with a 
spore suspension of the isolates at a concentration of 1 × 105 spores per 
milliliter. As a comparison, the control group was inoculated with 
sterilized distilled water.

For each strain, six bags of G. sichuanense were inoculated. The 
development of symptoms was monitored daily for a period of 14 days. 
To confirm the causative agents of green mold disease, the pathogens 
were re-isolated from the inoculated G. sichuanense showing green 
mold symptoms. Identification was performed using the 
aforementioned morphological and molecular methods, considering 
strains that matched the original inoculum as the causative agents of 
green mold disease.

Effect of Trichoderma spp. on 
G. sichuanense mycelia in petri plates

To assess the aggressiveness of the isolates, a subset of nine isolates 
representing nine different species was selected from the total of 47 
isolates. The experiments were performed with three replicates, 
following the procedure outlined below. Mycelial agar plugs with a 
diameter of 8 mm were obtained from the advancing edge of 10-day-
old G. sichuanense colonies. These plugs were then inoculated onto 
potato dextrose agar (PDA) plates, positioned 1 cm from the edge of 
Petri plates with a diameter of 9 cm. After 7 days, mycelial plugs from 
Trichoderma cultures were inoculated in the same manner, but on the 
opposite side of the plate, 1 cm away from the edge. The growth of 
Trichoderma species in confrontation with G. sichuanense mycelia was 
carefully observed and recorded.

Fungicide sensitivity of isolates and 
G. sichuanense

To evaluate the efficacy of fungicides against green mold in 
mushrooms, a preliminary screening of six fungicides (mancozeb, 

3 http://tree.bio.ed.ac.uk/software/figtree/
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TABLE 1 Specimen Numbers, country and their corresponding GenBank accession numbers of sequences used for phylogenetic analyses.

Scientific name Specimen 
numbers

Country Substrate GenBank accession numbers

RPB2 TEF1-a ITS

T. anisohamatum YMF1.00333 T China / MH155272 MH177912 MH113926

T. anisohamatum YMF1.00215 China / MH262576 MH236494 MH262583

T. asperellum CBS 433.97 T USA Soil EU248617 AY376058 /

T. asperellum T19 China G. sichuanense OR291404 OR291385 OR569146

T. atroviride CBS 142.95 ET Slovenia Decayed log EU341801 AF456891 MH862505

T. atroviride NECC21247 / / OL790433 OL790432 OL690567

T. ceramicum CBS 114576 T USA Wood FJ860531 FJ860628 FJ860743

T. ceramicum GJS 88–70 T USA Wood AF545510 AF534593 AY737764

T. citrinoviride DAOM 172792 T / / KJ842210 KJ713208 EU280098

T. citrinoviride DEMf:TR4 Serbia Pinus sylvestris bark OK422202 OK422205 OK384603

T. citrinoviride T31 China G. sichuanense OR291411 OR291392 OR569153

T. estonicum GJS 96–129 T Estonia Hymenochaete tabacina AF545514 AF534604 AY737767

T. ganodermatiderum CCMJ5245 T China G. sichuanense ON567189 ON567195 ON399102

T. ganodermatiderum CCMJ5246 China G. sichuanense ON567190 ON567196 ON399103

T. ganodermatiderum T1 China G. sichuanense OR291399 OR291380 OR569141

T. ganodermatiderum T2 China G. sichuanense OR291400 OR291381 OR569142

T. ganodermatiderum T3 China G. sichuanense OR291401 OR291382 OR569143

T. guizhouense HGUP0038 T China Soil JQ901400 JN215484 JN191311

T. guizhouense S278 Croatia / KF134791 KF134799 /

T. guizhouense T41 China G. sichuanense OR291413 OR291394 OR569155

T. guizhouense T42 China G. sichuanense OR291414 OR291395 OR569156

T. hamatum DAOM 167057 ET Canada / AF545548 EU279965 EU280124

T. hamatum KUFA 0088 / / OP250964 OP250957 OP218247

T. hamatum T28 China G. sichuanense OR291410 OR291391 OR569152

T. harzianum CBS 226.95 T England Soil AF545549 AF348101 AJ222720

T. harzianum GJS 05–107 Italy Ricinus communis FJ442708 FJ463329 /

T. harzianum T23 China G. sichuanense OR291407 OR291388 OR569149

T. harzianum T24 China G. sichuanense OR291408 OR291389 OR569150

T. koningiopsis GJS 93–20 T Cuba Branch EU241506 DQ284966 DQ313140

T. koningiopsis CCMJ5254 China G. sichuanense ON567202 ON567188 ON385947

T. koningiopsis T26 China G. sichuanense OR291409 OR291390 OR569151

T. koningiopsis T40 China G. sichuanense OR291412 OR291393 OR569154

T. koningiopsis T43 China G. sichuanense OR291415 OR291396 OR569157

T. koningiopsis T45 China G. sichuanense OR291416 OR291397 OR569158

T. paratroviride S385 T Spain / KJ665321 KJ665627 /

T. paratroviride PARC1012 / / MT454131 MT454115 MT448958

T. paratroviride T17 China G. sichuanense OR291402 OR291383 OR569144

T. paratroviride T18 China G. sichuanense OR291403 OR291384 OR569145

T. paratroviride T47 China G. sichuanense OR291417 OR291398 OR569159

T. parestonicum CBS 120636 T Austria Hymenochaete tabacina FJ860565 FJ860667 FJ860803

T. virens DIS 162 Costa Rica T. cacao FJ442696 FJ463367 FJ442669

T. virens DIS 328A Ecuador T. gileri FJ442738 FJ463363 FJ442670

T. virens T20 China G. sichuanense OR291405 OR291386 OR569147

T. virens T21 China G. sichuanense OR291406 OR291387 OR569148

Sequences produced in this study are in bold.
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chlorothalonil, fludioxonil, carbendazim, prochloraz, and 
prochloraz-Mn) was conducted. Stock solutions of each fungicide at 
a concentration of 100 mg/mL were prepared by dissolving them in 
sterilized distilled water. The growth inhibition rate of the fungi was 
assessed through mycelial growth assays.

PDA medium plates with different concentrations of each 
fungicide were prepared by adding the appropriate volume of the 
stock solution to sterilized distilled water. Mycelial plugs with a 
diameter of 7 mm were obtained from the edges of 3-day-old colonies 
grown on PDA and placed at the center of the PDA plates containing 
varying fungicide concentrations. All plates were then incubated at 
25°C for 3 days. The growth inhibition rate of the mycelia was 
calculated using the formula i a a

a= − ×( )1 2

1
100 , where “i” 

represents the growth inhibition rate, “a1” is the hyphae area of the 
untreated pathogen, and “a2” is the hyphae area of the treated 
pathogen (Etebarian et al., 2005).

Each fungicide treatment and the control were replicated on three 
plates, and the experiment was repeated twice. Based on the 
preliminary screening results of the six fungicides using the nine 
isolates, a suitable fungicide was selected. The sensitivity of 
G. sichuanense to these fungicides was further tested using the same 
method described above.

The sensitivity of the fungi to fungicides was determined by 
measuring the fungicide concentration that inhibited fungal 
development by 50% [half maximal effective concentration (EC50)] 
(Wong and Midland, 2007; Kim et al., 2020). The relative growth (RG) 
of the fungi at a specific fungicide concentration was calculated as a 
percentage of fungal growth compared to the control plates. The EC50 
value was obtained by performing linear regression analysis on the 
probit-transformed relative inhibition values (1  - RG) at log10-
transformed fungicide concentrations. The EC50 value for each isolate 
was calculated as the average of three experiments. The correlation 
coefficients (r) among EC50 values for different fungicides were 
determined using statistical algorithms provided by SAS software 
(version 9.4 for Windows; SAS Institute, Cary, NC, U.S.A.).

Results

Disease symptoms and fungal isolation

The fruiting bodies of G. sichuanense exhibited symptoms of green 
mold disease, which were visually distinct. Infected basidiomata 
displayed a layer of green mycelia, leading to decay and withering of 

the affected fruiting bodies (Figure 1). The severity of the disease was 
evident, as it progressed rapidly, particularly after watering flushes of 
the fruiting bodies. The development of symptoms followed a specific 
pattern: initially, white spots and mycelium appeared on the infected 
fruiting bodies. Under hot weather conditions or high humidity, there 
was a significant proliferation of green conidia within a short time, 
gradually covering the entire surface of the fruiting bodies. 
Subsequently, the spores dispersed through various means, such as 
water flow, human movement, or wind, resulting in the demise of 
G. sichuanense fruiting bodies and the loss of their ability to 
produce spores.

To investigate the pathogens responsible for green mold disease, 
we conducted fungal isolation from the infected fruiting bodies. A 
total of 47 pathogens were isolated and identified during the study 
(Tables 1, 2; Supplementary Table S1). Among the isolated pathogens, 
we identified one strain of T. harzianum in Zhejiang Province and 
three strains in Hubei Province, namely T. koningiopsis, T. paratrovide, 
and T. virens. Interestingly, in Jilin Province, we observed a diverse 
range of strains, with a total of nine different species identified 
(Table  2). These pathogens were characterized by their ability to 
induce the distinctive symptoms associated with green mold disease 
on G. sichuanense.

Morphological characteristics

Using the classification methods proposed by Bissett (1984), Gams 
and Bissett (1998), and Park et al. (2006), we conducted a meticulous 
examination of colony shape, conidia, conidiophore size, 
chlamydospores, and pigmentation (Figures  2, 3) to identify nine 
Trichoderma species. The isolated species include T. ganodermatiderum 
(Figures  2A–G), T. citrinoviride (Figures  2H–L), T. hamatum 
(Figures  2M–P), T. asperellum (Figures  2Q–U), T. guizhouense 
(Figures 2V–Z), T. harzianum (Figures 3A–C), T. virens (Figures 3D–F), 
T. paratroviride (Figures 3G–J), and T. koningiopsis (Figures 3K–O).

After 1 day of cultivation at 25°C, all strains displayed white 
villous colonies on PDA, SNA, and CMD media. By the fifth day, light 
green to dark green sporulation bands emerged on all media, gradually 
extending toward the center. CMD and SNA media supported the 
growth of relatively thin colonies. By the seventh day, green spores 
were dispersed throughout the entire plate, exhibiting a grayish green 
or chartreuse color (Figure 4). T. citrinoviride exhibited the production 
of a yellow pigment at a later stage (Figure 4B), and some exhibited 
concentric rings (Figure 4).

FIGURE 1

Ganoderma sichuanense fruiting bodies infected by Trichoderma (A–D).
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Microscopic analysis unveiled notable distinctions in the 
morphology of conidiophores, phialides, and conidia among the 
Trichoderma species. T. ganodermatedrum (Figures  2A–G), 
T. asperellum (Figures 2Q–U), T. harzianum (Figures 3A–C), and 
T. koningiopsis (Figures 3K–O) exhibited dendriform branches and 
green spherical or ellipsoidal spores. While T. ganodermatedrum 
(Figures  2A–G) and T. harzianum (Figures  3A–C) shared similar 
spore sizes, the former displayed densely distributed conidiophores, 
whereas the latter had sparser conidiophore clusters. T. asperellum 
(Figures 2Q–U) and T. koningiopsis (Figures 3K–O) exhibited similar 
spore sizes, but there were significant differences in the sizes of their 
phialides. Specifically, T. koningiopsis had phialides measuring 
5.0–7.5 × 3.0–4.8 μm (Figures  3K–M), while T. asperellum had 
phialides measuring 7–11 × 2–4 μm (Figures 2Q–S).

T. virens presented irregular branches at the top of its conidiophores, 
often accompanied by 3–6 closely arranged phialides, resulting in a more 
complex structure (Figures  3D–F). T. hamatum displayed highly 
branched conidiophores, primarily with opposite lateral branches and a 
few solitary branches (Figures 2M–P). The phialides of T. hamatum were 
densely packed, short, and round, measuring 5–7.5 × 3.0–4.4 μm 
(Figures 2M–N). In the case of T. citrinoviride, its conidiophores appeared 
either opposite or alternate, and it possessed small spores measuring 
2.9–4.0 × 1.8–2.2 μm (Figures 2H–L). While T. guizouense (Figures 2V–Z) 
and T. paratroviride (Figures 3G–J) featured nearly spherical spores, the 
former exhibited conidiophores in pairs or whorls, with phialides typically 
arranged in groups of 2–4. Conversely, T. guizouense predominantly 
displayed conidiophores in 2–3 whorls, occasionally occurring solitary, 
and its phialides were symmetrically distributed (Figures 2V–X). Notably, 
T. hamatum (Figure  2P), T. asperellum (Figure  2U), T. guizouense 
(Figure  2Z), and T. koningiopsis (Figure  3O) exhibited abundant 
chlamydospores in later stages. For further details regarding the specific 
characteristics of each Trichoderma isolate, please consult Table 3.

Phylogenetic analysis

The TEF1-a and RPB2 gene sequences of all Trichoderma isolates 
were compared to the NCBI database using BLAST analysis. Matches 
exhibiting a high similarity level (≥90%) were chosen for subsequent 
analysis. A phylogenetic analysis was conducted using the 
concatenated sequences of the TEF1-a and RPB2 genes from all 
Trichoderma isolates. The analysis revealed that the Trichoderma 
isolates could be classified into nine distinct clades: T. asperellum, 
T. citrinoviride, T. ganodermatiderum, T. guizhouense, T. hamatum, 
T. harzianum, T. koningiopsis, T. paratroviride, and T. virens 
(Figure 5). The phylogenetic trees were constructed using a dataset 
consisting of 19 sequences derived from two gene loci (TEF1-a and 
RPB2) obtained from a total of 47 samples. Among these sequences, 
38 were newly generated, including 19 TEF1-a sequences and 19 
RPB2 sequences. For more detailed information on the specific 
characteristics of each Trichoderma isolate, please refer to Table 1 
and Supplementary Table S1.

Pathogenicity tests

In the pathogenicity test, mechanical damage was induced on the 
fruiting bodies followed by in vitro inoculation using a spore T
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suspension. Two weeks after inoculation, all Trichoderma species 
showed similar green mold symptoms, as observed in Figure  6. 
Initially, small oval spots with white to pale green centers surrounded 
by a chlorotic area appeared on the G. sichuanense fruiting bodies 
7 days post-inoculation. Over time, these lesions progressively 
increased in size and merged together. In severe cases, the infected 

fruiting bodies were completely covered by green spores. These 
symptoms observed under greenhouse conditions were consistent 
with the field symptoms of G. sichuanense. No symptoms were 
observed in the control group (Figure 6A).

Additionally, all Trichoderma species were consistently 
re-isolated and confirmed using morphological and molecular 

FIGURE 2

Morphological characteristics of T. ganodermatiderum, T. citrinoviride, T. hamatum, T. asperellum, T. guizhouense. (Scale bars: A–D, J  =  40  μm; 
G,K,M,N,Q  =  20  μm; E,F,H,I,O,P,R–T,V–X  =  10  μm; L,U,Y,Z  =  5  μm).
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methods, while no Trichoderma isolates were obtained from the 
control group, satisfying Koch’s postulates. The pathogenicity study 
demonstrated that all Trichoderma isolates induced green mold 
disease in G. sichuanense fruiting bodies upon inoculation. Among 
the isolates, T. harzianum exhibited the highest virulence 
(Figure 6J), followed by T. citrinoviride (Figure 6C), T. paratroviride 
(Figure  6H), T. guizhouense (Figure  6E), T. ganodermatiderum 
(Figure  6B), T. asperellum (Figure  6D), T. virens (Figure  6G), 
T. koningiopsis (Figure 6I), and T. hamatum (Figure 6F).

Effect of Trichoderma spp. on G. 
sichuanense mycelia

To assess the impact of different Trichoderma species on 
G. sichuanense mycelia, we conducted plate dual culture experiments. 
The results revealed that all Trichoderma species inhibited the growth 
of G. sichuanense mycelia and produced antagonistic lines. However, 
there were variations in the interactions between the nine Trichoderma 
species and G. sichuanense mycelia (Supplementary Figure S2). 

FIGURE 3

Morphological characteristics of T. harzianum, T. virens, T. paratroviride, T. koningiopsis. (Scale bars: A,D,E,K–M  =  40  μm; B,C,F,G–I,N,O  =  10  μm; 
J  =  5  μm).
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Notably, T. ganodermatiderum (Supplementary Figure S2A), 
T. citrinoviride (Supplementary Figure S2B), T. asperellum 
(Supplementary Figure S2D), and T. paratroviride 
(Supplementary Figure S2H) exhibited significant inhibition on 
G. sichuanense mycelial growth, while T. hamatum 
(Supplementary Figure S2C), T. guizhouense 
(Supplementary Figure S2E), T. harzianum (Supplementary Figure S2F), 
T. virens (Supplementary Figure S2G) and T. koningiopsis 
(Supplementary Figure S2I) showed relatively milder inhibition.

In terms of mycelial morphology, Trichoderma mycelia 
demonstrated the ability to overgrow and spread on G. sichuanense 
mycelia, leading to the formation of irregular conidial clusters 
(Supplementary Figure S2). This resulted in the gradual withering of 
G. sichuanense mycelia. In some cases, certain Trichoderma strains 
completely covered the G. sichuanense mycelium with their spores. 
Additionally, we observed various pigments and antagonistic streaks 
on the back of the culture medium (Supplementary Figure S2).

Fungicide sensitivity of isolates and G. 
sichuanense

In order to assess the effectiveness of fungicides against 
green mold disease, we  conducted tests using six different 

fungicides in this study. Initially, we selected nine Trichoderma 
isolates to evaluate their sensitivity to these fungicides. The 
results showed that the inhibitory effect of the fungicides on 
Trichoderma growth varied, with stronger inhibition 
observed at higher fungicide concentrations. Table  4 presents 
the results, highlighting that prochloraz-manganese 
exhibited the highest inhibitory effect among the tested 
fungicides, as indicated by its minimum EC50 value, 
while Mancozeb showed the weakest inhibition with the highest 
EC50 value.

Furthermore, we  evaluated the inhibitory effects of the 
fungicides on the growth of G. sichuanense mycelium through 
extensive tests. Significant variations in the effects of the six 
fungicides on the growth of G. sichuanense mycelium were 
observed, which generally aligned with the effects observed on 
Trichoderma strains. Notably, prochloraz-manganese had the 
least impact on the growth of G. sichuanense mycelium, displaying 
the highest EC50 value while exhibiting the strongest inhibitory 
effect on Trichoderma mycelium (Table  4). These findings 
suggest that low concentrations of prochloraz-manganese can 
be  effective in controlling Trichoderma. Additionally, 
prochloraz and carbendazim demonstrated good inhibitory 
effects on all Trichoderma strains (Supplementary Figures 
S3–S11).

FIGURE 4

Colony appearance of representative isolates of 9 Trichoderma species. (A) T. ganodermatiderum; (B) T. citrinoviride; (C) T. hamatum; (D) T. asperellum; 
(E) T. guizhouense; (F) T. harzianum; (G) T. virens; (H) T. paratroviride; (I) T. koningiopsis.

https://doi.org/10.3389/fmicb.2023.1264699
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2023.1264699

Frontiers in Microbiology 10 frontiersin.org

Discussion

Green mold disease caused by Trichoderma species poses significant 
challenges in G. sichuanense cultivation, leading to economic losses and 
hindering industry growth (Lu et al., 2016; Huang et al., 2018; Zhang 
et  al., 2018; Cai et  al., 2020; An et  al., 2022). This study aimed to 
comprehensively investigate Trichoderma species associated with 
G. sichuanense, focusing on their identification, characterization, 
pathogenicity assessment, and evaluation of fungicide efficacy. By 
addressing these objectives, we aimed to provide valuable insights into 
disease management strategies and the development of effective control 
measures for G. sichuanense cultivation.

Through morphological and molecular analyses, we successfully 
identified nine Trichoderma species associated with G. sichuanense: 
T. asperellum, T. citrinoviride, T. ganodermatiderum, T. guizhouense, 
T. hamatum, T. harzianum, T. koningiopsis, T. paratroviride, and T. virens 
(Lu et al., 2016; Huang et al., 2018; Zhang et al., 2018; Cai et al., 2020; An 
et  al., 2022). These findings contribute to our understanding of the 
diversity and population dynamics of Trichoderma species associated 
with G. sichuanense, providing valuable insights for further research and 
disease management strategies.

A comprehensive understanding of the diversity and distribution 
of Trichoderma species in G. sichuanense cultivation is crucial for 
developing effective strategies to manage green mold disease. Our 
study revealed a wide range of Trichoderma species associated with 
green mold disease in G. sichuanense, including species known to 

affect mushrooms worldwide. Previous studies have also identified 
Trichoderma species as causative agents of green mold disease in 
various mushroom hosts, such as Agaricus bisporus, Pleurotus 
ostreatus, Lentinula edodes, Flammulina filiformis, Tricholoma 
matsutake, and Dictyophora rubrovolvata (Choi et al., 1998; Kosanović 
et al., 2015, 2020; Wang et al., 2016; Seung et al., 2018; Innocenti et al., 
2019; Chen et al., 2021). These findings emphasize the broad host 
range of Trichoderma species and their significant economic impact 
on global mushroom cultivation.

Comparing our results with previous studies on Trichoderma 
species associated with G. sichuanense, we confirmed the presence of 
several previously reported species, including T. asperellum, 
T. citrinoviride, T. guizhouense, T. hamatum, T. paratroviride, and 
T. virens (Bissett et al., 2015; Zhu et al., 2017; An et al., 2022). However, 
our identification of T. ganodermatiderum in this specific cultivation 
system confirms its previously reported association as a pathogen on 
G. sichuanense (An et al., 2022). The incorporation of molecular data, 
specifically TEF1-a and RPB2 gene sequences, in our identification 
process significantly enhanced the accuracy and reliability of species 
identification. This approach contributes to a more comprehensive 
understanding of Trichoderma populations in G. sichuanense 
cultivation and adds to the growing body of knowledge on 
Trichoderma diversity associated with specific host plants.

The confrontation assay demonstrated that Trichoderma species 
effectively overgrow and spread on G. sichuanense mycelia, leading to 
the formation of irregular conidial clusters and the gradual withering 

TABLE 3 Microscopic characteristics of different Trichoderma isolates.

Species Conidiophores and phialides Conidia Chlamydospores

T. ganodermatiderum

Tree-like, straight or slightly curved, with visible main axis and densely 

distributed branches. Phialides arranged in pairs or 3–5 wheels, 2.5–

10.0 × 2.2–3.5 μm (Figures 2A–D)

Green, smooth-walled, subglobose to 

ellipsoidal, 3.0–4.8 × (2.5-) 2.8–3.8 μm 

(Figures 2E–G)

Not found

T. citrinoviride

Opposite or alternate, tree-like, with long main axis and short secondary 

branches. Phialides with 2–3 in 1 round, 3.5–5.2 × 1.8–3.5 μm 

(Figures 2H–K)

Chartreuse to green, smooth, 

ellipsoidal, 2.9–4.0 × 1.8–2.2 in size 

μm (Figure 2L)

Not found

T. hamatum

Main axis straight and highly branched, lateral branches opposite, few 

solitary. Phialides dense, short and chubby, 5–7.5 × 3.0–4.4 μm 

(Figures 2M,N)

Light green, smooth-walled, oblong, 

4.1–5.0 × (2.5-) 3.0–3.5 μm 

(Figure 2O)

Spherical, terminal and 

intercalary, 8–12 × 6–10 μm 

(Figure 2P)

T. asperellum
Tree-like, lateral branches opposite, nearly perpendicular with main 

axios. Phialides symmetrically distributed, 7–11 × 2–4 μm (Figures 2Q–S)

Ellipsoidal, 3.5–5.0 × 3.0–4.2 μm 

(Figure 2T)

Subglobose, terminal or 

occasionally interstitial, 

smooth, 7–10 μm (Figure 2U)

T. guizhouense

Conidiophores in 2–3 whorls, occasional solitary growth. Phialides 

symmetrically distributed, conical, with a thin top, 5.5–11 × 2–3.5 μm 

(Figures 2V–X)

Spherical or subglobose, green, 2.0–

3.2 × 2.0–3.0 μm (Figure 2Y)

Subglobose to ellipsoidal, 

intermediate, 5.5–8.6 × 4.7–

7 μm (Figure 2Z)

T. harzianum

Tree-like, resembling a pyramid, main axis straight, many secondary 

branches. Phialides short, arranged in a circular pattern, usually in 3–4 

whorls, occasionally opposite. (Figures 3A,B)

Spherical, subglobose, or obovate, 

smooth-walled, light green, 2.5–3.9 

(−4.0) × 2.5–3.5 μm (Figure 3C)

Not found

T. virens
Irregular branching at the top, complex, with no branching at the base. 

Middle expansion of phialides, 4.0–6.5 × 3.0–5.0 μm (Figures 3D,E)

Green, smooth, broadly ellipsoid to 

obovate, 3.5–5.0 × 2.8–4.0 μm 

(Figure 3F)

Not found

T. paratroviride
Main axis is long, with branches in pairs or whorls, phialides usually 

arranged in 2–4 rounds, 5.0–8.5 × 2.5–3.0 μm (Figures 3G–I)

Subglobose, green, smooth, 3.0–

4.0 × 3.0–3.5 μm (Figure 3J)
Not found

T. koningiopsis

Tree-like, longer main axis, branches growing alone or in pairs, at right 

angles to the main axis. Phialides slender, middle enlarged, 5.0–7.5 × 3.0–

4.8 μm (Figures 3K–M)

Ellipsoidal, green, 4.0–5.0 × 2.8–

3.2 μm (Figure 3N)

Spherical, green, 7.5–10.4 μm 

(Figure 3O)
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of the mycelia. Some Trichoderma strains completely covered the 
G. sichuanense mycelium with their spores. The presence of pigments 
and antagonistic streaks on the culture medium further confirmed the 
antagonistic behavior of Trichoderma species against G. sichuanense. 

These findings indicate that the identified Trichoderma species have 
the ability to suppress the growth of G. sichuanense mycelia and can 
be  considered as pathogens causing green mold disease in 
G. sichuanense. The pigments produced by Trichoderma species may 

FIGURE 5

Phylogenetic tree illustrating the relationships among 19 Trichoderma isolates from Ganoderma sichuanense based on the combined TEF-1a and RPB2 
genes using PhyML analysis. Bootstrap support values equal to or greater than 70% are shown at the nodes. T. estonicum and T. ceramicum were used 
as the outgroup. The isolates obtained in this study are highlighted in red.

FIGURE 6

(A) CK; (B) T. ganodermatiderum; (C) T. citrinoviride; (D) T. asperellum; (E) T. guizhouense; (F) T. hamatum; (G) T. virens; (H) T. paratroviride; 
(I) T. Koningiopsis; (J) T. harzianum.
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play a role in their antagonistic behavior against G. sichuanense by 
acting as defense mechanisms, allowing Trichoderma to outcompete 
and suppress the growth of G. sichuanense mycelia (Kubicek et al., 
2019; Robinson, 2022).

Further research should focus on investigating the specific 
mechanisms underlying the inhibition of G. sichuanense mycelial 
growth by Trichoderma species, as well as characterizing and 
understanding the role of the pigments and metabolites produced by 
Trichoderma. Such studies will provide valuable insights into the 
interaction between Trichoderma and G. sichuanense and contribute to 
the development of effective strategies for managing green mold disease.

The effectiveness of fungicides in controlling green mold disease 
caused by Trichoderma species is crucial for successful mushroom 
cultivation. In this study, we evaluated the efficacy of six different 
fungicides against Trichoderma growth and their inhibitory effects on 
G. sichuanense mycelium. Our results revealed varying levels of 
inhibition on Trichoderma growth by the tested fungicides. The 
inhibitory effect was stronger at higher fungicide concentrations 
(Table  4). Prochloraz-manganese exhibited the highest inhibitory 
effect, as evidenced by its minimum EC50 value (Shamshad et al., 
2009), while Mancozeb showed the weakest inhibition with the 
highest EC50 value. These findings highlight the dependence of 
fungicide effectiveness on both the specific fungicide used and its 
concentration. Furthermore, we  investigated the effects of the 
fungicides on the growth of G. sichuanense mycelium. Interestingly, 
the inhibitory effects of the six fungicides on G. sichuanense mycelium 
generally aligned with their effects on Trichoderma strains. Notably, 
despite exhibiting the strongest inhibitory effect on Trichoderma 
mycelium, prochloraz-manganese had the least impact on 
G. sichuanense mycelium growth (Table 4; Hatvani, 2008; Grogan and 
Jukes, 2010). This suggests that prochloraz-manganese can effectively 
control Trichoderma without severely affecting the growth of 
G. sichuanense mycelium, even at low concentrations.

The results indicate that prochloraz and carbendazim exhibited 
strong inhibitory effects on all tested Trichoderma strains 
(Supplementary Figure S3–S11), suggesting their potential as broad-
spectrum fungicides for controlling Trichoderma species in mushroom 
cultivation (Innocenti et al., 2019). These findings underscore the 
importance of selecting fungicides based on their specific inhibitory 
effects on Trichoderma species, taking into account their compatibility 
with the growth of the mushroom host. Notably, 

prochloraz-manganese, prochloraz, and carbendazim have shown 
promise in effectively managing Trichoderma growth while 
minimizing their impact on G. sichuanense mycelium.

However, it is important to consider the potential development of 
fungicide resistance and the long-term sustainability of fungicide use 
in disease management strategies. To mitigate the economic losses 
associated with green mold disease while minimizing negative impacts 
on mushroom production and the environment (Potocnik et  al., 
2015), alternative control measures and integrated disease 
management approaches should be explored. These measures can 
incorporate cultural practices and biological control agents. Such 
approaches would enhance the sustainability of mushroom cultivation 
and reduce reliance on fungicides.

There are several limitations to consider in this study. Firstly, the 
survey was conducted in a specific geographic region of China, 
including Zhejiang, Hubei, and Jilin Province. Therefore, the findings 
may not be representative of the entire country or other regions where 
G. sichuanense is cultivated. Further studies in different regions and 
countries would provide a more comprehensive understanding of the 
prevalence and diversity of Trichoderma species causing green mold 
disease in G. sichuanense. Secondly, while morphological and 
phylogenetic analysis were employed to classify the isolated 
Trichoderma strains into different species, these methods have certain 
limitations. Additional molecular techniques, such as DNA 
sequencing or genotyping, would provide more precise identification 
and a deeper understanding of the genetic diversity and relationships 
among the Trichoderma pathogens.

Furthermore, this study focused primarily on the pathogenicity 
of the identified Trichoderma species through inoculation tests on 
healthy G. sichuanense fruiting bodies. The investigation of other 
factors influencing the disease development, such as environmental 
conditions, host resistance, or interactions with other 
microorganisms, was not extensively explored. A more 
comprehensive study incorporating these factors would provide a 
more holistic understanding of green mold disease in 
G. sichuanense. Lastly, the sensitivity of the Trichoderma species to 
fungicides was assessed using a limited number of commercially 
available fungicides. The evaluation of additional fungicides or 
alternative management approaches would contribute to a more 
comprehensive understanding of effective control measures for 
green mold disease. Addressing these limitations in future research 

TABLE 4 Mean effective concentration to cause inhibition of by 50% (EC50) values of nine Trichoderma isolates from China to six fungicides.

Isolates EC50 (μg  mL−1)

Mancozeb Chlorothalonil Fludioxinil Prochloraz Carbendazim Prochlorza-Mn

T. ganodermatiderum 78.81 ± 0.0245 3.381 ± 0.00137 2.786 ± 0.0012 0.0069 ± 0.0001 0.0086 ± 0.0001 0.0013 ± 0.0001

T. citrinoviride 180.4 ± 0.7359 8.9910 ± 0.0008 0.0445 ± 0.0012 0.0519 ± 0.0010 0.0301 ± 0.0008 0.0040 ± 0.0008

T. hamatum 47.51 ± 0.3764 0.0469 ± 0.0009 0.0029 ± 0.0006 0.0033 ± 0.0005 0.0059 ± 0.0005 0.0014 ± 0.0006

T. asperellum 129.1 ± 0.3764 0.5085 ± 0.0006 0.0377 ± 0.0004 0.0342 ± 0.0008 0.0073 ± 0.0006 0.0051 ± 0.0005

T. guizhouense 4.375 ± 0.1256 4.907 ± 0.0006 103.4 ± 0.9908 0.7338 ± 0.0079 0.0107 ± 0.0071 0.0047 ± 0.0015

T. virens 29.04 ± 0.1059 0.3593 ± 0.0135 139.6 ± 0.1351 0.0125 ± 0.0078 0.0073 ± 0.0107 0.0031 ± 0.0061

T. paratroviride 101.9 ± 0.0522 0.0462 ± 0.0062 0.0286 ± 0.0069 0.8578 ± 0.0005 0.0131 ± 0.0023 0.0082 ± 0.0009

T. harzianum 114.2 ± 0.0482 0.0082 ± 0.0002 105.9 ± 0.0157 0.0061 ± 0.0002 0.0155 ± 0.0002 0.0045 ± 0.0001

T. koningiopsis 30.20 ± 0.0026 0.0067 ± 0.0001 0.0019 ± 0.0001 7.432 ± 0.0001 0.0683 ± 0.0002 0.0051 ± 0.0001

G. sichuanense 11.06 ± 0.0019 3.622 ± 0.0002 0.1211 ± 0.0002 3.443 ± 0.0003 8.573 ± 0.0002 17.22 ± 0.0002
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endeavors would help to enhance our understanding of the 
prevalence, genetic diversity, pathogenicity mechanisms, and 
effective management strategies for Trichoderma species causing 
green mold disease in G. sichuanense.

In summary, our study provides valuable insights into the host range 
of Trichoderma species associated with G. sichuanense and their 
susceptibility to T. guizhouense, T. virens, T. hamatum, T. paratroviride, 
T. asperellum, and T. citrinoviride. Furthermore, we have evaluated the 
effectiveness of selected fungicides in controlling green mold disease, 
offering valuable information for disease prevention and management in 
edible fungi. These findings are of significant importance for the effective 
control of green mold disease on G. sichuanense in China. our study also 
contributes to the existing knowledge on the effectiveness of fungicides 
against Trichoderma and their impact on G. sichuanense mycelium. These 
findings provide a foundation for the development of robust disease 
management strategies and underscore the importance of continued 
research to enhance the sustainability of mushroom cultivation. By 
understanding the sensitivity of Trichoderma strains and the efficacy of 
fungicides, we can develop targeted strategies for disease management. 
However, it is crucial to conduct further research to explore sustainable 
approaches that minimize potential fungicide resistance and 
environmental impacts in mushroom cultivation.
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