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The volatility of metabolites can influence their biological roles and inform

optimal methods for their detection. Yet, volatility information is not readily

available for the large number of described metabolites, limiting the exploration

of volatility as a fundamental trait of metabolites. Here, we adapted methods

to estimate vapor pressure from the functional group composition of individual

molecules (SIMPOL.1) to predict the gas-phase partitioning of compounds

in different environments. We implemented these methods in a new open

pipeline called volcalc that uses chemoinformatic tools to automate these

volatility estimates for all metabolites in an extensive and continuously updated

pathway database: the Kyoto Encyclopedia of Genes and Genomes (KEGG)

that connects metabolites, organisms, and reactions. We first benchmark the

automated pipeline against a manually curated data set and show that the same

category of volatility (e.g., nonvolatile, low, moderate, high) is predicted for 93%

of compounds. We then demonstrate how volcalc might be used to generate and

test hypotheses about the role of volatility in biological systems and organisms.

Specifically, we estimate that 3.4 and 26.6% of compounds in KEGG have high

volatility depending on the environment (soil vs. clean atmosphere, respectively)

and that a core set of volatiles is shared among all domains of life (30%) with

the largest proportion of kingdom-specific volatiles identified in bacteria. With

volcalc, we lay a foundation for uncovering the role of the volatilome using an

approach that is easily integrated with other bioinformatic pipelines and can be

continually refined to consider additional dimensions to volatility. The volcalc

package is an accessible tool to help design and test hypotheses on volatile

metabolites and their unique roles in biological systems.

KEYWORDS

bioinformatics, chemoinformatics, metabolic database, VOCs, volatile metabolite,
volatility

1 Introduction

Life is based on metabolic processes that produce and transform compounds and
some of these metabolites are volatile under typical environmental conditions. Volatile
compounds tend to remain in the gas phase rather than condense, and this tendency is
represented by their higher vapor pressure (Finlayson-Pitts and Pitts, 1986). While the
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volatility of some metabolites may be widely appreciated [e.g.,
carbon dioxide (CO2), isoprene (C5H8)], volatility information is
not readily available for most metabolites and is often overlooked
(Meredith and Tfaily, 2022). The inability to broadly predict
the volatility of metabolites cycled by organisms is problematic
because volatility is a key characteristic that influences how
metabolites behave. Gas-phase metabolites diffuse more readily
across cellular membranes and between interacting organisms
than their condensed counterparts. Therefore, volatile metabolites
influence wider regions, for example by extending the rhizosphere
zone beyond local rhizodeposits (de la Porte et al., 2020; Raza et al.,
2021) and connecting aquatic to terrestrial ecosystems (Fink, 2007),
which facilitates important ecological roles in signaling, defense,
and other organismal interactions (Bennett et al., 2012; Pierik et al.,
2014). In addition, detecting the suite of volatile metabolites in
a system (i.e., the “volatilome”) may require alternative sampling
and analytical approaches from standard metabolomics pipelines
that are biased against volatiles (Rowan, 2011; Honeker et al., 2021;
Meredith and Tfaily, 2022). Inclusion of volatility as a fundamental
trait of metabolites can help better account for the roles of gas-phase
metabolites and improve their detection.

We currently lack tools to broadly predict metabolite volatility,
and current databases of volatile metabolites face some limitations.
Volatile compound databases and lists have been compiled from
literature reports (Peñuelas et al., 2014; Abdullah et al., 2015;
Lemfack et al., 2018; Karim et al., 2020; Yáñez-Serrano et al.,
2021). Most focus on volatile organic compounds (VOCs) and
only variably include volatile inorganic compounds [e.g., CO2,
carbon disulfide (CS2), hydrogen (H2), carbonyl sulfide (OCS)]
although they share intimate metabolic connections with organic
compounds. The microbial VOC database (mVOC 3.0) contains
reports of>2,000 bona fide volatile metabolites released by>1,000
bacteria and fungi aggregated from the literature (Lemfack et al.,
2018). The database has been used to explore the diversity of
microbial volatiles and their specificity to selected taxonomic
groups (Schenkel et al., 2015). Still, these databases and lists have
some limitations for broad application. For example, metabolite
volatility information is included in the mVOC 3.0 database but
requires searching by individual compounds via a web interface. In
general, databases collating reports of volatile compound emissions
are specific to the cultivated organisms, growth conditions,
and detection approaches. Moreover, most databases contain
information on metabolite production but not consumption,
despite the prevalence of volatile compound uptake in biological
systems such as soil (Rinnan and Albers, 2020). In contrast to
these volatile-specific databases, extensive databases exist that
are constantly updated for metabolites, regardless of volatility.
For example, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa and Goto, 2000) contains vast numbers of
compounds related to biological systems (>19,000 in KEGG)
that are interconnected via metabolic maps. The KEGG database
represents a cornerstone for inference into the roles of metabolites,
genes, pathways, and organisms in biological systems. For example,
multi-omics datasets (e.g., metabolomics, metagenomics) have

Abbreviations: RVI, relative volatility index; VOC, volatile organic compound;
IMF, intermolecular forces; QSPR, quantitative structure-property
relationship.

been linked via KEGG to describe the sensitivity of soil and
rhizosphere microbial metabolism to drought (Honeker et al., 2022;
Hildebrand et al., 2023), including enhanced carbon allocation to
specific volatile metabolites measured in the gas phase (i.e., acetone,
acetate, and diacetyl) (Honeker et al., 2023). Moreover, KEGG
contains pathways that include known volatile compounds (e.g.,
monoterpenes in map00902 Monoterpenoid biosynthesis; methane
and methanol in map00680 Methane metabolism). If the volatility
of compounds in extensive metabolite databases like KEGG could
be predicted, it would provide new tools to systematically evaluate
the prevalence and role of volatile metabolites.

Chemoinformatic resources exist to link metabolites to their
molecular structures, creating an opportunity to build pipelines
to estimate metabolite volatility from molecular parameters.
Specifically, these quantitative structure-property relationship
(QSPR) models can estimate the impact of various functional
groups in a molecule on vapor pressure. For example, the
SIMPOL.1 method estimates vapor pressure based on the size of the
carbon backbone and the combined impact of functional groups
(e.g., rings, hydroxyl groups, amines) (Pankow and Asher, 2008).
This approach has been used to predict the vapor pressure of the
complex VOC chemistry in the atmosphere (Barley and McFiggans,
2010; O’Meara et al., 2014) wherein primary VOC emissions
chemically evolve (age) through diverse reactions to produce a wide
array of products with varying vapor pressure. The partitioning
of these compounds to the gas phase depends on their vapor
pressure and also the abundance of nearby condensed organic
compounds (e.g., atmospheric aerosols) (Donahue et al., 2006). We
recently adapted this approach to calculate the relative volatility
of metabolites across several metabolic pathways through manual
evaluation of molecular carbon content and functional groups
(Honeker et al., 2021; Meredith and Tfaily, 2022). However, manual
evaluation of the functional group profiles of individual molecules
is time consuming and infeasible for estimating volatility for the
tens of thousands of compounds present in pathway databases.

Here, we move past these barriers and present volcalc—an
automated, systematic, and scalable chemoinformatics pipeline to
predict metabolite volatility from critical parameters in molecular
structure files associated with every compound in the extensive
KEGG database of biological pathways. With this pipeline, we
aimed to automate metabolite volatility prediction to eliminate the
time and variability of manually evaluating individual molecular
functional group profiles, providing a more direct means for
integrating metabolite volatility with known metabolic pathways,
organisms, and genes. First, we adapted the volatility calculations
by updating functional group terms to reflect those commonly
found in metabolites and estimated volatility in reference to the
atmosphere. We then created a R package, volcalc, to estimate
volatility for individual chemical compounds or all compounds
within a pathway and benchmarked its performance against
a custom database of manually calculated metabolite volatility.
After improving and validating the method, we demonstrate
how the volatility estimation pipeline can be used to generate
and test biological questions including: (1) How prevalent are
volatile metabolites? (2) How variable is volatility across different
pathways? and (3) Which volatile metabolites are shared or
unique across specific organisms? These examples demonstrate
the practicality of this scalable, open-access pipeline, which can
seamlessly integrate into various bioinformatic workflows. This
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pipeline opens up new opportunities to understand metabolite
volatility as an important characteristic that influences the behavior
of biological systems and the detectability of the processes therein.

2 Methods

2.1 Metabolite volatility calculation

We estimated metabolite volatility by adapting tools that
predict vapor pressure (Pankow and Asher, 2008) and estimate
the partitioning of atmospheric chemicals between the gaseous and
condensed phases (Donahue et al., 2006), building on the approach
we first described in Honeker et al. (2021). Detailed discussions of
properties of and factors affecting volatility are described elsewhere
in gas-particle partitioning literature (Hilal et al., 2003; Nannoolal
et al., 2008; Compernolle et al., 2011; Tang et al., 2019). Here, we
estimate differences in the relative volatility between biologically-
relevant molecules under standard conditions (i.e., temperature
and pressure) against their tendency to condense on dry sorbent
material.

For each metabolite, we calculate the vapor pressure (P;
atm) using the SIMPOL.1 method (Pankow and Asher, 2008),
which determines overall compound volatility from the relative
contribution of common functional groups using the following
equation:

log10P = b0 +
∑
k

vkbk

for functional groups k = 1, 2, 3. . ., where b0 is a constant,
bk is the functional group contribution term for group k, and
v is the number of groups of type k in the compound. In this
calculation, each vapor pressure estimate starts with a constant
value (b0 = 1.79). This estimate is then proportionally reduced
by the number of carbon atoms (v1) in the compound in
question, representing the tendency for volatility to decrease
with overall molecular size (each carbon atom decreases the
value by b1 = −0.438). The estimated vapor pressure is further
modified based on the functionalization of the compound, where
additive contributions of molecular functional groups (k = 2,
3, 4. . .) such as hydroxyl (-OH), carboxylic acid (-C[O]OH),
ketone (O = O), carbon double bond (C = C), and aromatic
ring, which each decrease P to a different degree (Table 1)
based primarily on (Pankow and Asher, 2008). Some functional
groups strongly reduce volatility (e.g., carboxylic acid (-C[O]OH),
b10 = −3.58), while others have intermediate [e.g., ketone (O = O),
b9 = −0.935] or minor impacts [e.g., carbon double bond (C = C),
b5 = −0.1], and one group may slightly enhance volatility (i.e.,
nitrophenol, b5 = 0.0432). Contribution terms were missing
in Pankow and Asher (2008) for functional groups commonly
found in metabolites such as phosphate groups, which play
critical biological roles (e.g., energy transfer, protein activation,
membranes). We assumed similar contribution terms to functional
groups with related chemical profiles and added nine new
contribution terms to the calculation based on similarities in
molecular structure to known terms (see term assumption in
Table 1). We did not encode contributions from seven groups
described by Pankow and Asher (2008) either because of their
complexity to identify (e.g., C = C-C = O in non-aromatic ring,

b6) or their limited relevance to KEGG metabolic pathways (e.g.,
carbonylperoxynitrate, b25).

While the SIMPOL.1 approach has been estimated to have an
error approximately one order of magnitude in vapor pressure
in either direction (Barley and McFiggans, 2010), it only requires
the list of functional groups in a molecule but not full structural
detail of the molecule. This makes it relatively easy to compute
vapor pressure compared to full structural methods and pairs well
with high resolution mass spectrometer data, which can obtain
elemental formulas but not structural information.

We used the vapor pressure (P) estimates to predict the
volatility of metabolites by comparing their relative tendency to
partition to the gas vs. condensed phase. Compound partitioning
(ξ ) to the gas phase increases with saturation vapor pressure
(C∗), which is by convention converted to mass-based saturation
vapor concentration (µg m−3) and accounts for molecular mass.
Specifically, we calculated C∗ from P using the ideal gas law
[log10C∗ = log10(PM/RT), where M is molecular mass, R the
universal gas constant, and T temperature] (O’Meara et al., 2014),
without applying modifications for the intermolecular interactions
of non-ideal compounds (i.e., van der Waal equation) that are
relatively minor under ambient pressure (few percent) compared
to variations in vapor pressure [e.g., 14 of orders of magnitude
(Pankow and Asher, 2008)]. In the atmosphere, the degree that
a compound partitions to the gas phase [ξ i = 1/(1+Ci

∗/CTotal)]
depends on the total availability of condensed-phase organic
molecules (e.g., total aerosol; CTotal) (Donahue et al., 2006). As a
result, the same compound will appear less “volatile” in a polluted
atmosphere with greater partitioning on high aerosol loadings.

Here, we calculate a relative volatility index (RVI) using log10C∗

(RVI = log10C∗) as the volatility scale, with the understanding
that the ultimate gas phase partitioning will differ between
environments, even in the same ecosystem component (e.g., gas-
filled soil pores vs. soil-atmosphere interface). The advantage of
evaluating RVI is that it can be used to compare metabolite
volatilities relative to one another irrespective of the environment.
Thresholds for volatility can be defined based on gas-phase
partitioning in different environments. In a clean atmosphere,
lower thresholds for low, moderate, and high volatility are on the
order C∗ = 0.01 µg m−3, 1 µg m−3, and 100 µg m−3, respectively,
or more conveniently on a log scale: log10C∗ = −2, 0, and 2.
The partitioning of compounds between condensed organic matter
and gas phases will differ in other environments. For example,
the volatility indices used here are derived from Donahue et al.
(2006) for a clean atmosphere with relatively low concentrations
of organic particulate matter available for partitioning (∼ 1 µg
m-3). A polluted atmosphere such as a highway with high
particulate concentrations (e.g. cooled fresh exhaust emissions)
would have greater amounts of organic particulates, which would
shift the RVI so that high and moderate volatility thresholds
would be at 2 and 4, respectively (versus clean air at 0 and
2) (Donahue et al., 2006). These thresholds can be adapted
for the environment of interest, and here we integrated these
approaches to estimate vapor pressure and gas-phase partitioning
to predict the volatility (RVI) of metabolites relative to the
atmosphere.

First, we used this approach to manually calculate volatility of
metabolites and generate a benchmarking database (Section 2.2).
Second, we embedded the approach in a chemoinformatics pipeline
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TABLE 1 Functional groups included in volatility estimation including inclusion in manual or automated databases, assumed contribution term, and
source of contribution term.

Functional
group

Structure
representation

example

In manual
database

Automated count
method (specific
function)

Contribution
term (bk)

Term source
or assumption

k

Carbon number Cx Yes ChemmineR (atom count) −0.438 Pankow and Asher 1

Aromatic ring Yes ChemmineR (rings) −0.675 Pankow and Asher 3

Non-aromatic ring Yes ChemmineR (rings) −0.0104 Pankow and Asher 4

Carbon double bond Yes ChemmineR (conMA) −0.105 Pankow and Asher 5

Hydroxyl group Yes ChemmineR (groups) −2.23 Pankow and Asher 7

Aldehyde Yes ChemmineR (groups) −1.35 Pankow and Asher 8

Ketone Yes ChemmineR (groups) −0.935 Pankow and Asher 9

Carboxylic acids Yes ChemmineR (groups) −3.58 Pankow and Asher 10

Ester Yes ChemmineR (groups) −1.20 Pankow and Asher 11

Ether No SMARTS and ChemmineR
(smartsSearchOB)

−0.718 Pankow and Asher 12

Ether (non-
aromatic/alicyclic)

Yes None −0.683 Pankow and Asher 13

Ether (aromatic) Yes None −1.03 Pankow and Asher 14

Nitrate R – ONO2 Yes SMARTS and ChemmineR
(smartsSearchOB)

−2.23 Pankow and Asher 15

Nitro Yes SMARTS and ChemmineR
(smartsSearchOB)

−2.15 Pankow and Asher 16

Phenol Yes SMARTS and ChemmineR
(smartsSearchOB)

−2.14 Pankow and Asher 17

Amine primary Yes ChemmineR (groups) −1.03 Pankow and Asher 18

Amine secondary Yes ChemmineR (groups) −0.849 Pankow and Asher 19

Amine tertiary Yes ChemmineR (groups) −0.608 Pankow and Asher 20

(Continued)
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TABLE 1 (Continued)

Functional
group

Structure
representation

example

In manual
database

Automated count
method (specific
function)

Contribution
term (bk)

Term source
or assumption

k

Amine aromatic Yes None −1.61 Pankow and Asher 21

Amide No SMARTS and ChemmineR
(smartsSearchOB)

−2.23 Same as nitrate;
Rationale 1

22

Peroxide Yes SMARTS and ChemmineR
(smartsSearchOB)

−0.368 Pankow and Asher 26

Hydroperoxide Yes None −2.48 Pankow and Asher 27

Nitrophenol Yes None 0.0432 Pankow and Asher 29

Nitroester R-ONO2 Yes None −2.67 Pankow and Asher 30

Phosphoric acid H3PO4 No SMARTS and ChemmineR
(smartsSearchOB)

−2.23 Same as nitrate;
Rationale 1

Phosphoric ester No SMARTS and ChemmineR
(smartsSearchOB)

−2.23 Same as nitrate;
Rationale 1

Phosphate R – PO4 No None −2.23 Same as nitrate;
Rationale 1

Sulfate R – SO4 No SMARTS and ChemmineR
(smartsSearchOB)

−2.23 Same as nitrate;
Rationale 2

Sulfonate R – O3S No SMARTS and ChemmineR
(smartsSearchOB)

−2.23 Same as nitrate;
Rationale 2

Thiol No SMARTS and ChemmineR
(smartsSearchOB)

−2.23 Same as hydroxyl
group: Rationale 3

Carbothioester No SMARTS and ChemmineR
(smartsSearchOB)

−1.20 Same as ester;
Rationale 3

Rationale 1: Similarities in the molecular structure between group 15 atoms (P and N) may lead to similar relative contribution terms as documented in other structure-activity relationship
models such as (Nannoolal et al., 2008). Rationale 2: Similarities in the molecular structure between heteroatoms (S and N) and resonant oxygen bonds may lead to similar relative
contribution terms. Rationale 3: Similarity in the contributions of the same functional groups bonded to different atoms (C and S).

to automate the recovery of metabolite volatility of compounds in
the KEGG database (Kanehisa and Goto, 2000) and validated that
approach (Section 2.3).

2.2 Manually curated metabolite volatility
database

We constructed a database of individually calculated metabolite
volatilities to evaluate the prevalence of volatile metabolites in
specific pathways (Honeker et al., 2021; Meredith and Tfaily,
2022). In total, we used the volatility calculation approach to
determine RVI for 474 compounds by evaluating individual
molecular structures. The metabolites were drawn from nine

metabolic pathways from the KEGG (00130, 00290, 00300, 00361,
00620, 00623, 00640, 00643, 00902, and 00904) (Supplementary
Table 1). We focused primarily on metabolic pathways that we
expected would have a high proportion of volatile metabolites (e.g.,
monoterpenoid biosynthesis, diterpenoid biosynthesis, toluene
degradation). Compounds in the database (Supplementary Table
2) ranged in mass from 31.0571 Da (methylamine; C00218)
to 1193.9458 Da (UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-
6-carboxy-L-lysyl-D-alanyl-D-alanine; C04882) and in RVI from
+9.73 (propane, C3 alkane; C20783) to −33.69 (isomaltose C24
sugar; C21659), excluding six compounds with inflated RVI due
to manual calculation errors that overlooked n monomer repeats
(C00828, C05819, C05847), multiple functional groups (C04877,
C04882), and undefined R groups (C05535).
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FIGURE 1

Conceptual flow of the volcalc pipeline.

2.3 Development and improvement of
automated volatility pipeline

To automate metabolite volatility predictions we built a
chemoinformatic pipeline centered on the KEGG metabolic
database (Kanehisa and Goto, 2000), which contains 19,048
compounds and 562 pathway maps linked to 25,555 KEGG
orthology (KO) groups and 8,630 KEGG organisms (statistics as
of 14 Feb 2023). As an overview, the pipeline starts from KEGG
compound(s) or pathway(s), determines the molecular structure
and counts functional groups, predicts the vapor pressure using
the group contribution information, and calculates the RVI and
volatility category for each compound (Figure 1).

We created a package in the R programming language called
volcalc that can automatically estimate volatility for either a single
chemical compound available in KEGG or for all of the compounds
in a metabolic pathway in KEGG. The package is available for
use at https://meredith-lab.github.io/volcalc/ and is actively under
development. We used volcalc version 1.0.2 (Riemer and Scott,
2023) for all development and integration in this paper. The
three steps to estimate volatility are analogous to the manual
computation approach (Section 2.2): (1) a file that describes the
molecular structure of each compound is downloaded, (2) the
functional groups relevant to volatility are counted from the file,
and (3) the functional groups counts are used to calculate volatility
for the compound using the SIMPOL.1 method (Pankow and
Asher, 2008).

The compound files are downloaded as .mol files from the
KEGG database using tools from the open source KEGGREST R
package (Tenenbaum, 2021). These .mol files contain consistently
structured information about the composition and spatial structure
of chemical compounds. The user inputs a KEGG ID for a
compound or pathway to obtain these files.

The volcalc R package determines counts for 24 functional
groups for each compound (Table 1). All of these functional

groups are counted using functions in the ChemmineR R package
(Cao et al., 2008) with the functions specified in Table 1. For
12 functional groups, we had to determine their corresponding
SMARTS strings and, in combination with a ChemmineR function,
count groups from compound .mol files. SMARTS is a language
used to describe compound substructures, and we retrieved our
needed strings from the Daylight Chemical Information Systems
(Laguna Niguel, CA).1 We could not determine functional group
counts for seven functional groups (Table 1) because they were
unidentifiable by ChemmineR and have no readily available
SMARTS string template, though there were no occurrences of
three of these groups (hydroperoxide, nitrophenol, nitroester) in
the manually counted database, and counts for these groups were
set to zero. Compound mass came from the KEGG database
(molecular weight). From differences in volatility between the
automated and manual approaches, we discovered that some
functional groups were double counted (e.g., a single aromatic ring
being counted twice as a non-aromatic and an aromatic ring), and
we assigned rules to (Table 2) correct functional group counts
accordingly.

Functional group counts and mass were used to determine
volatility for each compound with the SIMPOL.1 method (Pankow
and Asher, 2008) (Section 2.1) and contribution terms for each
functional group (Table 2). We included ten functional groups
in the automated method that were not in the manual database
(sources for the contribution terms given in Table 2). Each
compound was also assigned a category for volatility using the
clean atmosphere as the environmental context. Thresholds for
these categories were as follows: nonvolatile (< −2), low volatility
(−2–0), moderate volatility (0–+2), and high volatility (>+2).

The methods in the volcalc R package were developed
iteratively, by comparing volatility values and categories estimated
using the automated values for the 474 compounds to those in
the manual database. The most substantial improvements in the
pipeline were adding in SMARTS strings to count functional
groups, adjusting overcounting from the ChemmineR functions for
some functional types (Table 2), and adding additional functional
groups that were not counted in the manual database (Table 1).
These comparisons are available in Supplementary Table 3.

The R package is intended to provide an automated and
reproducible method for efficiently and accurately predicting
volatilities of individual compounds, as well as compounds
associated with a specific pathway. This package includes a test suite
and documentation.

2.4 Integration with KEGG organisms,
genes, and KOs and data analysis

To demonstrate the potential to integrate volcalc with other
KEGG datasets, we predicted the volatility of each compound in
the KEGG database (Supplementary Data Sheet 1) and generated
volatility profiles for each KEGG pathway (Supplementary Data
Sheet 2) and organism. We collated a database of all KEGG
orthologs (KOs), enzymes, reactions, and compounds (as of 14 Feb

1 https://www.daylight.com/
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TABLE 2 Key rules for adjusting functional groups counts with ChemmineR output.

Case Rule Justification

Rings Subtract aromatic ring from ring Similar functional structures were being counted as both a
ring and aromatic ring. Aromatic ring counts were more
accurate, so those are counted in favor

Additional functional groups on a functionalized
ring (e.g., -OH groups on a phenol ring)

If there’s more than one present, divide number by
two and subtract by (hydroxyl - 1)

Avoid double counting of phenols and hydroxyl groups

Hydroxyl groups Subtract phenol from hydroxyl group Avoid double counting of phenols and hydroxyl groups

Carbon double bonds Subtract aromatic rings times 3 from carbon
double bonds

Three double bonds of aromatic rings were being counted as
carbon double bonds

Phosphoric acids/esters Subtract phosphoric ester from phosphoric acid Similar functional structures were being counted as both
phosphoric acid and phosphoric ester. Because they have
same coefficient, count only one of the two

2023) into a single database (DOI: 10.25422/azu.data.24446770).
We used the R package KEGGREST to create a list of all compounds
in the KEGG database and the R volcalc package function calc_vol
to predict the volatility for each compound. We used KEGGREST
to link each KO to its related enzymes, reactions, and compounds
and merged these datasets to generate a database of every KO
with an associated enzyme, each reaction those enzymes participate
in, each compound listed in those reactions, and volcalc-derived
information regarding the volatility of those compounds. To assess
organism-level associations with volatile compounds, we used
KEGGREST to generate a list of all KEGG organisms and the list
of KOs associated with each organism, thereby generating unique
metabolic profiles for each organism. We filtered this list against
the database produced above, creating a list of KEGG organisms,
their functional gene content, the compounds associated with those
genes, and the volatility of those compounds. To evaluate high-
quality genomes that capture the diversity of species in KEGG, we
identified volatile-related genes on a subset of 973 KEGG organisms
from the 975 chosen in Schulz and Almaas (2020) (two genomes
were not accessible through KEGGREST). We categorized the
organismal distribution of each gene-linked compound based on
its associations with at least one organism in each kingdom. We
pulled all pathway maps in KEGG and their associated compounds
using KEGGREST and filtered these against the original compound
dataset to generate a list of all pathways, associated compounds, and
their volatility information. We performed all statistics in Rstudio.

3 Results

3.1 Pipeline performance benchmarked
against manual database

The automated pipeline produced RVI estimates for 98% (461
of 470) of compounds in the manual database. RVI estimates
could not be determined for 9 compounds because they lacked
a molecular mass in the KEGG database due to “n” monomer
repeats and undefined “R” groups. The automated pipeline
predicted compound RVIs that were identical (14%; 65 out of 461
compounds) or similar (75% within 0.5 units–one quarter of a
2-unit volatility category bin; 344 out of 461 compounds) to the
manual database, and generally the two methods agreed, especially
for volatile compounds (Figure 2A).

Differences in RVI estimates between the two methods were
due to various differences in functional group counts. For the 24
functional groups that were counted by both methods (Table 1),
>50 compounds (11%) differed in their functional group counts
for rings, carbon double bonds, hydroxyl groups, or aromatic rings.
The compounds with the greatest difference in RVI estimates had
multiple differences in functional group counts. For example, the 49
compounds that had differences in RVI greater than 1 had different
counts for 21 different functional groups, and the five compounds
with RVI differences greater than 10 each had differences in nine or
more functional groups.

We used these mismatches to diagnose and correct issues in the
automated pipeline and its key calculation rules (Table 2), but also
identified cases of human errors in the manual calculation database
such as inconsistent avoidance of functional group double counting
(e.g., ring and aromatic ring) or overlooking molecular components
that are abbreviated in KEGG (e.g., acetyl-CoA groups) that led to
the biggest mismatches (Figure 2A). Direct comparison between
the two methods was challenging because they did not account
for all the same functional groups. Six groups were not counted
in the automated pipeline because they lacked a method for
detection (Table 1), but only three of these groups were actually
present in compounds in the comparative database (i.e., alicyclic
ethers, aromatic amines, and aromatic ethers). We added nine
additional functional groups to the automated pipeline that were
not accounted for in the initial methods underlying the manual
approach, but only six of these functional groups (i.e., ethers,
amines, phosphoric esters, amides, carbothioesters, phosphoric
acids) were actually present in the compounds. Importantly, despite
these differences, the two methods resulted in assignment of the
same volatility categories (non, low, moderate, and high) for nearly
all compounds (96%; 442 of 461 compounds) (Figure 2B).

3.2 New capabilities to assess trends in
volatility across and beyond the KEGG
database

We evaluated the prominence of VOCs in the KEGG database
to demonstrate the potential of the volcalc biochemoinformatic
pipeline for data mining and hypothesis generation. We
successfully calculated the RVI of 16,587 of the 19,119 compounds
(∼87%) in KEGG using the command calc_vol in the volcalc
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FIGURE 2

Automated volcalc pipeline performance benchmarked against manual calculations. (A) Quantitative predictions of RVI were similar (blue), i.e.,
within 0.5 units, between the automated and manual method and were not statistically different from each other (Wilcoxon test, p-value = 0.085),
despite some mismatches (red). Errors in manual RVI estimation of five compounds (C04877, C04882, C00512, C09819, and C09820) was the cause
of the largest outliers. (B) The majority of compounds were predicted to belong to the same volatility category (low, moderate, and high) by both
approaches.

package. Those that were unable to be calculated included: those
with incomplete data such as a missing mass or formula (e.g.,
C00028, hydrogen acceptor), an “n” subscript, or a nonspecific
“R” group (e.g., CH3OR, primary alcohol). We discovered that the
distribution of calculable metabolite volatility in KEGG was largely
nonvolatile (49.8%; n = 8,345), but still with significant proportions
of low (12.4%; n = 2,052), moderate (10.7%; n = 1,778) and high
(26.6%; n = 4,412) volatility based on RVI cutoffs for the clean
atmosphere (Figure 3A).

We evaluated the distribution of volatility across the
compounds in KEGG pathways. For each pathway, we determined
the total number of compounds, percentage of compounds
with a calculated RVI, and the median compound RVI for
each pathway. Of the 449 pathways containing compounds
in KEGG, the median percentage of compounds that volcalc
returned a RVI value was ∼83%. Thirty-two of the pathways
had no compounds with a calculable volatility. These pathways
were small (containing two compounds on average) and highly
specific. For example, map01521 (EGFR tyrosine kinase inhibitor
resistance) only contains the compounds diacylglycerol and
phosphatidylinositol-3,4,5-trisphosphate and both contain a
nonspecific “R” functional group. We calculated the volatility
of 100% of compounds in 138 pathways. These included larger
pathways, such as map01250 (biosynthesis of nucleotide sugars),
which contains 200 compounds. To exemplify variability in the
distribution of compound RVIs within different pathways, we
compared three pathway maps representing a majority of volatile
to nonvolatile distributions of compound RVIs (Figure 3B).

We used KEGG’s features as an “encyclopedia of genes and
genomes” to draw associations between organisms and volatile
metabolites, revealing variability in the distribution of volatiles
across all life (Figure 3C; Supplementary Table 4). Of the 1,124
volatile metabolites identified linked to the subset collection of 973
organisms in KEGG, 30% were associated with at least one gene
across kingdoms. This highlights a set of highly conserved volatiles
which may be associated with core biotic functions. Seventy-eight
volatiles were found in at least 90% of organisms and included
compounds such as ammonia, water, and formate. Conversely,
9% of KEGG volatiles were found to be only associated with

plants, while prokaryotes are tied to 37% of unique KEGG volatile
compounds, mostly only within bacteria (27%). Overall, more than
half (62%) of the volatiles identified in this subset were associated
with less than 10% of organisms.

4 Discussion

4.1 New capabilities with volcalc

We present volcalc—a new tool to systematically estimate the
relative volatility of metabolites—that can be applied to single
compounds, all metabolites within a pathway, and even the entire
collection of metabolites (>19,000) in the KEGG database. The
relatively straightforward approach helps illustrate key factors
influencing metabolite volatility: functionality of the compound
and the environment in which it exists (Pankow and Asher, 2008).
The method itself can help build an intuitive sense for how
different functional groups may influence metabolite volatility,
as each contribution term “taxes” the volatility to a different
degree (Table 1), including newly added functional groups that are
uncommonly observed in atmospheric chemistry but are common
in metabolites.

Volcalc compares metabolites and their volatility on
a consistent basis (molecular structure). This may avoid
discrepancies in databases that draw volatility information from
a mixture of experimental and theoretical values and incomplete
chemical databases that are variably linked to metabolites
via chemical identifiers. This approach has shown promise
in standardizing volatility even through manual calculations
(Honeker et al., 2021; Meredith and Tfaily, 2022). Automating the
volcalc pipeline overcomes the limitations of manual calculations,
which are laborious and time consuming. The automated
pipeline resulted in comparable accuracy to manual calculations
(Figure 2), while avoiding human errors associated with large
manually-calculated databases. The tool can be run on all or
a few compounds in KEGG metabolic pathways or the entire
database, providing flexibility and scope and adaptability for
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FIGURE 3

Patterns in volatility among KEGG compounds, pathways, and organisms revealed by the volcalc pipeline. (A) Counts for all compounds with
estimated volatility in the KEGG database binned by RVI. (B) Distribution of RVI values for compounds in three specific KEGG pathways: (map01040)
biosynthesis of unsaturated fatty acids; n total = 74, n volatility calculated = 69, median RVI = –27; (map01250) biosynthesis of nucleotide sugars; n
total = 200, n volatility calculated = 200, median RVI = –11; (map00625) chloroalkane and chloroalkene degradation; n total = 43, n volatility
calculated = 43, median RVI = 8.8. (C) Distribution of volatile metabolism across a subset of 973 KEGG genomes. Color indicates the number of
highly volatile compounds (total = 1,124) associated with at least one gene in an organism belonging to each kingdom group. Percentage represents
the fraction of volatile compounds that belong in each grouping.

updates of the KEGG database. Moreover, KEGG compound
IDs are interconvertible with other chemical identifiers (e.g.,
SMILES) using KEGGREST, providing a means to apply volcalc on
compound lists originating outside of KEGG, and they can be used
to pull additional chemical information from other datasets. We
release volcalc for free use under the MIT open source license2 that
is available to download and run in R. Volcalc therefore permits
scalable, open, and consistent predictions of metabolite volatility
that can be used to ask broad questions and generate hypotheses
that could not have been easily addressed otherwise.

Using volcalc, we demonstrate that volatile metabolites may
represent a significant fraction of cataloged metabolites. We
identify >4,000 candidate high volatility metabolites, which is
a similar order of magnitude to the >2,000 VOCs collated
in the extensive microbial VOC database (Lemfack et al.,
2018). Expanding our RVI estimates from a manual database
of 8 metabolic pathways known to contain volatiles (474 non-
redundant metabolites) (Meredith and Tfaily, 2022) to the entire
KEGG database (>19,000 compounds), we obtain similar estimates
of the percentage of volatile metabolites in the atmosphere (from
47 to 50%, respectively), revealing that volatile metabolites make
up a sizeable proportion of known metabolites across the diverse
pathways in life.

Volcalc generates volatility categories relative to the assumed
environmental thresholds and the estimated RVI values, allowing
the role of the local environment and its organic matter
on the partitioning of metabolites to the gas phase to be
considered. Critically, the partitioning of compounds between
organic condensed and gas phases will differ in other environments,
for example in clean versus polluted atmospheres or soils with

2 https://github.com/Meredith-Lab/volcalc

different amounts of organic matter. Thus, the volatility thresholds
can be adapted for the environment of interest. For example, soil
is an important reservoir of diverse organic compounds of varying
volatility (Honeker et al., 2021). While the large quantities of soil
organic matter (often ∼1% g C g−1 soil) would drive volatiles to
partition more preferentially to the condensed phase, the organic
matter is occluded in aggregates and is heterogeneously distributed
on surfaces, and theories linking total soil carbon to thresholds for
volatility in the subsurface have not been established. We assumed
thresholds in soil for low and high volatility could be as high
as 4 and 8, respectively, under a scenario where only < 0.1% of
the soil carbon is available for partitioning (Meredith and Tfaily,
2022), which would shift estimates for KEGG metabolite volatility
to 16.5 and 3.4%, respectively of the 16,587 compounds with
RVI calculations. Users of volcalc can adjust volatility thresholds
to reflect the availability of condensed organic matter in their
environments of interest and use the relative nature of the RVI
estimates (continuous data) to compare compounds irrespective of
environment.

Metabolic pathway maps are important resources for
relating metabolites to each other in biological systems and
inferring specific types of biological activity from the detection
of metabolites. Volcalc estimates the prevalence of volatiles
in pathways, revealing some that are dominated by volatile
compounds, while others are strictly nonvolatile (Figure 3B),
depending on the environmental conditions. Recognizing and
quantifying this variability is important for predicting whether
metabolites are undetected due to their absence or due to the
measurement biases against volatiles (Honeker et al., 2021).
Moreover, identifying pathway-dependent volatility trends can
help identify where approaches targeted toward measuring
volatile compounds might be particularly useful for monitoring
some biological functions that may be obscured from traditional
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metabolomics methods. Pathways with a high proportion of volatile
metabolites present an opportunity for biological monitoring using
non-invasive gas-phase volatilomics approaches (Meredith and
Tfaily, 2022).

Volcalc can be used to extrapolate volatile metabolism onto
particular genes and genomes to identify trends in volatile
metabolism across organisms. By linking all KEGG genes to
their associated enzymes and reactions, we associated genetics
and volatilomics across kingdoms. Current understanding of the
genetic component of volatile metabolism is extremely limited,
particularly in non-plant species. Using volcalc, we showed
that four times more volatile metabolites were identified to be
uniquely associated with prokaryotic species (37%) than those only
found in plants (9%) (Figure 3C). Therefore, this gene-centric
approach can be used to assess volatile metabolism distribution
among species and build understanding of widespread volatile
metabolism. The volcalc approach is complementary to volatile
metabolite databases, e.g., (Lemfack et al., 2018), which provides
confirmation of volcalc-predicted volatile-producing phenotypes
under particular growth conditions but requires manual retrieval
of compound information one at a time. Conversely, our
approach taps into all known metabolites, pathways, and
genomes in KEGG, and may better identify volatile-producing
genotypes and also volatile-consuming genotypes. Nevertheless,
we remain restricted to the known metabolites and pathways
that have been incorporated into KEGG. Still, even with the
potential biases in KEGG toward pathways, organisms, and
metabolites with industrial, medical, or environmental relevance
and organisms amenable to culturing (Albright and Louca,
2023), KEGG is one of the most comprehensive database of
current understanding of metabolism used across the biological
sciences. Volcalc is a useful tool for estimating the size and
diversity of the volatilome in different biological systems to
generate testable hypotheses that improve understanding of
the roles of volatile metabolites and design studies for their
detection.

4.2 Approximations and areas for growth

The automated volcalc method provides an estimation of
volatility, but it has several limitations. On a practical level,
the contribution terms for some functional groups found in
KEGG metabolites were not defined, and our assumptions
(Table 1) based on related molecular properties need to be
experimentally validated. For example, we assumed contribution
terms for phosphate-containing functional groups through analogy
to empirically derived values for nitrate groups and similar group
contribution terms in other approaches (Nannoolal et al., 2008).
Few P-containing compounds have been described in volatile
organic compound databases [e.g., 0–2% of compounds (Lemfack
et al., 2018; Pagonis et al., 2019; Yáñez-Serrano et al., 2021)],
although organic phosphorus compounds have been observed in
the gas phase (Li et al., 2020) in biological systems (11% of
compounds in KEGG). Moreover, contribution terms are not yet
included in volcalc for all heteroatoms including halides, metals,
and some nonmetals (e.g., selenium) that make up a minor fraction

of metabolites. In some cases, it was difficult to definitely categorize
or precisely count the functional groups of complex molecular
structures (e.g., bridged rings) and interacting functional groups
(e.g., phenol rings with a second hydroxyl group). These factors led
to uncertainty in both the manual database and automated volcalc
pipeline. Moreover, the manual database contained human errors
and the automated pipeline had some limitations to functional
group counting with the tools available (chemmineR/SMILES).

Volatility itself is not defined by a single numerical quantity,
but can be described using vapor pressure, boiling point,
Henry’s law constants, solubility or a combination thereof. We
use the SIMPOL.1 method that estimates vapor pressure from
the number and type of functional groups in a molecule
to account for intermolecular forces along with molecular
weight, which are primary contributing factors to volatility.
This straightforward QSPR model does not take into account
most higher-order interactions between complex arrangements of
groups within a molecule (e.g., intramolecular hydrogen-bonding,
dipole moments) or whether a molecule is charged and their
possible integrated influence on intermolecular forces (IMF).
Increasing IMFs tend to reduce volatility, and the SIMPOL.1
approach may overestimate volatility for compounds with these
IMFs. Indeed, like other group contribution methods, SIMPOL.1
overestimates the vapor pressure of compounds with multiple
hydrogen-bonding groups (O’Meara et al., 2014) such as amino
acids (e.g., leucine, serine). Overall, error in the SIMPOL.1
method imparts approximately a 1-unit uncertainty in RVI in
either direction. While SIMPOL.1 is a reliable and quick method
for volatility estimates, there may be particular instances where
alternatives may be required to estimate more accurate vapor
pressures.

In volcalc, we use predicted vapor pressure to calculate RVI
that are then used to compare to partitioning thresholds and
estimate the degree to which compounds partition to the gas
phase (i.e., resist condensing) in a given environment. An RVI
is useful for comparing the relative propensity for partitioning
between compounds, but as calculated it currently makes this
comparison under standard conditions, for gas-partitioning onto
dry material, and with the ideal gas law. SIMPOL.1 has the
framework to project vapor pressure at non-standard temperature,
however, the temperature sensitivity of group coefficients have not
been defined (Pankow and Asher, 2008). The moisture content
and surface interactions in different environments will also vary.
Instead of using the ideal gas law, vapor pressure could be
converted to concentration more accurately using the van der
Waals equation, although this is a relatively minor correction
under typical ambient conditions (e.g., low pressure, large volumes)
and requires knowing or predicting an additional two constants
per compound. Correspondingly, the likelihood of observing
a compound in the gas phase will also be influenced by its
solubility, equilibrium concentration above liquid (e.g., Henry’s
Law constant), and the matrix-specific adsorption terms such
as soil adsorption coefficients (Kd) or the organic carbon-water
partition coefficient (Koc). This information has been compiled,
estimated, and interpreted for some of the compounds in the
mVOC 3.0 database (Lemfack et al., 2018), but lacks a prediction
framework analogous to SIMPOL.1 for automation here. Finally,
environmental pH modifies compound charges (e.g., organic salts
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vs. acids, conjugate acid-base pairs like acetate and acetic acid)
and thus their IMF. Metabolic pathways typically list only one of
these compound forms, and while volcalc may overestimate the
volatility of charged moieties, they may exist in equilibrium with
their more volatile forms in the environment making them still
useful harbingers for volatility. The overall importance of these
terms will depend on the conditions and biological system.

Finally, we recognize that volcalc relies on a single database.
While extensive, KEGG represents only one database and any
predictions made from volcalc rely on the extent and accuracy
of its currently available data. For example, isoprene is the most
prominently produced non-methane VOC on Earth. While KEGG
includes the pathway for isoprene production (often by plants),
it does not include those for isoprene degradation (often by
microorganisms) that can be found in other databases (Caspi
et al., 2016). In addition, some data for specific compounds are
incomplete. This includes those for which we could not predict
volatility due to missing mass.

4.3 Concluding summary and future
directions

While often overlooked, volatility is a characteristic of
metabolites that can have pervasive impacts on their function,
detectability, and influence. Volcalc is an easily accessible and
simple method of estimating metabolite RVIs, and its power is
magnified through its linkage with the KEGG database. Here, we
highlight volcalc’s accuracy as a volatility predictor and outline its
potential uses in a research context. Specifically, we illustrated how
volcalc can help define the diversity and reach of the volatilome,
inform targeted and untargeted metabolomic approaches and
inference, and interrogate the specificity and conservation of
volatile metabolism across organisms.

As a fast, flexible, and straightforward tool, volcalc can be
adapted for new directions. Volcalc could be implemented in ‘omics
pipelines that connect genes, metabolites, and organisms in data
sets derived from the environment. For example, metagenomic
and metatranscriptomic pipelines could categorize genes by their
association to volatile metabolites to generate and test hypotheses
on the role of volatiles in biological systems. Moreover, the
integration of volatility predictions within metabolomic pipelines
like MetaboDirect, in conjunction with the computation of
additional indices such as NOSC, GFE, and aromaticity index,
holds great potential to augment their ecological relevance (Ayala-
Ortiz et al., 2023). This integrated approach can serve as an effective
means to predict metabolite stability, fate, and decomposition
pathways. The volcalc framework could be expanded to integrate
other information from the KEGG database and to run on
compounds from other chemical and biological databases [e.g.,
MetaCyc (Caspi et al., 2016)] or directly on lists of molecular
structure files. Moreover, other properties of molecules that can
be predicted from molecular structure could be included in the
pipeline, e.g., estimates of metabolite solubility, charges, propensity
to act as acids or bases, and polarity, to more thoroughly gauge the
partitioning of metabolites in complex matrices. Along these lines,
future work that experimentally validates the volatility of volcalc
predictions will be a valuable step toward improving the tool, and

other vapor-pressure estimation methods (e.g., Nannoolal et al.,
2008) could be included as user options. Finally, deeper comparison
of volcalc with volatile databases could help identify key organisms
and genes that remain to be evaluated for volatile production and
consumption and conversely identify volatile metabolites that are
biologically produced, but lack a known or described pathway in
databases.
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