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With the increasing occurrence and severity of cyanobacterial harmful algal 
blooms (cHAB) at the global scale, there is an urgent need for rapid, accurate, 
accessible, and cost-effective detection tools. Here, we  detail the RosHAB 
workflow, an innovative, in-the-field applicable genomics approach for real-time, 
early detection of cHAB outbreaks. We present how the proposed workflow offers 
consistent taxonomic identification of water samples in comparison to traditional 
microscopic analyses in a few hours and discuss how the generated data can 
be  used to deepen our understanding on cyanobacteria ecology and forecast 
HABs events. In parallel, processed water samples will be used to iteratively build 
the International cyanobacterial toxin database (ICYATOX; http://icyatox.ibis.ulaval.
ca) containing the analysis of novel cyanobacterial genomes, including phenomics 
and genomics metadata. Ultimately, RosHAB will (1) improve the accuracy of 
on-site rapid diagnostics, (2) standardize genomic procedures in the field, (3) 
facilitate these genomics procedures for non-scientific personnel, and (4) identify 
prognostic markers for evidence-based decisions in HABs surveillance.
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1. A brief survey of cyanobacteria and algal bloom 
detection

Cyanobacteria are a diverse group of photosynthetic bacteria encompassing 1,600 species 
that can form dense and sometimes toxic blooms in freshwater and marine environments, and 
thereby represent a threat to natural ecosystems and water quality (Rastogi et al., 2015; Huisman 
et al., 2018). The toxic cyanobacterial blooms (cHABs) are of particular concern to human and 
animal health. In Canada, the increased occurrence of cHABs has been ascribed to climate 
change, habitat alterations from invasive species, overfishing and other human activities such as 
agricultural practices (Pick, 2016). A survey of cyanotoxin concentrations in 246 lakes revealed 
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that all the Canadian provinces contained several lakes where toxin 
concentrations exceeded drinking water quality and sometimes 
recreational quality guidelines (Orihel et al., 2012). In Canada’s largest 
province, Quebec, 107 blooms per year on average have been reported 
between 2006 and 2016 (Ministère de l’Environnement et de la lutte 
contre les changements climatiques, 2018) and this number is 
certainly higher as not all blooms are reported to concerned 
authorities (Rashidi et  al., 2021). Major issues linked to toxic 
cyanobacterial blooms have been identified in Quebec’s lakes within 
agricultural influenced watersheds (Missisquoi Bay: Fortin et al., 2010, 
2015), in recreational lakes (Lajeunesse et al., 2012; Hudon et al., 2016; 
Lévesque et al., 2017) and in drinking water reservoirs (Lake Saint-
Charles: Rolland et al., 2013).

With the increasing frequency of these cyanobacterial blooms, 
there is an urgent need to have early diagnostic tools for the detection 
and identification of cHABs in waterbodies. Several early warning 
tools have been developed to alert stakeholders by providing 
information on their origin, risk on drinking water contamination, 
toxicity levels and mitigation strategies. These tools include 
microscopic enumeration, pigment extraction and measurement, 
qPCR, toxin analysis and remote sensing as well as emerging 
techniques including next-generation sequencing, photonic systems, 
biosensors, drones, and applications of machine learning (Stauffer 
et al., 2019; MacKeigan et al., 2022).

Recently, a Canadian Ecobiomics (i.e., ecological microbiome 
metagenomics) strategy has been implemented to characterise aquatic 
biodiversity, to assess and monitor the health of aquatic ecosystems 
and to improve remediation strategies (Edge et al., 2020). This strategy 
provides useful tools for environmental monitoring, but it requires 
hiring highly qualified personnel for both laboratory and 
bioinformatics analyses as it relies on metabarcoding and shotgun 
metagenome sequencing, which makes it costly. It is not an easily 
transferable strategy that could be operated by non-scientific staff for 
on-site environmental diagnostics.

Nevertheless, the use of genomic tools is of particular interest in 
HABs monitoring since recent fast throughput genomics-based 
technology development indicates its application in the field at 
acceptable costs. Examples include metabarcoding time-series of 
cyanobacterial dynamics (Tromas et  al., 2017), real-time DNA 
barcoding in rainforests (Pomerantz et  al., 2018), workflows for 
tracking species diversity in the field (Maestri et  al., 2019), 
metagenomics analysis of planktonic riverine microbial consortia 
(Reddington et  al., 2020), metabarcoding analyses of algal and 
cyanobacteria assemblages to monitor biodiversity and ecosystems 
health (Ivanova et al., 2022; MacKeigan et al., 2022). Hence, there is a 
rational basis for monitoring cHABs and assess public health risks 
based upon the current fast-throughput genomics-based techniques 
(Te et al., 2015; Pérez-Carrascal et al., 2021; Urban et al., 2021; Yuan 
and Yoon, 2022).

2. A caveat for genomic-based 
identification: data scarcity

One of the main limitations in using genomic-based technologies 
for cyanobacteria identification is the lack of reference databases, 
which often cause incongruence of taxonomic assemblages obtained 
from microscopy and metabarcoding analyses (MacKeigan et al., 2022 

and references therein). Current data resources for cyanobacterial 
research include a collection of at least 19 databases incorporating 
strain collections, genomics, proteomics, transcriptomics, regulatory 
information, descriptions of secondary metabolites, taxonomy and 
literature (Ramos et al., 2017; Kumar and Arya, 2020; Jones et al., 
2021). However, these databases include only a few cyanobacterial 
species isolated Indeed, of all the 398,132 prokaryotic genomes 
currently on the NCBI genome database (as of July 26, 2023), only 
3,552 (less than 1%) are from cyanobacteria.

Consequently, for a rapid analysis in real time and on-site, there 
is a critical need for a representative database of cyanobacteria, 
especially from freshwater ecosystems. However, one such database 
must be  implemented quickly so that any novel rapid detection 
scheme can in turn use the added value of a specialized and high-
quality annotated cyanobacterial database.

3. The rapid on-site detection of 
harmful algal blooms (RosHAB) 
strategy

We developed a cost effective on-site rapid detection of 
cyanobacterial strains that we  refer to as RosHAB (Rapid on-site 
detection of Harmful Algal Blooms). The major value propositions of 
the RosHAB strategy are: (1) it is an on-site genomic technology in the 
form of a light mobile laboratory platform (see Supplementary Methods 
and Supplementary Figure S1) that will allow rapid identification of 
toxigenic cyanobacterial taxa, allowing environmental stakeholders to 
save analytic time and increase their analytic capacity for 
environmental monitoring of freshwater bodies. The duration between 
sample collection and delivery of results will be a few hours, compared 
to days when doing microscopic identification ex-situ; (2) It is an easy-
to-use tool encompassing on-site collection, sample preparation, DNA 
extraction and sequencing of samples, together with a user-friendly 
bioinformatic platform. Short and accessible training will be needed 
before non-scientific staff can use the on-site tool as the DNA 
extraction method and DNA loading on the sequencing device will 
be straightforward and will not require complex laboratory skills.

The proposed genomic-derived solution provides the tools 
necessary to monitor in real time hundreds of waterbodies located in 
freshwater surveillance networks in the province of Quebec that 
eventually could be  applied to other Canadian provinces. The 
flowchart in Figure 1 shows the RosHAB strategy for sampling and 
on-site samples processing, which includes preparation of genomic 
DNA, metagenome sequencing and analysis on a laptop using the 
Oxford Nanopore MinION portable sequencing system. When an 
environmental sample yields concerning results, the sample is 
reanalysed in a complete, high throughput metagenomics workflow 
to populate the International cyanobacterial toxin database 
(ICYATOX; www.icyatox.ca) with novel cyanobacterial genomes, 
including phenomics and genomics metadata (see section 4). This in 
turn reinforces the accuracy of RosHAB’s primary reference database 
(ICYATOX) as well as generating useful data for researchers and 
environmental stakeholders.

In an initial experiment, we  compared the data depicted in 
Supplementary Table S1 from an unknown lake (hereby called Lake 1) 
as a blind assay. This lake was sampled once at the surface and results 
after 30 min versus 24 h sequencing runs were compared. 
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Supplementary Table S2 shows results from a similar comparative study 
from a second unidentified lake (hereby called Lake 2), which was 
sampled in January (T1) and February 2022 (T2) at 3 different depths (1 
sample each at 0.5 m and 12.5 m and duplicate samples at 7 m).

For each lake, we performed either a full-length sequencing run 
or a 30-min sequencing run. Furthermore, for Lake 2, we  also 
compared two sequencing Oxford Nanopore systems: the conventional 
MinION (R9.4.1) flow cell, capable of generating an average of 20–25 
Gigabases (Gb) of DNA sequencing data after 72 h, and a smaller less 
expensive version called the Flongle, which generates approximately 
1 Gb of data after 24 h. Taxonomy was assigned to reads using the 
kmer-based classifier Kraken2 v2.1.2 (Wood et  al., 2019) with 
minikraken_v2-2023-031 as a reference database. To further 
demonstrate the portability of Nanopore sequencing and analysis, all 
analyses described above were run on an ASUS laptop computer with 
16 GB RAM, 8-core Intel CPU and a NVIDIA GeForce GTX 980 M 
graphics card (the latter required to perform real-time base calling on 
the MinION). An in-house wrapper for Kraken2 coded in Bash was 
developed to produce taxonomic reports in HTML format at every 
5 min interval, given that the minikraken reference database is fully 
loaded in RAM at runtime. Time estimates for this workflow have 
been included in Supplementary Table S3.

Regardless of either run time (30 min vs. complete run) or 
sequencing depth (Flongle vs. MinION), similar abundance profiles 

1 https://benlangmead.github.io/aws-indexes/k2

were found (Supplementary Table S1 for Lake 1, 
Supplementary Table S2 for Lake 2). We identified cyanobacterial 
sequences up to the genus level using 17,200 reads from a Flongle 
versus 7 million from a flow cell. As shown in Supplementary Table S1, 
additional analyses in real-time on a laptop confirmed that the data 
obtained from a Flongle after 30 min of DNA sequencing and analysis 
was equivalent to a Flongle analysis done for 24 h. The Flongle yielded 
91.8% identified reads after 30 min versus 92.9% after 24 h. 
Noteworthy, the suitability and consistency for clear species 
identification was maintained even when taxonomic resolution 
increased. In Lake 2, an algal bloom dominated by Planktothrix was 
confirmed after 30 min on a Flongle, consistent with a 24 h Flongle run 
and a 72 h MinION flow cell run (Figure 2 and Supplementary Table S2).

Overall, the dominant cyanobacterial genera in Lake 2 were, in 
order of relative abundances, Planktothrix, Pseudanabaena, Anabaena, 
Dolichospermum, Nostoc, Calothrix, Oscillatoria, and Chamaesiphon 
spp. Together, those eight taxa accounted for 2 to 20% of total reads, 
depending on sampling time and water depth (Figure 2). Planktothrix 
spp. dominated the surface and mid-depth and increased in relative 
abundance over the bloom period. Conversely, at 12.5 m Planktothrix 
relative abundance decreased during the same period (Figure  2). 
Regardless of the sequencing strategy and depth analyzed, standard 
deviation in the relative abundance profiles represents less than 1% 
(Supplementary Table S2). A chi-squared test of independence also 
corroborated the consistency of abundance measurements 
(0.8 < p < 0.93). Microscopic analyses of the samples further confirmed 
the taxonomic identification of the microbial DNA detection and 
assemblages and the dominance of Planktothrix agardhii.

FIGURE 1

Overview of the RosHAB workflow and its integration with the ICYATOX database. Green flag: conclusive results without any public health concerns. Red 
flag: conclusive results with public health concerns. Some samples may require additional validation steps at the laboratory. Yellow flag: inconclusive 
results, further analysis needed. GridION photo: https://store.nanoporetech.com/gridion.html (last accessed Sept. 17th, 2023); computer photo by 
iStockPhoto user Makstorm (CC-BY 2.0). Nalgene(R) Plastic bottle photo: https://www.fishersci.ca. All other clip arts and photos were made by the authors.
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In summary, a 30-min Flongle sequencing run, which represented 
0.5–1% of a full-length MinION (R9.4.1) flow cell run was sufficient to 
obtain reliable cyanobacterial relative abundance profiles. Collectively 
these preliminary results showed that RosHAB can offer similar results 
using a cost-effective device, and that similar results to microscopy can 
be obtained in a time-effective manner to the species level.

4. The international cyanobacterial 
toxin database (ICYATOX)

The ICYATOX database2 is not only a genome data repository, but 
also archives samples and cyanobacterial cultures. Indeed, the primary 

2 http://icyatox.ibis.ulaval.ca

source of material for ICYATOX are the DNA extracts and sample 
metadata produced through RosHAB, but will also consider (a) 
metagenomic resequencing of bloom samples using a higher-throughput 
platform (e.g., Oxford Nanopore GridION and Illumina short reads); (b) 
Sanger resequencing of a marker gene (e.g., 16S rRNA gene), (c) 
concentrated biomass from bloom samples cryopreserved at −80°C and 
(d) cyanobacterial cultures provided by researchers and collaborators. 
Indeed, when a water body tests positive for the presence of cyanobacteria, 
the DNA extract would be resequenced at higher throughput using the 
Oxford Nanopore GridION and Illumina short reads to undergo a 
rigorous metagenomic assembly, genome reconstruction (binning) and 
taxonomy pipeline. Cultures would also be treated as metagenomes, due 
to the difficulty to grow them axenically, and the importance of associated 
bacteria for their growth (Gao et al., 2020).

Briefly, raw Nanopore data from an environmental sample processed 
through RosHAB are quality filtered with NanoFilt (De Coster et al., 2018) 
using minimum Q scores and read lengths of 9 and 1,000 bp, respectively. 

FIGURE 2

Relative abundance of the eight most abundant cyanobacterial genera in Lake 2, QC, Canada in different water depths, as measured with different 
sequencing throughputs (Flongle vs. MinION flow cell) and duty times (30  min vs. full run). * A complete sequencing run corresponded to 72  h for a 
flow cell and 24  h for a Flongle. Reads were base called and de-multiplexed with MinKNOW v21 (Oxford Nanopore). Reads less than 1,000  bp and 
average Phred score below 9 were discarded. For each sample, cyanobacterial relative abundance profiles were generated with Kraken2, a kmer-based 
taxonomic classifier (Wood et al., 2019). A lightweight version of the Kraken2 standard database (Minikraken, 8GB, version 20,200,312), was used to 
ensure low memory usage and runtime speed. Relative abundance charts and tables were built from Kraken2 output reports with R (R Core Team, 
2021) and R package ggplot2 (Wickham, 2016).
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Then, filtered reads are assembled with metaFlye v2.9 (Kolmogorov et al., 
2019), after which metagenomic assemblies are corrected with Medaka 
v1.7.3.3 Metagenome-assembled genomes (MAGs) are reconstructed by 
blind binning with MetaBAT2 (Kang et al., 2019); genome completeness 
is verified with CheckM (Parks et  al., 2015) and finally, taxonomic 
assignment is done with GTDB-Tk v2 (Chaumeil et al., 2022) using as the 
most recent GTDB reference database (Parks et al., 2022). Annotations are 
done with Prokka (Seemann, 2014), with an additional annotation scheme 
for antibiotic and secondary metabolite synthesis genes (e.g., genes 
responsible for toxin production) with AntiSMASH v6.0  in bacterial 
mode, with all extra options checked (Blin et al., 2021).

The ICYATOX database implementation uses MySQL5 and a 
Web-based ZenD Framework to describe cyanobacterial strains while 
providing genomic information linked to their phenotypic 
characterization and environmental data of the source lake. ICYATOX 
holds information such as the isolate ID, researcher responsible for the 
isolation, date, sample geographical origin and environmental 
variables describing it, phenotypic data, DNA extraction, sequencing 
information, and genome assembly. In the short term, the data 
processing mentioned above will be automated so that a RosHAB user 
without bioinformatics training may add samples themselves.

5. Significance and future directions

On the one hand, MAGs produced from ICYATOX isolates will allow 
identifying genes responsible for within-species variability (accessory 
genes) in addition to those underpinning conserved traits (core genes) 
within strains of the main bloom-forming species. To this regard, 
GTDB-Tk and AntiSMASH provide added value to the genomics 
workflow, as the first one is a highly elaborated taxonomic identification 
pipeline based on four criteria: average nucleotide identity, class-level 
phylogenetic placement, and core gene multiple sequence alignment with 
class-level neighbour genomes (Parks et al., 2022); the second one is a 
metabolite synthesis gene cluster (mBGC) annotation algorithm that 
integrates hidden Markov models (HMM), gene presence/absence and 
even enzyme numbers to predict the end product of a mBGC (Blin et al., 
2021). The expansion of the ICYATOX database will provide valuable 
guiding for Canadian authorities, and potentially benefit other 
international authorities as well, in addition to provide reliable references 
of cyanobacterial genomes to future research.

On the other hand, the application of phenotype microarrays (PM) 
using small volumes of cyanobacterial culturesin small microtiter plates 
can provide the opportunity to perform many parallel assays in compact 
space, with a rapid turnover and at a low cost (Bochner, 2009; Borglin 
et al., 2012). PM can expand knowledge of the cyanobacterial metabolic 
potential, which could presumably be involved in cHABs initiation and 
expansion (Mobberley et al., 2013). Phenotype microarrays will be used 
to assess the growth of cyanobacteria from the ICYATOX strain collection 
in culture using multi-well plates, with a different test component in each 
well, enabling the screening of the phenotypic characteristics in a large 
throughput system.

There is an urgent need to refine our capacity to predict, prevent 
and mitigate cHABs given the economic and health challenges 

3 https://github.com/nanoporetech/medaka

associated with them. As discussed above, there are now different tools 
available to inform environmental stakeholders and the public on 
aquatic ecosystem health including cHABs. Yet, to obtain an 
integrative understanding of cHABs, early warning systems available 
nowadays need to combine information from diverse analytical tools 
(e.g., Gaget et al., 2017). Recently, Almuhtaram et al. (2021) introduced 
a three-tiers framework to build a comprehensive early warning 
system that groups monitoring tools by their analytical targets: 1- 
biological activity or algal biomass (e.g., Chlorophyll-a concentration), 
2- cyanobacteria or cyanobacteria-related genes (e.g., next generation 
sequencing), and 3- cyanobacterial metabolite (e.g., toxins). We plan 
to combine historical data with prediction models in order to forecast 
bloom events: through the identification of the main promoters/ 
factors that led to cHABs in the past and the construction of prediction 
models, we can improve the ability to forecast bloom outbreaks. Hence 
RosHAB will not only be a real-time, reliable, accessible, and cost-
effective tool for early detection of cyanobacteria forming cHABs but 
will also represent a “self-iterative” approach to develop novel 
integrative biology approaches for bloom prediction.
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