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Evolutionary and ecological role 
of extracellular contractile 
injection systems: from threat to 
weapon
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Contractile injection systems (CISs) are phage tail-related structures that are 
encoded in many bacterial genomes. These devices encompass the cell-based 
type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The 
eCISs comprise the R-tailocins produced by various bacterial species as well 
as related phage tail-like structures such as the antifeeding prophages (Afps) 
of Serratia entomophila, the Photorhabdus virulence cassettes (PVCs), and the 
metamorphosis-associated contractile structures (MACs) of Pseudoalteromonas 
luteoviolacea. These contractile structures are released into the extracellular 
environment upon suicidal lysis of the producer cell and play important roles in 
bacterial ecology and evolution. In this review, we specifically portray the eCISs 
with a focus on the R-tailocins, sketch the history of their discovery and provide 
insights into their evolution within the bacterial host, their structures and how 
they are assembled and released. We then highlight ecological and evolutionary 
roles of eCISs and conceptualize how they can influence and shape bacterial 
communities. Finally, we point to their potential for biotechnological applications 
in medicine and agriculture.
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Introduction

Bacteriophages (or phages), the viruses that infect bacterial cells, are highly efficient 
predators. They take advantage of their host by adopting two main infection strategies, namely 
efficient productive replication or persistent dormancy (non-productive), depending on the 
environment and host density (Chevallereau et al., 2021). In productive replication, phages use 
their host bacteria as viral factories to replicate themselves. Once the viral progeny is fully 
assembled, it is either released through the abrupt lysis of the bacterial host (lytic cycle) or 
continuously without lysing the host cell (chronic cycle; Salmond and Fineran, 2015; 
Chevallereau et al., 2021; Correa et al., 2021). Conversely, during dormancy, the viral genetic 
content is integrated into the genome of the bacterial host, becoming a prophage (Lwoff et al., 
1950; Feiner et al., 2015; Salmond and Fineran, 2015; Chevallereau et al., 2021; lysogenic cycle). 
A prophage can remain dormant until it is spontaneously activated or until its host encounters 
a stress that damages DNA and triggers the bacterial SOS response, stimulating the production 
of the viral progeny and the lysis of the host cell (Howard-Varona et al., 2017). Although phages 
had been classified into distinct categories, their infection strategies now are rather seen as a 
continuum depending on the environment and host density (Chevallereau et al., 2021).
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It may seem that bacteria are the victims, with no benefit from 
interacting with these viral predators. However, this assumption 
would not take into account the fact that prophages can be harnessed 
by their host. In fact, some of these prophages remain dormant and 
through the evolution of the genome of their host, they are subject to 
mutations, genomic rearrangements and degradation of their genome, 
which makes them no longer inducible or able to self-replicate 
(Canchaya et al., 2003). Although they are no longer independent 
entities, these evolved dormant viruses can be beneficial to their host. 
For example by becoming cryptic (Canchaya et al., 2003), they may 
benefit the bacterium by contributing genes that increase bacterial 
fitness (Wang et  al., 2010) or provide protection from other viral 
predators (Bobay et al., 2014; Da Silva Duarte et al., 2019; Ragunathan 
and Vanderpool, 2019; Hampton et al., 2020; Correa et al., 2021; Patel 
and Maxwell, 2023). Indeed, genetic elements derived from cryptic 
prophages have been shown to contribute to heightened antibiotic 
resistance (Wang et al., 2010), while others lead to superinfection 
exclusion against similar phage predators (Ofir and Sorek, 2018; Da 
Silva Duarte et al., 2019; Ragunathan and Vanderpool, 2019; Hampton 
et al., 2020; Correa et al., 2021; Patel and Maxwell, 2023). Furthermore, 
some of these prophages lose the genes that specify replication and 
capsid formation, generating particles that resemble “headless” phage 
particles also referred to as phage tail-like particles (Bobay et  al., 
2014). Prophage ancestors belonging to the Myoviridae family of the 
Caudovirales order can give rise to structures with a contractile tail, 
now commonly called contractile injection systems (CISs; Taylor 
et  al., 2018; Figures  1, 2; Supplementary Table  1), which can 
be repurposed as weapons capable of killing competing bacteria or 
affecting eukaryotic cells.

The CISs can be  classified into two distinct groups: the 
intracellular, cell wall-anchored type VI secretion systems (T6SSs) and 
the extracellular contractile injection systems (eCISs; Sarris et  al., 
2014; Taylor et al., 2018; Patz et al., 2019). For the sake of simplicity, 
in this review a nomenclature in which eCISs encompass the R-type 
tailocins (hereafter referred to as R-tailocins) and various phage tail-
like protein translocation structures (Figure  1) is used. The best-
known CISs are the T6SSs, which act primarily against bacteria but 
are also involved in interactions with eukaryotic cells. T6SSs are 
intricate syringe-like complexes docked into the cytoplasmic 
membrane of the attacking bacteria that inject toxic and lytic effectors 
into target cells where they disrupt basic cellular components such as 
cell wall and cytoskeletal structures and nucleic acids (Ho et al., 2014; 
Russell et  al., 2014; Durand et  al., 2015; Cianfanelli et  al., 2016; 
Cherrak et al., 2019; Coulthurst, 2019; Wang et al., 2019; Hernandez 
et al., 2020; Figure 1). Conversely to the T6SSs, eCISs are extracellular 
phage tail-like weapons that are assembled in the cytoplasm and are 
only released and active upon lysis of the producing bacterial cell (Patz 
et al., 2019; Figure 1). Extracellular CISs comprise a wide variety of 
structures, including the contractile R-tailocins, the antifeeding 
prophages (Afps) of Serratia entomophila (Hurst et  al., 2004), the 
Photorhabdus virulence cassettes (PVCs; Yang et al., 2006), and the 
metamorphosis-associated contractile structures (MACs) of 
Pseudoalteromonas luteoviolacea (Shikuma et  al., 2014; Figure  1). 
Afps, PVCs, and MACs have the capacity to transport effector proteins 
with toxic activities (Hurst et al., 2004; Heymann et al., 2013; Sarris 
et al., 2014; Ericson et al., 2019; Vlisidou et al., 2019; Geller et al., 2021; 
Wang et al., 2022) whereas R-tailocins are not known to carry harmful 
cargos (Patz et al., 2019; Figure 1). Some eCIS loci, specifically those 

related to eCIS that transport toxic effectors, have been further 
classified based on their genetic content and organization separating 
them into two main lineages with six distinct clades (Ia, Ib, and IIa–
IId; Chen et al., 2019). Afps and PVCs belong to subtype Ia, while 
MACs belong to the subtype Ib (Chen et al., 2019). These different 
clades are characterized by syntenic differences and subtype-specific 
genes (Chen et al., 2019).

As the T6SSs have already been extensively reviewed (Ho et al., 
2014; Russell et al., 2014; Durand et al., 2015; Cianfanelli et al., 2016; 
Cherrak et al., 2019; Coulthurst, 2019; Wang et al., 2019; Hernandez 
et al., 2020), this review will focus specifically on the eCISs, with an 
emphasis on the R-tailocins. First, we give a synopsis of the history of 
their discovery. We then look at their viral origins and summarize 
what is currently known about their genetics, their structures and 
their mechanisms of action. Furthermore, we provide insight into the 
ecological and evolutionary roles of eCISs focusing on how they shape 
bacterial communities, how they mediate interactions with a 
eukaryotic host, and how they influence bacterial evolution. Finally, 
we  illustrate how these particles can be  harnessed for 
biotechnological applications.

A brief history of eCISs

Although the interest for eCISs is rapidly expanding, with recent 
bioinformatic studies emphasizing their wide distribution and 
diversity among Gram-negative and Gram-positive bacteria as well as 
archaea (Sarris et al., 2014; Chen et al., 2019; Geller et al., 2021), the 
discovery of these structures along with knowledge about their 
ultrastructure and the mechanics of their functioning is not new. A 
brief history of discoveries related to eCISs is provided below. The 
timeline of discoveries is summarized in Figure  2 and relevant 
references are listed in Supplementary Table 1. François Jacob was the 
first who reported about tailocins in 1954 (Jacob, 1954). In his study, 
he  described an “antibiotic substance” retrieved from a strain of 
Pseudomonas aeruginosa (identified as Pseudomonas pyocyanea at the 
time; Jacob, 1954). He found that this substance could be induced by 
mutagenic agents such as ultraviolet light (UVs) and that it operated 
upon adsorption to the membrane of a sensitive cell (Jacob, 1954). 
Although this product differed from conventional antibiotics in its 
activity, it resembled the previously discovered toxic colicins of 
Escherichia coli strains (Gratia, 1932; Fredericq, 1953; Jacob, 1954). By 
analogy to these, Jacob named them “pyocins,” a term still used today 
to describe the tailocins harbored by P. aeruginosa strains. 
Interestingly, already then, both colicins and pyocins were compared 
to phages in their activity mechanism, specifically looking at the 
potential membrane receptors targeted on sensitive bacteria 
(Fredericq, 1953; Jacob, 1954). It was suggested that phages, colicins 
and pyocins may use similar or even the same receptors to target 
sensitive cells (Fredericq, 1953; Jacob, 1954). In 1958, while studying 
lysogeny in strains of E. coli K12, Arber and Kellenberger, using 
electron microscopy, identified UV-induced structures that appeared 
to be “phage-related,” including phage tail-like particles that could 
adsorb to the surface of cells (Arber and Kellenberger, 1958). However, 
it is unclear whether these structures could have been potential 
pyocins or simply phage structural components. A few years later, the 
French “Académie des Sciences” dealt with the absorption mechanisms 
of both colicins and pyocins at their meeting on the 24th October 
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1960 (Hamon and Péron, 1960). This was the beginning of the appeal 
of these structures.

In the early 1960s, the interest for these intriguing particles 
shifted from Europe to Asia, where research groups in Japan began 
to study them (Homma and Suzuki, 1961a,b, 1964; Homma et al., 
1962; Kageyama and Egami, 1962; Ikeda et al., 1964; Kageyama, 
1964; Kageyama et  al., 1964). Led mainly by Kageyama and 
colleagues they described the first R-type pyocin (R-pyocin) as a 
proteinaceous rod-like rigid structure resembling a phage tail, 
which they purified from P. aeruginosa strain R in their three-part 
“Studies of a pyocin” (Ikeda et al., 1964; Kageyama, 1964; Kageyama 
et al., 1964). They were able to induce the structures with DNA 
damaging agents such as UVs and the antibiotic mitomycin C and 

visualize purified R-pyocin particles by electron microscopy 
(Kageyama, 1964). Following in the steps of their European 
colleagues, Kageyama and colleagues suggested that R-pyocins, 
because of their similarity to phage tails, might be  “defective 
lysogenic phages” that are unable to synthesize DNA (Ikeda et al., 
1964; Kageyama, 1964; Kageyama et  al., 1964). Moreover, they 
discovered a R-pyocin-associated lytic enzyme that is induced at 
the same time as the R-pyocin. They suggested that, analogous to 
phages, this enzyme plays a role in the lysis of the R-pyocin-
producing bacteria (Kageyama et al., 1964). In addition, the first 
detailed structure characterization was performed in 1965, again 
emphasizing the resemblance of R-pyocins to phage tails (Ishii 
et al., 1965).

FIGURE 1

Contractile injection systems (CISs): classification, targets and function. (A) CISs are thought to be evolved from the contractile tail of Myoviridae 
phages and can be classified into two main groups: extracellular CISs (eCISs) and cell wall-anchored type VI secretion systems (T6SSs). Extracellular 
CISs encompass R-tailocins (left, extended state; right contracted state; colors indicate the different building blocks) as well as various phage tail-like 
structures such as the Photorhabdus virulence cassettes (PVCs), the antifeeding prophages (Afps), and the metamorphosis-inducing contractile 
structures (MACs). Sizes of eCISs range between 80 and 180  nm, for R-tailocins, Afps and PVCs, while MACs form larger arrays which have been 
reported to range up to 920  nm, formed out of individual components of about 310  nm. (B) Phages (purple) directly interact with a host bacterial cell 
by injecting their genetic content. T6SSs (red) are assembled in the producing cell and upon contact with a target cell, either bacterial or eukaryotic, 
the device contracts and injects toxic effectors into the prokaryotic or eukaryotic prey. Extracellular CISs are released upon lysis of the producing cell. 
R-tailocins (light blue) have only been found to target other bacteria by puncturing and destabilizing their membrane without injecting effectors, while 
protein-translocating eCISs like PVCs, Afps and MACs (green) target eukaryotic cells by injecting eCIS-associated toxins (EATs). For MACs, only part of 
the star-shaped structure formed by the assembly of a large number of eCISs is shown.
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The mechanism of action was also studied during this period. 
Indeed, Homma and Suzuki found that lipopolysaccharides (LPS) and 
R-pyocins interact (Homma and Suzuki, 1964). This interaction was 
later confirmed when LPS were demonstrated to be a receptor of 
R-pyocin and various other R-tailocins (Ikeda and Egami, 1969, 1973; 
Köhler et  al., 2010; Carim et  al., 2021; Heiman et  al., 2022). The 
attachment of R-pyocin particles to the target cell envelope was then 
also captured by electron microscopy (Takeya et al., 1969) and it was 
discovered that it was upon adsorption to the surface of a sensitive cell 
that the structures contracted and that this action was necessary for 
their toxic effect (Higerd et  al., 1969; Shinomiya et  al., 1975). 
Moreover, several studies suggested that R-pyocins kill targeted cells 
by disrupting their membrane (Kageyama et al., 1964; Kaziro and 
Tanaka, 1965; Uratani and Hoshino, 1984).

Interest in these particles continued to grow in the 1970s and 
1980s as more R-pyocins became identified and purified (Chen and 
Tai, 1972; Garcia Rodriguez and Saenz Gonzalez, 1972; Shinomiya, 
1972; Govan, 1974a; Al-Shibib et al., 1985; Al-Rubiee et al., 1988). 
Some of these R-pyocins were compared with each other and the tail 
fibers were identified as the component involved in their specificity 
(Ohsumi et  al., 1980; Kumazaki and Ishii, 1982). The origin of 
R-pyocins was also explored and the relationship between R-pyocins 
and phages was confirmed (Shinomiya and Shiga, 1979; Shinomiya, 

1984; Shinomiya and Ina, 1989; Nakayama et al., 2000). Importantly, 
during this period, it was found that R-type pyocins have a more 
efficient killing activity than headless mutants of a related phage, 
supporting the hypothesis that these particles are not simply defective 
prophages but evolved weapons (Shinomiya and Shiga, 1979). 
Additionally, their advantage for medical use was explored, employing 
pyocins for P. aeruginosa typing (Farmer and Herman, 1969; Rose 
et al., 1971; Edmonds et al., 1972; Lovrekovich et al., 1972; Jones et al., 
1974; Duncan and Booth, 1975; Bruun et al., 1976; Fyfe et al., 1984; 
Schable et  al., 1986) as well as a potential treatment against 
P. aeruginosa infections (Merrikin and Terry, 1972; Haas et al., 1974). 
In addition to all these findings, a new type of phage tail-like pyocin, 
the F-type, was discovered (Takeya et al., 1969; Govan, 1974b; Kuroda 
et al., 1979; Kuroda and Kageyama, 1979, 1981; Michel-Briand and 
Baysse, 2002; Saha et  al., 2023). Unlike the rigid R-type pyocin 
composed of a contractile sheath and an inner core, the F-type was 
described as having a flexible, non-contractile tube structure without 
an inner core (Kuroda and Kageyama, 1979).

Although R-type pyocins were first discovered in P. aeruginosa, 
they have been described in many other bacterial taxa. They have been 
given many different names such as the xenorhabdicin of Xenorhabdus 
nematophilus (Thaler et al., 1995; Morales-Soto et al., 2012; Thappeta 
et al., 2020), the carotovoricin of Pectobacterium carotovorum (Nguyen 

FIGURE 2

Timeline highlighting the main extracellular contractile systems (eCISs) discoveries. The relevant references for these discoveries are listed in 
Supplementary Table 1.
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et al., 1999), the enterocoliticin of Yersinia enterocolitica (Strauch et al., 
2001), the fonticin of Pragia fontium (Smarda and Benada, 2005; 
Látrová et al., 2023), the aquaticin from Budvicia aquatic (Smarda and 
Benada, 2005), the kosakonicin of Kosakonia radicincitans (Patz et al., 
2019), the syringacin of Pseudomonas syringae (Haag and Vidaver, 
1974), the diffocin of Clostridium difficile (Schwemmlein et al., 2018), 
as well as simply phage-like bacteriocin, phage-like pyocin or R-type 
bacteriocin (Schwinghamer et al., 1973; Gissmann and Lotz, 1974; 
Brown et  al., 1976; Fischer et  al., 2012; Gebhart et  al., 2012). To 
simplify the nomenclature, the term “tailocin” was proposed by Gill 
and Young (2011) and to follow this nomenclature, we will be referring 
to these specific eCIS particles as R-tailocins hereafter.

R-tailocins are not the only eCISs that have been found in bacteria. 
A new group of eCISs targeting eukaryotic cells was discovered in the 
early 2000s. During this period phage tail-like particles were 
discovered in Serratia entomophila and in Photorhabdus luminescens 
and shown to confer entomopathogenic activity to the two insect 
pathogens (Hurst et al., 2004, 2007; Yang et al., 2006). The sequences 
of the genes encoding these eCISs, termed Afp (antifeeding prophage) 
in S. entomophila and PVC (Photorhabdus virulence cassette) in 
P. luminescens, were found to share similarity with phage-related genes 
and their structural similarity to R-tailocins was noted (Hurst et al., 
2004, 2007; Yang et al., 2006). Afp variants conferring insecticidal 
activity were later also discovered in several strains of the insect 
pathogen Serratia proteamaculans (Hurst et al., 2018, 2021). In 2014, 
another eCIS consisting of arrays of up to 100 phage tail-like 
structures, called MACs, was discovered in Pseudoalteromonas 
luteoviolacea, which induces the settlement and metamorphosis of the 
larvae of the marine tubeworm Hydroides elegans (Shikuma et al., 
2014). The potential of these eCIS to translocate toxic effector proteins, 
named eCIS-associated toxins (EATs), into target cells has been 
demonstrated for PVCs and MACs and has also been postulated for 
Afps (Heymann et al., 2013; Rocchi et al., 2019; Vlisidou et al., 2019; 
Geller et al., 2021; Wang et al., 2022). Although the R-tailocins, Afps, 
PVCs and MACs are currently the best characterized eCISs, genomic 
analyses have identified sequences for thousands more phage tail-
related particles that appear to target bacteria as well as eukaryotic 
cells (Sarris et al., 2014; Chen et al., 2019; Rojas et al., 2020; Geller 
et  al., 2021). Although most of these structures and / or genetic 
sequences have been studied in Gram-negative bacteria, genomic 
analysis have also identified them in archaea and Gram-positive 
bacteria (Sarris et  al., 2014; Chen et  al., 2019; Geller et  al., 2021; 
Nagakubo et al., 2021; Babar et al., 2022; Le Faou and Boudier, 2022; 
Casu et al., 2023; Vladimirov et al., 2023). Furthermore, novel CIS 
particles have been recently discovered, notably the thylakoid-
anchored tCIS in cyanobacteria (Weiss et al., 2022), the AlgoCIS in 
Algoriphagus machipongonensis (Xu et al., 2022), and the Streptomyces 
cytosolic CISSC. They appear to remain cytosolic and mediate the 
death of the producer cell in response to external stress (Casu et al., 
2023; Vladimirov et  al., 2023), pointing towards the extensive 
structural and functional diversity that still needs to be explored.

From 1990 up to the present, the interest in these particles has 
continued, with the visualization of the dynamics of their production, 
explosive release and killing activity and studies of their regulation 
(Matsui et  al., 1993; Sun et  al., 2014; Penterman et  al., 2014b; 
Fernandez et al., 2020; Vacheron et al., 2021; Bronson et al., 2022), 
their atomic structures and molecular mechanics (Heymann et al., 
2013; Ge et al., 2015, 2020; Desfosses et al., 2019; Jiang et al., 2019; 

Fraser et al., 2021), their role in bacterial competition (Heo et al., 2007; 
Waite and Curtis, 2009; Dorosky et al., 2017, 2018; Oluyombo et al., 
2019; Vacheron et al., 2021; Heiman et al., 2022) and their potential 
medical use (Scholl and Martin, 2008; Scholl et al., 2009; Ritchie et al., 
2011; Redero et  al., 2020; Alqahtani et  al., 2021; Six et  al., 2021; 
Bhattacharjee et al., 2022) as well as their application as prophylactic 
or curative treatment against phytopathogens in agriculture 
(Fernandez et al., 2017; Príncipe et al., 2018; Baltrus et al., 2022). 
Recent studies have also re-engineered eCIS structures to target new 
cell types and to deliver new proteins, opening new avenues for the 
usage of these particles (Scholl, 2017; Bhattacharjee et al., 2022; Jiang 
et al., 2022; Kreitz et al., 2023).

Domestication of eCISs

The eCISs are structurally related to bacteriophage tails. This had 
already been suggested by Jacob when he discovered these particles 
(Jacob, 1954) and was a common conclusion throughout the studies 
focusing on their characterization (Ikeda et al., 1964; Ishii et al., 1965; 
Kageyama et al., 1979; Shinomiya and Shiga, 1979; Shinomiya, 1984; 
Shinomiya and Ina, 1989). Since then, it has been confirmed that 
eCISs originate from phages belonging to the Caudovirales order and 
have a common ancestor with Myoviridae phages (Nakayama et al., 
2000; Sarris et al., 2014). The non-contractile flexible F-type tailocins 
are related to Siphoviridae phages (Nakayama et al., 2000; Saha et al., 
2023). Although it has been shown that eCISs are related to phages, 
there still is little knowledge on how a prophage evolves into an eCIS 
(Bobay et al., 2014).

It has been demonstrated that eCISs are not merely degenerated 
phage particles (Shinomiya and Shiga, 1979). However, several steps 
from a phage to an efficient eCIS particle can be  postulated. 
Following the insertion of a phage genome into a bacterial genome 
during its lysogenic cycle, the prophage sequence becomes 
susceptible to the evolution of the bacterial genome through 
genomic rearrangements, degradation, and spontaneous mutations 
(Canchaya et  al., 2003; Bobay et  al., 2014; Feiner et  al., 2015; 
Salmond and Fineran, 2015; Ofir and Sorek, 2018; Figure 3). For 
example, the genes affiliated to the head of the phage could be lost, 
creating a headless phage, in addition, genes determining target 
specificity, such as those encoding the tail fibers, could become more 
or differently specialized (Figure 3). Furthermore, since R-tailocin 
loci in particular are found concurrently with or even nested within 
prophage sequences, it is thought that there is an important 
recombination rate between these loci generating new phage tail-like 
structures (Ghequire and De Mot, 2014; Ghequire et al., 2015; Patz 
et al., 2019; Vacheron et al., 2021; Figure 3). Additionally, horizontal 
gene transfer could permit the acquisition of new sequences and 
genes leading to changes in the structures of eCISs or their activity 
spectrum as well as the potential acquisition of toxic cargos 
(Canchaya et al., 2003; Sarris et al., 2014; Figure 3). At present, it 
remains unclear whether eCISs are generated either by evolution of 
a prophage sequence, recombination with pre-existing prophages, 
horizontal gene transfer, or all three (Touchon et al., 2014, 2017; 
Ghequire et al., 2015; Ghequire and De Mot, 2015; Koonin et al., 
2019; Patz et al., 2019; Figure 3). Furthermore, changes in bacterial 
cell envelope composition, notably in the highly variable O-antigens 
of LPS cell surface decorations, which are targeted by eCISs, are also 
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thought to drive the evolution of eCIS particles (Carim et al., 2021; 
Heiman et al., 2022; Figure 3).

Noteworthy, it has been speculated that eCISs could 
be intermediate structures towards the more complex T6SSs (Büttner 
et  al., 2016; Böck et  al., 2017). However, eCISs and T6SSs often 
co-occur in bacterial cells and are likely to have complementary 
activities, as the T6SS does not induce the lysis of the producing cell 
but is only efficient for contact-dependent altercations, while eCISs are 
released through the lysis of the producing cell but can affect more 
distant targets.

Architectures of eCISs

The common ancestry of eCISs with phages is obvious when 
comparing their genetic organization, especially in the genes encoding 
the structural components for the eCIS particles (for a more detailed 
review of eCIS structures, see Taylor et  al., 2018). As previously 
described, eCISs are particles that resemble “headless phages” formed 
out of a multi-subunit helicoidal sheath encapsulating a tube that is 
itself composed of multiple subunits (Ishii et al., 1965; Figure 1). The 
repeating unit of R-tailocin sheaths is a single protein. In many eCISs 
that target eukaryotic cells such as the Afp and PVC structures, the 
sheath contains multiple copies of two or three highly similar proteins 
(Ge et al., 2015; Desfosses et al., 2019; Jiang et al., 2019; Figure 1). 
Following genomic analysis, some eCIS gene clusters were even found 
to encode three different sheath subunits (Sarris et al., 2014). The 

sheath and the tube form the contractile part of the eCIS machine. In 
some eCISs, this hollow tube can transport toxic effectors named EATs 
(eCIS-associated toxins), which could target nucleic acids, 
peptidoglycan or actin (Geller et al., 2021). The EAT effectors Pnf and 
Pdp1 harbored by PVCs induce destabilization of the actin 
cytoskeleton and disrupt dNTP pools of the targeted cells, respectively 
(Yang et al., 2006; Wang et al., 2022), while in the Afps, toxic cargo 
proteins have been proposed to be  the factors leading to feeding 
cessation in New  Zealand grass grub larvae (Hurst et  al., 2004; 
Heymann et al., 2013). An EAT with nuclease activity (Pne1) that kills 
eukaryotic cell lines on delivery has also been found in MACs (Rocchi 
et al., 2019), in addition to an effector protein (MifA) responsible for 
inducing metamorphosis in tubeworm larvae (Ericson et al., 2019).

The contractile tail of eCISs is attached to a baseplate to which are 
bound a needle-like structure called the spike as well as the tail fibers 
(Figure  1). Some eCISs have a proline-alanine–alanine-arginine 
(PAAR) repeat domain on the baseplate spike that is capable of 
binding the toxic effectors (Shneider et al., 2013; Sarris et al., 2014; 
Vlisidou et al., 2019). These PAAR domains are absent in R-tailocins, 
which are not known to harbor effectors (Sarris et al., 2014). Six tail 
fibers at the periphery of the baseplate mediate target recognition 
(Ishii et al., 1965; Michel-Briand and Baysse, 2002; Ge et al., 2015; 
Ghequire et al., 2015; Ghequire and De Mot, 2015; Scholl, 2017; Buth 
et al., 2018; Dorosky et al., 2018; Schwemmlein et al., 2018; Desfosses 
et al., 2019). The tail fibers associated with eCISs that target eukaryotic 
cells have been found to be more similar to Adenoviridae fibers, while 
those associated with eCISs that bind bacteria have higher similarity 

FIGURE 3

Domestication of prophage gene clusters into extracellular contractile injection systems (eCISs). (A) Following the insertion of the genome of a phage 
into the host bacterial genome, the prophage sequence becomes susceptible to genetic loss giving rise to eCIS loci. Genomic rearrangements and 
degradation, in addition to spontaneous mutations, can lead to changes in eCIS specificity and loss of certain genes. These clusters can also 
recombine with other phage-like clusters within the bacterial genome. Horizontal gene transfer can also lead to the acquisition of new structures. 
These differences are illustrated with the example of tail fibers changes. (B) Through these mechanisms, either alone or concomitantly, prophage gene 
clusters can evolve into new CIS gene clusters with different activity spectra. These changes in spectrum are represented by the different colors of the 
tail fibers and the lipopolysaccharides coating the different bacteria, where the same color symbolizes a potential interaction between a target 
bacterium and an eCIS particle. The yellow bacterial cell represents a bacterium that is resistant to all of the viral particles shown, but could be a 
potential future target that eCIS particles could evolve to attack.
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with phages (Hurst et al., 2004, 2007, 2018; Geller et al., 2021). Cryo-
electron microscopy of different eCISs structures shows that the fibers, 
formed out of three polypeptides, are folded toward the sheath until 
the eCIS structure reaches a target, at which time the fibers unfold and 
cause the particle to become perpendicular to the cell surface of the 
target (Jiang et al., 2019; Ge et al., 2020; Fraser et al., 2021). Once 
irreversibly bound, the tail fibers initiate the signal for sheath 
contraction (Jiang et al., 2019; Ge et al., 2020; Fraser et al., 2021).

The first step in the assembly of eCIS structures is the recruitment 
of the baseplate subunits around the spike (Jiang et al., 2019). Then, 
the tube subunits polymerize from the baseplate (Jiang et al., 2019). 
As additional subunits are added to the baseplate to further stabilize 
it, the tail fibers also bind to the baseplate (Jiang et al., 2019). The tail 
tape-measure regulates the correct length of the tube by scaffolding 
the tube (Jiang et al., 2019). Once the optimal length is reached, the 
cap [also named collar; (Ge et al., 2015; Jiang et al., 2019)] terminates 
the tube elongation and permits the stabilization of the structure 
(Rybakova et al., 2013) and the sheath is added to finalize the assembly 
of the structure (Jiang et al., 2019).

The clusters encoding eCISs can be highly conserved not only in 
content but also in genomic location. Tailocins (both F- and R-type) 
belonging to P. aeruginosa strains are located in the intergenic region 
of the tryptophan operon between the trpE and trpGCD genes, while 
those belonging to other Pseudomonas strains, such as those of the 
P. fluorescens clade, are located between the mutS and cinA genes 
(Ghequire and De Mot, 2014; Ghequire et  al., 2015; Scholl, 2017; 
Blasco et  al., 2023). The similarities between R-tailocins from 
P. aeruginosa strains have led to a further classification into five 
different subtypes (R1-R5) according to their structures and activity 
spectrum (Ghequire and De Mot, 2014).

Although there are many similarities in the organization of the 
gene clusters and the basic structural components of eCISs, some 
eCISs differ from the others. In addition, although most eCISs are 
encoded on the chromosome of the producing bacterium, some, 
such as the Afps of S. entomophila, can be  found encoded on 
plasmids (Glare et al., 1996; Hurst et al., 2004; Chen et al., 2019; 
Geller et  al., 2021). There are also differences in the overall 

structure of the devices. This is most obvious for MACs, which 
differ from all other eCISs in that they are composed of arrays of 
approximately 100 individual contractile phage tail-like structures 
linked together by their tail fibers (Shikuma et al., 2014; Figure 1). 
Their structure suggests a “cooperative firing” of the individual 
phage tail-like particles (Shikuma et al., 2014).

Production, release, and action 
mechanism

As the production and release of eCISs has been extensively 
studied in R-tailocins, we  will review what is known about these 
particular structures. External stresses that provoke DNA damage and 
trigger the bacterial SOS response are known to activate the 
production of tailocins, as they also elicit the lytic cycle of prophages 
(Howard-Varona et al., 2017; Scholl, 2017). These factors include UVs 
(Lwoff et  al., 1950), H2O2 (Lwoff, 1952; Ackermann and DuBrow, 
1987; Banks et  al., 2003; Łoś et  al., 2010) as well as certain 
DNA-damaging antibiotics such as mitomycin C (Otsuji et al., 1959; 
Ackermann and DuBrow, 1987) or ciprofloxacin (Sun et al., 2014; 
Penterman et  al., 2014b). The most commonly used inducers in 
laboratory practice are UVs (Lwoff et al., 1950) and mitomycin C 
(Kageyama and Egami, 1962). The regulatory mechanisms controlling 
the activation of tailocin production during the SOS-response have 
been studied in some detail in P. aeruginosa. Upon DNA damage, 
RecA in P. aeruginosa will polymerize on single-stranded DNA 
leading to the formation of nucleoprotein filaments that will stimulate 
the autocleavage of the repressor LexA, which in turn will induce the 
expression of the SOS system (Cirz et  al., 2006; Penterman et  al., 
2014b; Figure 4). Similarly, RecA will mediate the autoproteolytic 
cleavage of the structurally related, tailocin locus-associated repressor 
PrtR that in conditions lacking stress will block the expression of the 
tailocin locus-specific activator PrtN (Matsui et al., 1993; Ghequire 
and De Mot, 2014; Penterman et al., 2014b). Derepressed PrtN will 
stimulate the expression of the tailocin genes within the cluster 
(Matsui et al., 1993; Ghequire and De Mot, 2014; Penterman et al., 

FIGURE 4

Model of R-tailocin regulation in Pseudomonas aeruginosa under non-inducing (A) and inducing (B) conditions. (A) Under non-inducing conditions, 
the tailocin locus-associated repressor PrtR inhibits the expression of the tailocin activator PrtN. (B) Upon DNA damage, RecA forms nucleoprotein 
filaments on single-stranded DNA, which stimulates the autocleavage of the PrtR repressor, resulting in the derepression of the activator PrtN and the 
expression of the genes within the tailocin cluster. Sharp arrows represent activation of gene expression, the blunt-arrow represent inhibition of gene 
expression and the dashed-line arrow represents degradation.
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FIGURE 5

Overview of R-tailocin production up to killing the target cell. Following induction by a stress factor, R-tailocins are assembled in the cytoplasm of the 
producing cell. 1. Holins, also encoded by the same gene cluster as R-tailocins, will accumulate on the inside of the inner membrane (IM) of the 
producing cell and form pores. 2. These pores will permit the passage of lysins, also encoded by the R-tailocin gene cluster that will degrade the 
peptidoglycan (PG) layer. 3. Spanins will fuse the outer membrane (OM) to the inner membrane. 4. This will rupture the membrane, resulting in the 
explosive lysis of the producing cell and the release of the R-tailocins into the environment. 5. The R-tailocins will precisely recognize a target cell 
through their tail fibers that will bind to distinct cell surface decorations, specifically the O-antigens of the lipopolysaccharides (LPS). 6. Once the target 
is recognized, the R-tailocin will attach to the surface of the target cell. 7. The R-tailocin sheath will contract and push the tube through the membrane 
of the target. 8. The accumulated action of multiple R-tailocins will lead to the lysis and death of the target cell.

2014b). Once assembled, R-tailocins will accumulate in the cytoplasm 
prior to lysis (Figure 5). R-tailocins have been shown in environmental 
Pseudomonas to be assembled at the center of the cell and migrate to 
the poles of the cell prior to lysis (Dar et  al., 2021; Vacheron 
et al., 2021).

In addition to regulating the expression of the structural genes, 
PrtR and PrtN also coordinate the expression of the genes that 
mediate the lysis of the producing cell and thus the release of the 
R-tailocins into the cellular environment (Matsui et al., 1993). In 
general, three main types of enzymes coordinate the lysis of the 
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bacterial cell: holins, lysins, and spanins (Rajaure et  al., 2015; 
Cahill and Young, 2019). First, holins accumulate at the inner 
membrane where they will form pores (Figure  5; Young, 2014; 
Saier et al., 2015). This will permeabilize the inner membrane and 
permit the passage of lysins, which degrade the peptidoglycan layer 
(Figure  5). Finally, spanins contribute to cell lysis through the 
rupture of the outer membrane by fusing it to the inner membrane 
(Ghequire and De Mot, 2014; Ghequire et al., 2015; Rajaure et al., 
2015; Yao et al., 2017; Kongari et al., 2018; Vacheron et al., 2021; 
Figure  5). The combined action of these enzymes causes the 
membrane of the producing cell to rupture and form a typical 
spheroblast structure before explosively lysing and projecting 
R-tailocins into the environment (Ghequire and De Mot, 2015; 
Scholl, 2017; Dorosky et al., 2018; Vacheron et al., 2021). Therefore, 
the production of R-tailocins is quite costly as a cell must lyse and 
die to release these particles (Dorosky et al., 2017; Carim et al., 
2021; Vacheron et al., 2021; Heiman et al., 2022).

Once released, R-tailocins are thought to be projected tens of 
micrometers away from the originating cell into the environment 
where they can reach target cells (Vacheron et al., 2021). R-tailocins 
will interact with their targets through their tail fibers, which will 
bind to cell surface receptors, specifically the variable O-antigen 
components of the LPS (Figure 5; Ikeda and Egami, 1969, 1973; 
Meadow and Wells, 1978; Köhler et al., 2010; Carim et al., 2021; 
Heiman et al., 2022). Although LPS has been described as the only 
known receptor for R-tailocins (Ikeda and Egami, 1969, 1973; 
Meadow and Wells, 1978; Köhler et al., 2010; Carim et al., 2021; 
Heiman et al., 2022), it is possible that these particles are able to 
bind to other cell surface components, as phages are known to bind 
to other structures besides LPS, such as membrane-anchored 
proteins (Nobrega et al., 2018). Sheath contraction then is triggered 
by the binding of multiple tail fibers to their receptors (Ge et al., 
2020; Fraser et al., 2021) and the energy needed for the contraction 
is thought to be stored in the extended state during assembly (Ge 
et al., 2020; Fraser et al., 2021). This action will push the iron-atom 
reinforced tube tip through the membrane of the target cell (Ge 
et al., 2020; Fraser et al., 2021; Figure 5). The consequence of this 
action remains uncertain, with reports of changes in membrane 
permeability (Uratani and Kageyama, 1977; Uratani, 1982), loss of 
membrane potential, increased potassium efflux, or inhibition of 
proline uptake (Uratani and Hoshino, 1984; Fernandez et al., 2017; 
Scholl, 2017; Patz et  al., 2019; Látrová et  al., 2023). However, 
R-tailocins do act on the target, and the final outcome is membrane 
disruption and the death of the target cell (Figure 5). Although 
early studies determined that in the case of R-tailocin (R-pyocin) 
from P. aeruginosa, in principle, one particle is sufficient to kill a 
bacterial cell (Kageyama et al., 1964), it remains to be seen whether 
similar killing activities apply to other R-tailocins or eCISs 
in general.

The production of certain eCISs may be regulated differently 
from the well-investigated PrtN-PrtR regulation described above 
(Figure  4). Indeed, in non-pathogenic plant-associated 
Pseudomonas strains, only an ortholog of the prtR gene from 
P. aeruginosa was found, but none for prtN (Ghequire et al., 2015; 
Fernandez et al., 2020; Vacheron et al., 2021). Some eCIS loci also 
completely lack the lysis cassette as well as conserved regulatory 
genes (Sarris et al., 2014). Thus, it remains unclear at present how 
these clusters are regulated and which elicitors induce their 

production, although alternative regulatory pathways that induce 
the production of R-tailocins appear to exist (Baggett et al., 2021).

Ecological and evolutionary role of 
eCISs

Extracellular CISs are widespread throughout all bacteria (Sarris 
et al., 2014; Ghequire and De Mot, 2015; Chen et al., 2019; Patz et al., 
2019; Rojas et  al., 2020; Geller et  al., 2021), implying important 
ecological and evolutionary roles for these particles, which may differ 
depending on their specific activities. In the case of R-tailocin type 
eCISs these devices target, perforate, and kill bacterial cells and 
therefore play an important role in interbacterial interactions. 
Contrary to R-tailocins, AFP-, PVC- and MAC-type eCIS can carry 
effector proteins with toxic activities that they inject into eukaryotic 
cells and probably also into bacterial cells (Geller et al., 2021), enabling 
them with specialized functionality in host interactions.

Effect on niche colonization

When R-tailocin type eCISs were first discovered, they were 
induced, extracted and then tested on a small array of strains (Jacob, 
1954; Kageyama and Egami, 1962). Most often, these and subsequent 
studies focused on a pinpointed group of bacterial strains of interest. 
However, recent studies have expanded the phylogenetic and 
ecological relationships of the bacteria tested. R-tailocin type eCIS 
have proven to be highly specialized weapons, generally targeting 
different strains of the same species or strains of closely related species. 
As an example in environmental Pseudomonas, the R-tailocins 
extracted from the plant root-colonizing strain Pseudomonas protegens 
CHA0 specifically targets strains belonging to the same species that 
share more than 97% of genomic identity (Vacheron et al., 2021). 
Other R-tailocins such as those from strains of plant-associated 
Pseudomonas chlororaphis, Pseudomonas fluorescens, Pseudomonas 
syringae, or Pseudomonas putida exhibited broader killing spectra, 
affecting phylogenetically more distant strains belonging to other 
subgroups or related species (Fischer et al., 2012; Ghequire et al., 2015; 
Hockett et al., 2015; Dorosky et al., 2017, 2018). For example, the 
tailocin of Pseudomonas fluorescens SF4c can target other strains 
belonging to the P. fluorescens subgroup as well as strains belonging to 
the Pseudomonas putida, the Pseudomonas corrugata or the 
Pseudomonas syringae subgroups (Fischer et  al., 2012). Similar 
variability in the intra- and interspecific killing spectra of R-tailocins 
has been described for clinical isolates of human pathogens such as 
P. aeruginosa, Clostridium difficile, or Burkholderia cenocepacia 
(Köhler et al., 2010; Gebhart et al., 2012; Yao et al., 2017; Oluyombo 
et al., 2019; Blasco et al., 2023). Some R-tailocin type eCIS can even 
impact strains belonging to different bacterial genera, as has been 
demonstrated for several Pseudomonas R-tailocins targeting leaf 
pathogenic Xanthomonas strains (Fernandez et al., 2017; Dorosky 
et  al., 2018; Príncipe et  al., 2018; Weaver et  al., 2022). The target 
specificity and consequently the activity spectra of R-tailocins are 
ruled by highly specific interactions of the tailocin tail fibers with 
bacterial LPS cell surface decorations. Depending on the particular 
O-antigen decoration, the LPS can act either as a receptor for or as a 
shield against specific tailocins, thus determining the outcome of 
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interbacterial competitions in host- or abiotic environment-associated 
biofilms (Köhler et al., 2010; Penterman et al., 2014a; Carim et al., 
2021; Heiman et al., 2022).

Because of the specialized effect of R-tailocins on other bacteria, 
most studies have examined their role as weapons used to specifically 
combat competitors, allowing bacteria to colonize a niche of interest 
(Figure 6D). Once a strain has achieved niche dominance, tailocins 
would help to maintain that status. Indeed, R-tailocins produced by 
pathogenic P. aeruginosa strains shape ecological interactions in cystic 
fibrosis patients by displacing other P. aeruginosa strains and 
influencing strain dominance (Köhler et al., 2010; Oluyombo et al., 
2019; Mei et  al., 2021). In the wheat rhizosphere (i.e., the soil 
surrounding wheat roots), a complex environment that is prone to 
competition, R-tailocins were found to be  important for bacterial 
persistence, as R-tailocin mutants were not as abundant as the wild-
type strain (Dorosky et al., 2017, 2018). Tailocin clusters may encode 
multiple R-tailocins or harbor multiple tail fiber genes, which could 
specify different spectra of activity leading to a broader target range 
(Ghequire et al., 2015; Dorosky et al., 2017, 2018; Patz et al., 2019; 
Vacheron et al., 2021). Moreover, R-tailocins may evolve rapidly as 
suggested in Pseudomonas syringae strains where the recombination 
of two genes encoding a receptor binding protein (tail fiber protein) 
and a chaperone was sufficient to alter the activity spectrum of a 
tailocin (Baltrus et al., 2019), leading to the hypothesis that they could 
quickly adapt to other targets. Modification of tail fibers upon DNA 

inversion and module exchange between strains also resulted in 
altered host range specificity of R-tailocins and competitiveness in 
strains of Xenorhabdus bovienii and Pectobacterium carotovorum 
(Nguyen et al., 2001; Ciezki et al., 2017). Thus, bacteria appear to 
evolve the activity spectra of their R-tailocin type eCISs in response to 
environmental pressures to adopt their use in different interactions.

Effect on host interactions

Although initially eCISs were only shown to affect prokaryotic 
cells, some, similar to T6SSs, can also interact with eukaryotic targets, 
resulting in beneficial or deleterious effects on their hosts (Figure 6E). 
As an example of where eCISs are of benefit for the target eukaryote 
host, MACs released by P. luteoviolacea induce the settlement and 
metamorphosis of larvae of the marine tubeworm Hydroides elegans 
into the adult stage after interaction with these arrays, which consist 
of approximately 100 eCISs that expand to a star-like structure upon 
release (Huang et al., 2012; Shikuma et al., 2014, 2016; Cavalcanti 
et al., 2020; Hadfield et al., 2021). MACs initiate the loss of the larval 
cilia and induce genes involved in tissue metamorphosis, innate 
immunity, and MAPK signaling (Shikuma et  al., 2016). A 
MAC-transported protein effector termed metamorphosis-inducing 
factor 1 (Mif1) is sufficient to stimulate larval metamorphosis (Ericson 
et al., 2019). Although this appears to be a beneficial mechanism for 

FIGURE 6

Ecological and evolutionary roles of eCISs. Extracellular CISs can have many different roles impacting bacterial communities. (A) In monoclonal as well 
as polyclonal bacterial populations, eCISs may ward off potential invaders, notably against phylogenetically related bacteria to exclude competitors 
that target the same niche and nutritional environment. (B) Lysis of the eCIS-producing cells releases not only the particles themselves, but also 
nutrients and DNA, which become a common good accessible to the entire community. The stochastic release of eCISs also permits to maintain the 
population in a preconditioned state of alert, preventing the invasion by other strains. (C) Furthermore, in multi-species bacterial populations, eCISs 
help to shape the community for example by maintaining the spatialization of different strains within the environment. (D) Conversely, eCISs may also 
help in the colonization of a new niche by displacing established strains. (E) In host-associated strains, eCISs could help mediate the interaction 
between the bacterial population and the host, depicted here with the interaction between eCISs and eukaryotic cells shown below the bacterial 
biofilm. (F) Finally, the eDNA available following the lysis of a producing strain may benefit bacterial evolution through horizontal gene transfer 
permitting for instance the exchange of different eCIS genes, creating new particles with different activities or activity spectra. Examples and further 
details are given in the text.
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the host H. elegans, it has been suggested that for the producer 
bacterium P. luteoviolacea this may be an anti-protist mechanism to 
counteract ciliated predators (Hadfield et  al., 2021). Interestingly, 
MACs cargo a second effector with nuclease activity, which is toxic to 
several eukaryotic cell lines but has no effect on Hydroides larvae and 
has been suggested to help the P. luteoviolacea bacteria cope with 
protozoan predators (Rocchi et  al., 2019; Cavalcanti et  al., 2020). 
Extracellular CISs can also contribute to the virulence of pathogenic 
bacteria. PVCs and Afps are important pathogenicity determinants of 
insect-pathogenic Photorhabdus and Serratia species, respectively, by 
delivering different toxic effectors into their target eukaryotic cells 
(Hurst et al., 2004, 2007, 2018; Yang et al., 2006; Rybakova et al., 2013; 
Vlisidou et al., 2019; Wang et al., 2022). Toxic effectors translocated 
by eCIS may not only affect invertebrate hosts such as worms and 
insects, but there are also first examples of eCIS effectors affecting 
vertebrate hosts. An eCIS-associated toxic effector of the fish pathogen 
Yersinia ruckeri, related to the Afp  18 toxin that is predicted to 
be loaded by Serratia Afps, was found to severely impair the early 
development of zebrafish embryos by exhibiting glycosyltransferase 
activity that disrupts RhoA GTPase-driven actin filament 
organization, ultimately leading to embryo death (Jank et al., 2015).

Furthermore, eCISs particles can have multi-layered effects in 
bacterial host interactions. For example, Xenorhabdus nematophila 
symbionts of the entomopathogenic nematode Steinernema 
carpocapsae use their R-tailocin type eCISs to outcompete 
Photorhabdus luminescens permitting the reproduction of the 
nematodes and the exploitation of the insect host (Morales-Soto and 
Forst, 2011). However X. nematophila eCIS mutants were no longer 
able to affect P. luminescens, which inhibited the reproduction of the 
nematode S. carpocapsae (Thappeta et al., 2020). Conversely, in the 
human gut, a potential beneficial role of eCISs has been suggested 
based on a higher number of Bacterodiales sequences specifying a novel 
type of eCIS related to Afps, PVCs and MACs in the metagenomes of 
healthy individuals compared to individuals with inflammatory bowel 
syndromes such as Crohn’s disease or ulcerative colitis (Rojas et al., 
2020). Thus, eCISs are important not only for interactions with other 
bacteria, but also with the eukaryotic host or with its microbiota, acting 
as mediators to create beneficial or pathogenic relationships that may 
be essential for the symbiosis with the host.

Shaping microbial communities

An invading strain could use eCISs against an established multi-
species biofilm to disrupt it and gain access to the ecological niche 
(Figures 6C,D). Some epidemic strains of P. aeruginosa infecting cystic 
fibrosis patients have proven to be  very efficient in their patient 
colonization and dominance, as they were able to displace the resident 
strains and prevent colonization by new strains (McCallum et al., 
2001; Carter et al., 2010; Oluyombo et al., 2019). It has been suggested 
that tailocins and phages may play a role in their competitiveness 
(Burns et  al., 2015; Lemieux et  al., 2016; Oluyombo et  al., 2019). 
Indeed, R-tailocin mutants could cohabit while their parental strains 
competed (Oluyombo et al., 2019). Furthermore, when concentrates 
of purified R-tailocins from one P. aeruginosa strain were applied to 
the established biofilm of a sensitive competitor strain, a significant 
antimicrobial effect was observed, suggesting that strain dominance 
could be linked to R-tailocin production (Oluyombo et al., 2019). 
Conversely, at low concentrations, R-tailocins induced biofilm 

formation in P. aeruginosa (Oliveira et al., 2015). Indeed, the growth 
of a strain that is sensitive to the R-tailocins of another strain was 
inhibited, but biofilm formation was induced upon contact with the 
R-tailocins triggering a population response to the threat of cellular 
damage (Oliveira et al., 2015). This shows that R-tailocins, and eCIS 
in general, may have different effects on microbial communities 
depending on their concentration. It would therefore be interesting to 
study the effect of increasing concentrations of purified eCISs on 
already established microbial communities.

Phages have been shown to play a crucial role in shaping microbial 
communities. Many models have been proposed to describe their 
predator–prey dynamics with bacterial hosts and the bacterial 
population. One of the best known is the “Kill-the-Winner” (KtW) 
model where phages will kill their most abundant host bacteria, 
leading to a reduction in their abundance (Thingstad and Lignell, 
1997; Thingstad, 2000), thus permitting bacteria with lower abundance 
to increase their population size. Since, many other models derived 
from the KtW model have emerged to illustrate the different dynamics 
between phages and their target bacteria (Knowles et al., 2016; Maslov 
and Sneppen, 2017). Despite being evolved from phages, it is difficult 
to infer the role and eco-evolutionary dynamics of CISs from those of 
phages. Extracellular CISs, unlike phages, do not harbor their own 
DNA and consequently cannot replicate and multiply on their own. 
Therefore, they cannot be  considered as independent entities. 
Furthermore, the release of eCISs has been proposed to be a self-
sacrificial mechanism of the producing bacterium to protect and 
benefit the entire population (Vacheron et  al., 2021). Thus, their 
production and release need to be precisely regulated so that enough 
eCISs are released into the environment to fend off competitors 
without sacrificing the entire population through suicidal eCIS 
production. It has been shown that a very small percentage of a 
bacterial population will naturally (i.e., without induction) produce 
and release R-tailocins (Dar et al., 2021; Vacheron et al., 2021). Thus, 
eCISs could be used by bacteria as a mechanism to maintain the cell 
population in a preconditioned state of alert to compete against 
potential invaders (Figure 6A). Competitor sensing could then detect 
an incoming attack and trigger a population-level response that could 
result in mass cell suicide to release sufficient toxins against lethal 
invaders (Mavridou et  al., 2018; Granato and Foster, 2020). 
Alternatively, the production and release of eCIS could be  a 
mechanism to gain more space and nutrients (Figures 6B,C) when a 
population becomes too dense.

Nevertheless, as phages, eCISs may have an important role in the 
assembly and shaping of bacterial communities in all types of 
environments. Yet, the dynamics between eCIS production and 
members of the microbiota have never been studied in depth, in vivo, 
or in an environmental context. Therefore, it would be interesting to 
investigate these dynamics by looking at the production of eCISs by 
community members within an already established community to see 
their effect on the microscale stabilization of the bacterial population 
and their role in preventing invasion by competitors. Furthermore, the 
invasion of a new strain could be mimicked by studying the effect of 
adding eCISs to an already established community and tracking the 
repercussions on the community composition and diversity. Although 
eCISs are highly specialized weapons and generally target only specific 
bacterial strains, the death of the target strain could have drastic ripple 
effects on the functioning and diversity of a given ecosystem, 
impacting other microorganisms and potentially the entire host that 
would normally interact with that target strain.
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Influencing bacterial evolution

Extracellular CISs, like phages, could also have a role in increasing 
bacterial genetic diversity and evolution (Figure 6F). The Red Queen 
hypothesis states that predator (here, an eCIS-producing bacterium) 
and prey (here, a target bacterium) will continuously counter-evolve 
to attack or escape, respectively, the other (Van Valen, 1973). In this 
predator–prey dynamic, tail fibers are a key factor as they are 
responsible for target recognition and have high diversity compared 
to the other structural parts of the eCISs, as documented in particular 
for the R-tailocins (Ghequire and De Mot, 2014; Ghequire et al., 2015; 
Baltrus et  al., 2019; Patz et  al., 2019; Vacheron et  al., 2021). 
Furthermore, it has been suggested that multiple tail fiber genes 
harbored in some tailocin gene clusters may increase the spectrum of 
activity (Dorosky et al., 2018; Patz et al., 2019). In addition, it has also 
been shown for phages that they can recombine with unrelated phages 
to increase their activity spectra (Moura de Sousa et al., 2021), and 
eCISs in general may do the same with other CIS structures as well as 
with phages. On the bacterial side, it is known that the genes encoding 
cell surface components such as LPS O-antigens are subjected to 
higher mutation rates than other genes (Salaün and Saunders, 2006; 
Maldonado et al., 2016; Matic, 2016). The changes in these structures, 
tail fibers and receptors, respectively, on both the attacking eCISs and 
the bacterial target can lead to differences in bacterial fitness by 
altering the activity spectra of the eCISs as well as the respective 
susceptibility of cell surface components of the bacterium, which in 
turn will affect the way the bacterium will interact with its environment 
(Kupferschmied et al., 2016; Carim et al., 2021; Heiman et al., 2022).

Furthermore, as it was recently discovered that some EATs encoded 
in eCISs clusters could be toxic to bacteria (Geller et al., 2021). New 
mechanisms may emerge to counteract the EATs injected into target 
cells, which could lead to the discovery of new defense systems or toxin-
antitoxin mechanisms. In T6SSs, antibacterial effectors are often 
encoded adjacent to genes encoding immunity proteins that inactivate 
the effectors to protect the producer cell (Hersch et al., 2020). However, 
no similar immunity proteins against antibacterial EATs have been 
identified so far and it is currently unclear if such immunity systems 
exist (Geller et  al., 2021). Bacteria have evolved other mechanisms 
granting them protection against T6SS effectors such as envelope stress 
responses, the production of reactive oxygen species, physical barriers 
such as exopolysaccharide layers, or general bacterial stress responses 
(Hersch et al., 2020) that could potentially also be mechanisms used to 
protect them from any eCIS. Finally, sensing the attack of a competitor 
could be a way to trigger eCIS production as a means for counter-attack. 
In some P. aeruginosa, the attack of a competitor’s T6SS triggers a 
retaliation by its own dormant T6SS, leading to a “duel” between the 
strains (Basler et al., 2013; Hersch et al., 2020).

In addition to causing changes through arms race dynamics, 
eCISs also cause the lysis of the producing cells as well as the target, 
thereby contributing to the release of nutrients and DNA into the 
environment (Turnbull et al., 2016; Vacheron et al., 2021; Toyofuku 
et al., 2023; Figure 6B). The availability of extracellular DNA (eDNA) 
contributes to the possibility of horizontal gene transfer within a 
community (Weinbauer and Rassoulzadegan, 2004; Nanda et al., 
2015; Toyofuku et  al., 2023). In the naturally competent Vibrio 
cholerae, the T6SS is co-regulated with the DNA uptake machinery 
(Borgeaud et al., 2015). This mechanism allows the attacking cells to 
release the DNA from their targets and gain new functions accessible 

through horizontal gene transfer (Borgeaud et al., 2015; Metzger 
et al., 2016; Veening and Blokesch, 2017; Matthey et al., 2019). As 
eCISs are thought to be the intermediate between phages and the 
T6SS (Büttner et al., 2016; Böck et al., 2017), it could be speculated 
that this mechanism of purposeful eDNA uptake is also performed 
through eCIS-induced lysis. However, further studies are required 
to confirm this relationship.

Biotechnological applications of eCISs

The usage of eCISs for potential biotechnological applications is 
not a recent concept. These particles were already used in the 1970s as 
a tool for P. aeruginosa typing or “fingerprinting” to better identify, 
investigate and control outbreaks (Farmer and Herman, 1969; Rose 
et al., 1971; Edmonds et al., 1972; Lovrekovich et al., 1972; Jones et al., 
1974; Duncan and Booth, 1975; Bruun et al., 1976; Fyfe et al., 1984; 
Schable et al., 1986). Furthermore, as multi-drug resistant bacterial 
infections are becoming more frequent and more difficult to treat, the 
high specificity of eCISs, specifically R-tailocins, has interesting 
potential for medical applications in the treatment of nosocomial 
P. aeruginosa infections. R-tailocins have been used in murine models 
infected with P. aeruginosa and were found not only to protect the 
mice from infections, but also to reduce mortality as well as treat the 
infection (Merrikin and Terry, 1972; Haas et al., 1974; Williams, 1976; 
Scholl and Martin, 2008; Redero et al., 2020).

Recent studies have placed their efforts in re-engineering eCISs to 
modify and/or broaden their spectrum of activity, which brings hope 
for new treatment of multi-drug resistant pathogenic bacteria 
(Williams et  al., 2008; Scholl, 2017; Alqahtani et  al., 2022; 
Bhattacharjee et  al., 2022). Indeed, recombinant R-tailocins with 
modified tail fibers and new target specificities have been used to treat 
P. aeruginosa infected wounds in mice (Alqahtani et al., 2021), to 
reduce diarrhea and intestinal inflammation caused by 
enterohemorrhagic Escherichia coli in a rabbit model of infection 
(Ritchie et al., 2011), and to prevent intestinal colonization of mice by 
the pathogen Clostridium difficile (Gebhart et al., 2015). Furthermore, 
PVC-type eCIS particles known for their ability to transport toxins 
that target insect cells, were recently repurposed as designable protein 
delivery system by re-engineering tail fiber domains and by exploiting 
a signal sequence required for loading of cargo proteins onto the 
device (Jiang et al., 2022; Kreitz et al., 2023). The engineered eCIS-
based protein delivery platform enabled functional delivery of 
proteins of choice to desired cell types, as demonstrated by delivery of 
various cargos including Cas9, base editors, and toxins, to human cells 
(Kreitz et al., 2023) and of an antitumor drug in an effort to treat 
cancerous mouse models (Jiang et al., 2022).

Biotechnological applications of these particles have also been 
tested in the agricultural field to assess their usage in the treatment 
against plant pathogens, creating a potential alternative to 
commonly used chemical pesticides. An R-tailocin from 
P. fluorescens SF4c targets, besides different Pseudomonas strains, 
also an isolate of the phytopathogen Xanthomonas vesicatoria that 
causes bacterial leaf spot disease in tomato cultivars (Fernandez 
et al., 2017; Príncipe et al., 2018). Application of the R-tailocin 
reduced Xanthomonas infection on both leaves and tomato fruits 
(Príncipe et  al., 2018). Similarly, prophylactic application of 
R-tailocins prevented leaf infections caused by P. syringae pv. 
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syringae B728a in Nicotiana benthamiana tobacco plants (Baltrus 
et  al., 2022). The highly selective removal or control of target 
bacteria within complex microbial communities through the 
action of phage tail-related particles opens the possibility of using 
them as a specific tool to achieve microbiome engineering and 
treat dysbiosis that can lead to disease.

Thus, phage tail-related particles are not only beneficial for the 
producing bacterial strain, but can also be  used for different 
biotechnological applications. Major challenges will be to identify the 
specific spectra of different eCISs, their formulation, their application 
and combination with other means to control pathogens. As more 
studies explore the structures, mechanisms of action and activity 
spectra of these particles, the knowledge of how they can be harnessed 
and altered will also increase to benefit different fields.

Conclusion

Extracellular CISs are widely distributed phage tail-like 
structures harbored in a variety of Gram-negative and Gram-
positive bacteria and archaea inhabiting diverse environments. 
Although they are evolutionarily related to phages, their study has 
revealed a distinct and independent role from that of phages. 
Extracellular CISs influence microscale interactions between 
microorganisms. In the context of a microbiota, eCISs may have a 
complementary role to antimicrobial secondary metabolites, T6SSs 
and other bacterial weapons helping the establishment of localized 
micro-communities. Extracellular CISs could influence the 
interactions within this micro-community and beyond by shaping 
the structure of the entire microbiota and by influencing 
spatiotemporal community dynamics. Indeed, eCISs can influence 
bacterial evolution through arms-race dynamics, leading to simple 
and complex resistance mechanisms, and by making eDNA and 
nutrients available as community goods. Extracellular CISs also can 
also promote interactions with eukaryotic hosts, either beneficially 
for symbionts or detrimentally for pathogens. Finally, eCISs have 
great potential for biotechnological applications in different fields 
ranging from medicine to agriculture.

Nevertheless, relatively little has been done to better 
understand the ecological role of eCISs in modulating bacterial 
evolution and ecology. Therefore, future research should investigate 
the ecological role of eCISs, focusing on the different advantages 
that these structures may provide to the producer bacteria and 
their environment, while addressing the challenge of combining 
meta-omics with spatial biology in complex systems. This will 
benefit a better understanding of the role of eCISs within bacterial 
communities and how these devices can be  implemented as 
biotechnological tools.
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