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and Chauve C (2023) plASgraph2: using graph
neural networks to detect plasmid contigs from
an assembly graph.
Front. Microbiol. 14:1267695.
doi: 10.3389/fmicb.2023.1267695

COPYRIGHT

© 2023 Sielemann, Sielemann, Brejová, Vinař
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Identification of plasmids from sequencing data is an important and challenging
problem related to antimicrobial resistance spread and other One-Health issues.
We provide a new architecture for identifying plasmid contigs in fragmented
genome assemblies built from short-read data. We employ graph neural networks
(GNNs) and the assembly graph to propagate the information from nearby nodes,
which leads to more accurate classification, especially for short contigs that
are di�cult to classify based on sequence features or database searches alone.
We trained plASgraph2 on a data set of samples from the ESKAPEE group of
pathogens. plASgraph2 either outperforms or performs on par with a wide range
of state-of-the-art methods on testing sets of independent ESKAPEE samples and
samples from related pathogens. On one hand, our study provides a new accurate
and easy to use tool for contig classification in bacterial isolates; on the other hand,
it serves as a proof-of-concept for the use of GNNs in genomics. Our software is
available at https://github.com/cchauve/plasgraph2 and the training and testing
data sets are available at https://github.com/fmfi-compbio/plasgraph2-datasets.
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1. Introduction

Plasmids are mobile genetic elements that are involved in horizontal gene transfer and

have been shown to be a major vector for the spread of antimicrobial resistance (AMR)

genes (Partridge et al., 2018; De Oliveira et al., 2020). Plasmids are extra-chromosomal

DNA molecules, often circular and significantly shorter than bacterial chromosomes, and

can occur in multiple copies in a bacterial cell. Whereas some bacteria do not contain

any plasmid, it is common to observe several plasmids co-existing within a bacterial cell,

often with different copy numbers. Due to their high mobility and impact in AMR spread,

the detection of plasmids from sequencing data is an important question in One-Health

epidemiologic surveillance approaches (see Cox et al., 2021).
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Given sequencing data, either from a bacterial isolate or from

a metagenome, the detection of plasmids can be approached

at various levels of detail. The most elementary task, contig

classification, aims at detecting which assembled contigs likely

originate from a plasmid. Plasmid binning aims at grouping

contigs into groups likely to originate from the same plasmid.

Finally, plasmid assembly aims at reconstructing full plasmid

sequences. While obtaining full plasmids provides the most

accurate information, the ability to extract plasmid contigs from

assembled sequencing data (the contig classification problem)

already provides very useful information, allowing, for example,

to identify genes that might be susceptible to transfer to other

bacteria. Moreover, the prediction of plasmid contigs can be

used as an input for plasmid binning or assembly. For example,

the plasmid binning method gplas (Arredondo-Alonso et al.,

2020) relies on a preliminary contig classification obtained with

mlplasmids (Arredondo-Alonso et al., 2018), and the metagenome

plasmid assembly method SCAPP (Pellow et al., 2021) relies on

classifying contigs using PlasClass (Pellow et al., 2020).

While the analysis of plasmids from sequencing data has been

a very active research area, the problems mentioned above are

still challenging, especially when sequencing data are provided in

the form of Illumina short reads (Arredondo-Alonso et al., 2017).

In the present study, we propose a novel method for the contig

classification problem, specifically designed to analyze short-read

contigs from a single bacterial isolate.

1.1. Background

There exists a large corpus of algorithms for the contig

classification problem, most of them developed recently. These

methods rely mainly on machine learning approaches. The earliest

method for contig classification was cBar (Zhou and Xu, 2010),

which introduced the use of the k-mer profile of a contig as

the main feature in a machine learning classification model;

in cBar, the model was trained on a large data set of closed

bacterial genome assemblies. The general principle of using k-mer

properties as classification features has also been used in several

recent machine learning classifiers, namely, PlasFlow (Krawczyk

et al., 2018), mlplasmids (Arredondo-Alonso et al., 2018), and

PlasClass (Pellow et al., 2020). PPR-Meta (Fang et al., 2019) is a deep

learning method that relies on one-hot encoded contig sequences.

PlasForest (Pradier et al., 2021) and Deeplasmid (Andreopoulos

et al., 2021) are two recent methods based on machine learning

models that use different features for a given contig, such as its

GC content (generally plasmids have a GC content different from

chromosomes) and the presence of plasmid-specific sequences,

detected through themapping against a reference plasmid database.

RFPlasmid (van der Graaf-van Bloois et al., 2021) combines both

types of features, the k-mer profile and plasmid-specific sequences.

Finally, Platon (Schwengers et al., 2020) relies on a deterministic

decision workflow based on a statistical score in terms of homology

search against a large database of plasmid proteins further refined

by considering higher level plasmid contig features. Among the

methods introduced above, both mlplasmids and RFPlasmid are

species-specific methods, i.e., require a model to be trained per

bacterial species; in contrast, PlasFlow, PlasClass, PlasForest, and

Deeplasmid are tools that do not target specific species.

The recent method 3CAC (Pu and Shamir, 2022) introduced

the idea that the classification of a contig can be improved from

the knowledge of the classification of the neighboring contigs in

the assembly graph. Several tools used for assembling bacterial

genomes (Bankevich et al., 2012; Wick et al., 2017; Souvorov et al.,

2018) output an assembly graph containing final contigs as nodes

and possible connections between them supported by sequencing

data as edges. Individual molecules, such as chromosomes or

plasmids, ideally correspond to walks in this graph, but some

edges may be missing, disconnecting the walk. Conversely, the

walks for individual molecules often form complicated tangled

structures joined at shared and repeated sequences. Nonetheless,

adjacent nodes often share the same molecule of origin and thus

the same class. 3CAC applies simple heuristics to improve machine

learning predictions for individual contigs based on their adjacency

in the graph. Our aim is to integrate the information from the

assembly graph directly into a machine learning model for the

contig classification problem.

1.2. Contribution overview

Here, we introduce a novel machine learning method,

plASgraph2, for the problem of classifying short-read contigs.

Our method is based on combining features of existing methods

with a novel approach incorporating a graph neural network

(GNN) (Grattarola and Alippi, 2021). Moreover, plASgraph2 is

a de novo tool that does not require the comparison of the

input contigs with a database of known plasmids, which is of

interest, for example, the analysis of samples from poorly sampled

bacterial species. More precisely, plASgraph2 characterizes each

contig of a bacterial genome assembly using a set of features

that have been shown to differentiate plasmids and chromosomes:

read coverage, used as a proxy of copy number, GC content and

contig length, together with two novel features, the node degree

in the assembly graph and the similarity between the contig k-

mer profile and the whole assembly k-mer profile. The rationale

behind using the similarity to the assembly-wide profile, rather than

learning a species-specific k-mer profile (as done inmlplasmids and

RFPlasmid), is to allow our model to be species-agnostic and avoid

the necessity of training a new model for every species. Based on

these features, plASgraph2 trains a GNN model whose core is a set

of graph convolutional layers aimed at propagating the information

from neighboring contigs in the assembly graph. The output of

plASgraph2 is a pair of scores for each graph node, a plasmid

score and a chromosomal score, used to determine if a given contig

is likely to originate from a plasmid or a chromosome or both.

Unlike other methods, the two scores associated with a contig allow

to detect ambiguous contigs that have shared sequences of both

plasmidic and chromosomal origins.

To the best of our knowledge, plASgraph2 is one of the

first methods that applies GNNs to contig classification in an

assembly graph, building on the idea (introduced in 3CAC) that

information from neighboring contigs can improve accuracy.
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Outside of classification, GNNs were also used recently on assembly

graphs for metagenomic contigs binning (Lamurias et al., 2022).

We trained plASgraph2 on data from the ESKAPEE group of

pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,

Enterobacter spp., and Escherichia coli) which is of primary

importance in a public health setting (Partridge et al., 2018)

and evaluated its performance on data sets of ESKAPEE samples

and non-ESKAPEE samples. Our results show that plASgraph2

either outperforms or is comparable to the state-of-the-art

methods, including species-specific methods and methods relying

on databases of known plasmids.

2. Methods

2.1. Input features

The input to our problem is the assembly graph of a bacterial

isolate in which nodes correspond to contigs and edges correspond

to contig adjacencies supported by sequencing data. As an input to

the classification task, each contig is characterized by six features as

follows:

1. The degree of the corresponding node in the assembly graph;

2. The contig length divided by 2 million (so that it has a similar

scale as other features);

3. The logarithm of the contig length;

4. The relative GC content defined by subtracting the average GC

content (a value between 0 and 1) of the whole assembly from

the contig GC content;

5. The relative coverage defined as the contig read depth divided by

the weighted median read depth over all contigs in the assembly

(weighed by contig lengths);

6. The relative pentamer content defined as the dot product 〈p, q〉

between vectors p and q representing the pentamer profile of

the contig and the pentamer profile of the whole assembly,

respectively. For a set of contigs S (which may include a single

contig or all contigs in the assembly), we define #(k, S) to

be the number of occurrences of pentamer k and its reverse

complement in S. If Z =
∑

k(#(k, S) + ε), the pentamer profile

of set S is simply a vector of values [(#(k, S)+ ε)/Z]k; here, ε is a

pseudocount and we use ε = 0.01.

The motivation to rely on relative features instead of absolute

features is to enable the model to generalize across species and

thus to not be dependent on species-specific values. For example,

using the actual GC content as a feature would allow the model

to learn that chromosomal sequences have a specific GC content

and plasmid sequences also have a specific GC content. This type

of knowledge is not transferable between species, as each species

has a different GC content. On the other hand, the use of a relative

GC content allows the model to learn that chromosomal sequences

will have a GC content similar to the overall sample GC content

(since chromosomal contigs dominate the assembly in length),

whereas plasmid contigs will typically differ in GC content from

the overall sample. This type of knowledge is more transferable

between species. Regarding the relative pentamer content, one can

expect that chromosomal contigs will have large values because

their k-mer frequencies are close to those of the sample as a whole,

while plasmid contigs will exhibit values closer to zero. By using

the relative pentamer content, we expect that our model will be

less susceptible to learning to classify chromosome sequences by

simply recognizing the pentamer frequency characteristics for the

chromosomes of a particular species or a clade.

2.2. Model architecture and training

We solve the classification task using a deep neural network

model designed specifically for graph-structured data, graph neural

network (GNN) (Kipf and Welling, 2016), with the aim to leverage

the information provided by the assembly graph. The propagation

of information between individual nodes is accomplished by graph

convolutional layers (GCLs). In brief, the input to a GCL contains

a vector of k features for each of the n nodes of the graph and

the adjacency matrix of the graph. The layer first combines the

feature vectors corresponding to the node and its neighbors, with

the weight of nodes depending on their degree. The feature vector

of each node is, then, transformed by a fully connected layer with ℓ

output features followed by a non-linear activation. More precisely,

if we organize the n feature vectors into an n×kmatrixX, the graph

convolutional layer can be expressed as follows:

Z = σ (D̃−1/2ÃD̃−1/2X2 + b), (1)

where Ã is the graph adjacency matrix with one along the diagonal,

D̃ is a diagonal matrix where D̃ii =
∑

j Ãij, 2 is a k × ℓ matrix of

trainable weights, b is trainable bias vector of length ℓ, σ is a non-

linear activation function, and Z is the n×ℓmatrix of output feature

vectors. A single GCL integrates information from the immediate

neighborhood of a node; by employing d GCLs one integrates the

information from nodes at distance at most d for each node.

Figure 1 shows the plASgraph2 architecture. The six input

features for each node are first transformed by two fully connected

layers to a vector of length 32 per node. This is followed by six GCLs

using the same weight matrix2. The last two fully connected layers

operate on each node separately, finally producing two output

scores, loosely interpretable as probabilities of the node being part

of a chromosome and plasmid, respectively. Since these two outputs

correspond to two separate classification tasks, we do not require

these two scores to sum to one.

GCLs combine features of each node with features of

the neighbors, and over time, the influence of the original

features of a node is greatly diminished. In our task, the

original features can be highly informative, especially for nodes

corresponding to longer contigs; therefore, we want to maintain

the node identity (original features) throughout the computation.

To accomplish this, each GCL is followed by another dense

layer which receives an additional input vector of length

32 for each node, representing a separate encoding of the

original input features for the node. This node identity is

also an input to the penultimate dense layer of the whole

network.

As shown in Figure 1, the network uses ReLU and sigmoid

activation functions. It also uses dropout layers to prevent

overfitting. The network is trained using Adam optimizer
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FIGURE 1

Model architecture of plASgraph2. The model takes as input the assembly graph structure and six features per node (contig). The core of the network
is composed of six graph convolutional layers. The model generates two outputs per node, which facilitate the classification of plasmids and
chromosomes as two separate classification tasks.

(Kingma and Ba, 2014) with binary cross entropy loss function, a

constant learning rate of 0.005, and a split of 80% of data for

training and 20% for validation. The model is implemented using

Keras (Chollet, 2015) and TensorFlow v2.8.0 (Abadi et al., 2015),

with GCLs from Spektral v1.0.8 (Grattarola and Alippi, 2021).

The number of GCLs and several other settings were chosen by

exploring various values on a data set used solely for designing

the architecture but disjoint with test sets used for the final

evaluation.

2.3. Classification

Since plASgraph2 was designed to model existence

of ambiguous contigs by including separate plasmid and

chromosomal classification tasks, we evaluate the prediction

performances for each of these tasks separately. A contig is

predicted as a chromosome if the chromosome score output of the

plASgraph2 model is at least 0.5 and the plasmid score is below

0.5. Similarly, it is predicted as plasmid if the plasmid score is at

least 0.5, and the chromosome score is below 0.5. It is predicted as

ambiguous if both scores are at least 0.5 and is unlabeled if both

scores are below 0.5.

However, threshold 0.5 is arbitrary, and training the outputs

using the binary cross entropy loss function does not guarantee a

good balance between the precision and recall measures. Therefore,

plASgraph2 provides an optional phase, switched on by default,

which, after training the network, uses the validation set to adjust

the threshold for each of the two classifiers. Namely, we sort all

scores produced by a particular classifier on the validation set and

consider the mean of each of the two distinct successive scores as a

potential threshold. We choose the threshold that achieves the best

F1 score on the validation set. When the trained model is applied

to new data, we transform the output scores of the neural network

by a piece-wise linear function so that the selected threshold is

mapped to value 0.5 and endpoints 0 and 1 map to themselves.

After this transformation, we can apply the original threshold 0.5

on the output scores. Nonetheless, users may choose to apply more

conservative thresholds if they are interested only in high reliability

predictions.

2.4. Training and testing data preparation

2.4.1. Species
Most methods for classifying contigs target a very wide range

of bacteria, while a few others, such as mlplasmids (Arredondo-

Alonso et al., 2018), train species-specific models. In this study,

we trained plASgraph2 on data from the ESKAPEE group of

pathogens from a variety of sources (Arredondo-Alonso et al.,

2018; Hikichi et al., 2019; Magalhães et al., 2019; Chan et al.,

2020; Peter et al., 2020; Ono et al., 2021; Shaw et al., 2021;

Acman et al., 2022; Boostrom et al., 2022) to avoid confounding

factors linked to the way the sequence data were generated (see
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overview in Supplementary Table 1). The independent ESKAPEE

test samples and non-ESKAPEE single-species data (Johnson et al.,

2015; Robertson and Nash, 2018; Matsumoto et al., 2019; Chen

et al., 2020; Kiesewalter et al., 2020; Shaw et al., 2021; Furuta et al.,

2022; Morita et al., 2023) were then used for the comparison against

other tools.

2.4.2. Assembly
As plASgraph2 analyzes the assembly graph of a bacterial

isolate, the method used to obtain this assembly graph is a possible

confounding factor of the training data. In our experiments,

every sequencing data set was assembled using both Unicycler

v0.5.0 (Wick et al., 2017) and SKESA v2.4.0 (Souvorov et al., 2018),

two widely used assemblers for bacterial genomes that provide an

assembly graph, thus leading to two data sets per isolate. Both

Unicycler and SKESA provide a read depth per contig, which was

used to define the relative coverage feature.

2.4.3. Ground truth contigs labeling
Once the training data set has been assembled, its contigs are

required to be labeled as being either chromosomal, plasmidic,

or ambiguous. This task is usually performed by assuming that a

closed and annotated genome assembly is available for each training

sample, which is not always the case as most genomes available in

public databases are provided in the form of a contig assembly;

moreover, the annotation of plasmids in closed genomes often

relies on a plasmid database for the corresponding species, which

introduces a potential bias.

To circumvent these issues and assess the performances of

plASgraph2 and other methods in a setting where a sufficient

number of closed annotated genomes are not available, we relied on

the growing trend to sequence bacterial isolates using both Illumina

accurate short reads and Oxford Nanopore or Pacific Bioscience

noisier long reads (hybrid sequencing). All the samples in our

training and testing data sets were sequenced using the hybrid

approach.

To label the data, we first followed the general methodology

introduced by mlplasmids (Arredondo-Alonso et al., 2018). First,

a hybrid assembly is created using both short and long reads. This

assembly is typically highly contiguous and can be easily labeled.

Subsequently, a short-read assembly used for both training and

testing is labeled based on homology with the hybrid assembly.

In hybrid assemblies created by Unicycler, the ground truth

labels were determined primarily based on the contig length and

circularity: all contigs longer than a threshold (in our experiments,

we chose 1 Mbp) are labeled as “chromosome”, while shorter

circular contigs are labeled as “plasmid”. The remaining short linear

contigs, that can possibly be a part of an unfinished plasmid or

chromosome, remain unlabeled.

To further improve classification, we used minimap2 (Li,

2018) to map the individual contigs to a set of closed genome

reference sequences (Supplementary Table 2) and the curated

PLSDB plasmid database (Schmartz et al., 2022). Previously

unclassified contigs longer than 1,000 bp were labeled as

plasmids if they mapped to the plasmid database on at

least 80% of their length and did not map to the closed

genome reference on more than 20% of their length. Similarly,

contigs longer than 100 kbp which mapped to the closed

genome reference on more than 80% of their length, but

mapped to the plasmid database on at most 20% of their

length, were labeled as chromosome. Conversely, previously

labeled contigs were changed to unlabeled if the homology

information contradicted the original labels. This included plasmid

contigs with longer homology to the genome reference than

to the plasmid database and chromosome contigs with longer

homology to the plasmid database than to the genome reference.

Finally, several samples contained PhiX bacteriophage, commonly

used as a control in Illumina runs; any labels assigned to

contigs corresponding to the PhiX bacteriophage have been

removed.

The ground truth labels for short-read contigs were determined

bymapping the short-read contigs of a sample to the corresponding

hybrid assembly contigs, from which they inherit the labels. The

mapping was performed using minimap2 v2.24 (Li, 2018), with -

c option for accurate alignment. The key difference between our

pipeline and mlplasmid method is that if a contig matches equally

well to both chromosomal and plasmidic hybrid contigs, it is

labeled as “ambiguous”.We have observed that without considering

such ambiguous matches, the short-read assembly graphs often

contained paths with nodes labeled by alternating classes, which

is clearly inconsistent labeling, and the introduction of ambiguous

labels allows us to avoid such artifacts. Short-read contigs matching

an unlabeled hybrid contig were left unlabeled, and samples

that contained more than 5% of unlabeled short-read contigs

were discarded from further analysis. Supplementary Table 1

shows the statistics of the short-read contig labels in our data

sets.

2.4.4. Handling short contigs
Most contig classification tools exclude very short contigs from

their analysis because they can not be labeled reliably. For example,

mlplasmids excludes contigs of length below 1 kbp. For training and

prediction, all contigs shorter than 100 bp were removed from the

short-read assembly graphs, and their neighbors were connected

by direct edges as part of the feature extraction process. Thus,

plASgraph2 is not classifying contigs shorter than 100 bp.

3. Results

We evaluate the performance of plASgraph2, trained on a

data set of samples from ESKAPEE species as described above,

on two testing data sets: one composed from ESKAPEE samples

and one composed from non-ESKAPEE samples. We compare the

perfomance of plASgraph2 with a variety of plasmid classification

tools, such as Deeplasmid (Andreopoulos et al., 2021), mlplasmids

(Arredondo-Alonso et al., 2018), PlasClass (Pellow et al., 2020),

PlasForest (Pradier et al., 2021), Platon (Schwengers et al., 2020),

and RFPlasmid (van der Graaf-van Bloois et al., 2021).

Frontiers inMicrobiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1267695
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Sielemann et al. 10.3389/fmicb.2023.1267695

3.1. Evaluation metrics

For each testing sample, we created two short-read assemblies

using Unicycler and SKESA, removed contigs of lengths ≤100 bp,

and obtained ground-truth labels from the corresponding hybrid

assemblies as described in Section 2.

The true and predicted labels induced the counts of true

positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN) for each classification task (plasmid and

chromosome). Each contig was counted as a single unit, regardless

of its length. Contigs without a ground-truth label were not

included in the evaluation. Note that, contigs whose ground

truth label is “ambiguous” are considered positives for both

plasmid and chromosome classification tasks. As plASgraph2

can assign an “ambiguous” label to some contigs (those with

score > 0.5 in both classification tasks, see Section 2), such

contigs were labeled both as plasmid and chromosome in our

evaluation.

For each classification task, we evaluate several performance

measures, including precision TP/(TP + FP), recall TP/(TP +

FN), F1-score (the harmonic mean of precision and recall), and

accuracy (TP + TN)/(TP + FP + TN + FN). For methods

that assign scores or probabilities to contigs, the result of the

classification is highly dependent on chosen score thresholds; we

also consider an accuracy measure that is independent of these

thresholds, the area under the receiver operating characteristic

curve (AUROC). For methods that do not produce a numerical

value for each contig (PlasForest abd Platon), we cannot compute

the AUROC statistics. Note that, the precision and recall are

undefined when the denominator is zero, and the F1 score is

undefined if either precision or recall is undefined. We evaluate

each of these measures on each assembly included in the testing

set (where possible) and report the median value. All of the

tools that we compare exhibited a large variance in accuracy of

their predictions between individual samples. The median values

were chosen since the resulting measures are less affected by

outliers.

3.2. Evaluation on the ESKAPEE data set

The ESKAPEE testing set consist of 224 short-read assemblies

derived from 112 isolates; each data set was assembled by both

Unicycler and SKESA. The data set contains 38,110 contigs with

known label longer than 100 bp and 15,687 contigs longer than

1,000 bp.

Table 1A shows that plASgraph2 performs as the best

tool on the plasmid classification task under F1, accuracy,

and AUROC measures. For the prediction of chromosomal

contigs (Table 1B), Platon shows the highest median F1-

score of 0.973, whereas plASgraph2 has the second highest

median F1-score of 0.968. Supplementary Figure 1 shows

the full distribution of F1 scores over individual samples.

In general, it is expected that tools relying on homology

will achieve better results than those relying on sequence-

derived features alone. Interestingly, plASgraph2 (using

sequence-derived features) can outperform homology-based

tools in plasmid classification and compete with them in

chromosome classification. The lack of homology information is

compensated by pooling information from neighboring contigs in

an assembly graph.

When we restrict the evaluation to contigs longer than 1

kbp (Tables 1C, D), the advantages of homology-based tools

(notably Platon and RFPlasmid) become more apparent, as these

approaches, as expected, work better on longer contigs. However,

plASgraph2 achieves only slightly lower F1 score and accuracy and

still outperfoms Platon and RFPlasmid in some of the performance

measures.

Finally, Figure 2 and Supplementary Figure 2 show that

plASgraph2 accuracy is higher on assembly graphs with a lower

number of contigs. Large number of contigs in the assembly

graph often indicates problems with the underlying data,

for example, sample contamination. The performance of all

classification methods diminishes on larger assembly graphs,

but plASgraph2 seems to be more sensitive to the assembly

quality than RFPlasmid or Deeplasmid. Regardless, plASgraph2

outperforms all the other methods on assemblies with up to 200

contigs, which represent a wide majority in our testing set (198 out

of 224).

In our evaluation, we consider a prediction of an ambiguous

contig as positive for both chromosome and plasmid labels. This

may give an undue advantage to plASgraph2, since it can use

ambiguous labels even for those contigs where the results are

inconclusive, thus securing positive points in at least one of the

prediction tasks. To ascertain whether this advantage impacted

the results, we have employed two other evaluation measures,

forcing the problem to become a standard two-way classification

(Supplementary Table 3) and treating the problem as a single

three-way classification (Supplementary Table 4). In both cases, the

general trends described above remain unchanged.

3.3. Evaluation on the non-ESKAPEE data
sets

Beyond the ESKAPEE data set evaluation, we also considered

testing samples from several non-ESKAPEE bacterial species

evolutionarily close to those in the training set: Citrobacter

freundii, Escherichia fergusonii, Klebsiella oxytoca, and Salmonella

enterica (see Supplementary Table 1). These species belong to the

Enterobacteriaceae family together with three species included in

the training set. In total, the samples contained 39,007 contigs of

length greater than 100 with known label, of which 10,018 contigs

were plasmidic or ambiguous. We excluded mlplasmids from the

comparison as it is species-specific and does not have trained

models for these species. Furthermore, the Deeplasmid method is

not shown as it is unable to classify contigs shorter than 1 kbp. All

other methods included data from these species in the databases

they used either for training an ML model or for the classification.

In contrast, the training set for plASgraph2 did not contain any data

from non-ESKAPEE species.
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TABLE 1 Performance of contig classification algorithms on the ESKAPEE testing set.

Method SS DB AUROC Precision Recall F1 Accuracy

A: Plasmid classification, contigs >100 bp, n =38,110

plASgraph2 – – 0.991 0.906 0.908 0.808 0.935

mlplasmids X – 0.896 0.273 0.957 0.480 0.641

PlasClass – – 0.892 0.381 0.939 0.617 0.794

PlasForest – X n/a 0.486 0.939 0.711 0.852

Platon – X n/a 1 0.5 0.667 0.924

Deeplasmid – X n/a n/a n/a n/a n/a

RFPlasmid X X 0.973 0.854 0.789 0.667 0.885

B: Chromosome classification, contigs >100 bp, n =38,110

plASgraph2 – – 0.991 0.975 1 0.968 0.943

mlplasmids X – 0.908 1 0.540 0.697 0.609

PlasClass – – 0.878 1 0.738 0.840 0.766

PlasForest – X n/a 0.992 0.771 0.855 0.795

Platon – X n/a 0.957 1 0.973 0.952

Deeplasmid – X n/a n/a n/a n/a n/a

RFPlasmid X X 0.959 0.982 0.936 0.933 0.893

C: Plasmid classification, contigs >1,000 bp, n =15,687

plASgraph2 – – 0.997 0.960 0.933 0.852 0.946

mlplasmids X – 0.974 0.526 1 0.783 0.864

PlasClass – – 0.986 0.75 1 0.857 0.929

PlasForest – X n/a 0.824 0.944 0.835 0.927

Platon – X n/a 1 0.836 0.897 0.961

Deeplasmid – X 0.929 1 0.333 0.5 0.892

RFPlasmid X X 0.998 0.914 0.926 0.862 0.942

D: Chromosome classification, contigs >1,000 bp, n =15,687

plASgraph2 – – 0.996 0.976 1 0.969 0.951

mlplasmids X – 0.966 1 0.845 0.906 0.860

PlasClass – – 0.972 1 0.897 0.936 0.904

PlasForest – X n/a 1 0.919 0.936 0.902

Platon – X n/a 0.989 1 0.983 0.973

Deeplasmid – X 0.911 0.903 1 0.935 0.893

RFPlasmid X X 0.987 1 0.954 0.954 0.931

The table shows the median values for eachmetric from results on all 224 samples included in the testing set. The highest value in each category is shown in bold. SS, method uses Species-Specific

models; DB, method uses a DataBase of plasmids and/or chromosomes or other features derived from homology search. Note that, Deeplasmid only allows classification of contigs longer than

1,000 bp. Further, PlasForest and Platon do not provide confidence scores for each prediction. Therefore, calculation of AUROC is not applicable (n/a).

Figure 3 shows the F1-score distribution over all considered

samples, for both the chromosome and plasmid classification tasks.

We observe that plASgraph2, Platon, and RFPlasmid showed the

highest chromosomal contig classification F1-scores across this

data set, whereas for the plasmid classification, plASgraph2 was the

second best performing method after RFPlasmids. A breakdown

per species of the results, as shown in Figure 3, is shown in

Supplementary Figure 5. Among these methods, plASgraph2 is the

only approach that is independent of plasmid database homology

features and does not include data from the considered species in

its training data set. This experiment shows that plASgraph2 design

can successfully generalize to closely related species, not directly

included in the training set.

The generalization properties, however, do not extend to

more distant non-ESKAPEE species. In particular, we have tested

plASgraph2 on Mycolicibacteriae spp., Campylobacter jejuni, and

Bacillus spp. (see Supplementary Table 1). Supplementary Figure 6

shows that while in chromosome classification task, the plASgraph2

performance is still comparable to other tools, the plasmid

classification does not work very well. None of the tools work well
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FIGURE 2

Receiver operating characteristic curves for all contigs in the ESKAPEE test set considering isolates with maximally 100, 200, 300, or 10,000 contigs.
ROC curves are not calculated for Platon and PlasForest tools, as those tools do not provide confidence scores as output. In total, the ESKAPEE test
set consists of 224 samples; thus almost half of those short read assemblies contain 100 or fewer contigs.

on Mycolicibacterium, while Platon and RFPlasmid perform well

on C. jejuni and PlasForest and Platon on Bacillus spp. Additional

analysis (see Supplementary Figure 7) showed that while K. oxytoca

(a representative of species close to ESKAPEE) shows distinct

differences between chromosome and plasmid contigs in k-mer

composition, GC-content, and multiplicity, each of the three

distant data sets has at least some of these characteristics almost

indistinguishable between plasmids and chromosomes. C. jejuni

is the most extreme example, where none of these features can

be effectively used to distinguish plasmids from chromosomes.

Thus, these species present a very difficult case for tools such as

plASgraph2 that base their predictions exclusively on sequence

features.

Finally, plASgraph2 not only provides a score for plasmidic

and chromosomal contigs, but also outputs a visualization of

an assembly graph labeled according to the predictions. Figure 4

shows parts of the assembly graph for C. freundii isolate

SAMN15148288 with nodes colored according to the ground truth

and both plASgraph2 and PlasForest predictions. The ground

truth supports our initial reasoning to incorporate the information

provided in the assembly graph, as linked contigs are more

likely to belong to the same class. While both tools make some

incorrect predictions, visualization clearly shows several isolated

chromosome predictions among plasmid contigs and vice versa in

the PlasForest prediction, whereas plASgraph2 has only one such

isolated false positive.

4. Discussion and conclusion

PlASgraph2 is an ML tool designed to identify plasmidic,

chromosomal, and ambiguous contigs directly from a bacterial

assembly graph using a GNN architecture. Our tool is easy

to use, as it only requires a short-read assembly graph file

as input, and outperforms other state-of-the-art methods on

ESKAPEE species and other related pathogens, especially when

including short contigs (<1 kbp) in the evaluation, while obtaining

comparable results with contigs above 1 kbp. The performance of

plASgraph2 is especially noteworthy considering the potential for

the classification of unknown plasmids, as, once a model has been

trained, performing classification using plASgraph2 is completely

independent of sequence homology. This feature is an important

step toward the identification of previously unknown plasmids,

which can be critical for diverse One-Health epidemiologic

surveillance (Cox et al., 2021). Additionally, plASgraph2 is not

dependent on specific species and can therefore be used for

newly sequenced bacteria for which no closed genome sequence is

available yet.

On contigs longer than 1kb, Platon was the best performing

method on the ESKAPEE test set. This result suggests that

the assembly graph information can be complemented by

homology information to enable better performance. However,

accurate classification of shorter contigs by plASgraph2 may

enable identification of more complete plasmids from incomplete
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FIGURE 3

Comparison of F1-scores using samples of evolutionarily close non-ESKAPEE species considering all contigs longer than 100 bp. Each datapoint
represents the F1-score of a single isolate. Median is shown as a horizontal line.

FIGURE 4

Contig classification in the context of the assembly graph of C. freundii isolate SAMN15148288. Chromosomal contigs are colored in blue and
ambiguous contigs are colored in black. (Left) The ground-truth, including two di�erent plasmids (green and red). (Middle) plASgraph2 predictions.
(Right) PlasForest predictions. Note that, the classification tasks do not include binning of contig plasmids, thus all predicted plasmid contigs are
colored in green. The assembly graph extends to the upper left as a loop of chromosomal contigs alternating with unlabeled SNPs, which is not
shown.

assemblies and has the potential to facilitate novel plasmid

discovery.

Another novel feature of plASgraph2 is the separation of

plasmid and chromosome classification tasks, recognizing that

some contigs are ambiguous, being parts of both types of molecules.

These ambiguous contigs are an interesting subject for further

study by themselves; our preliminary analysis of ambiguous contigs

in our data sets suggests that the majority of them are related to

transposons and phages. These mobile elements can integrate into

both plasmids and chromosomes within the cell.

The simplicity of the architecture of the plASgraph2

model makes it amenable to extensions. For example, the

use of additional information about plasmids, such as the

presence of plasmid-specific genes in a contig, could allow for

further increase in classification accuracy as this additional

information would propagate to nearby nodes due to the

GNN architecture.
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datasets. Our software is available at https://github.com/cchauve/
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