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Mosquito-borne diseases such as malaria, dengue fever, West Nile virus, 
chikungunya, Zika fever, and filariasis have the greatest health and economic impact. 
These mosquito-borne diseases are a major cause of morbidity and mortality in 
tropical and sub-tropical areas. Due to the lack of effective vector containment 
strategies, the prevalence and severity of these diseases are increasing in endemic 
regions. Nowadays, mosquito infection by the endosymbiotic Wolbachia 
represents a promising new bio-control strategy. Wild-infected mosquitoes 
had been developing cytoplasmic incompatibility (CI), phenotypic alterations, 
and nutrition competition with pathogens. These reduce adult vector lifespan, 
interfere with reproduction, inhibit other pathogen growth in the vector, and 
increase insecticide susceptibility of the vector. Wild, uninfected mosquitoes can 
also establish stable infections through trans-infection and have the advantage of 
adaptability through pathogen defense, thereby selectively infecting uninfected 
mosquitoes and spreading to the entire population. This review aimed to evaluate 
the role of the Wolbachia symbiont with the mosquitoes (Aedes, Anopheles, and 
Culex) in reducing mosquito-borne diseases. Global databases such as PubMed, 
Web of Sciences, Scopus, and pro-Quest were accessed to search for potentially 
relevant articles. We  used keywords: Wolbachia, Anopheles, Aedes, Culex, and 
mosquito were used alone or in combination during the literature search. Data 
were extracted from 56 articles’ texts, figures, and tables of the included article.
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1. Introduction

Due to their high adaptation capacity to various environments, 
mosquitoes have endured for millions of years (Couper et al., 2021). 
Different pathogenic, endosymbiont and symbiotic organisms have 
the ability to infect them. The main carriers of human pathogens are 
various species of mosquitoes from the genera Aedes, Anopheles, and 
Culex. Those mosquito genera are vectors of emerging and reemerging 
human diseases caused by pathogens, such as protozoan parasites, 
viruses, and nematodes (Iturbe-Ormaetxe et al., 2011).

Among the protozoan parasitic diseases, malaria is caused by 
different Plasmodium species. It is a life-threatening disease spread to 
humans by the bite of infected female Anopheles mosquitoes. 
According to the World Health Organization (WHO) report in 2022, 
globally, more than 3.2 billion people (almost half the world’s 
population) are at risk of malaria; furthermore, 245 million malaria 
cases have been recorded, with a mortality of 0.6 million. Children are 
the most affected group of patients. Malaria is also a great burden 
from an economic point of view; $ 12 billion is lost per year in 
economic productivity in Africa alone (WHO, 2022).

Similarly, among mosquito-borne viral diseases, viruses belonging 
to the Flaviviridae family, such as Dengue virus, Zika virus, yellow 
fever virus, chikungunya virus, and West Nile virus, can be transmitted 
to humans by Aedes aegypti and Ae. albopictus.

About half of the world’s population is at risk of dengue, which is 
estimated to infect 100–400 million people yearly. It is found in 
tropical and subtropical climates worldwide, mainly in urban and 
semi-urban areas (Leta et  al., 2018). Likewise, West Nile fever is 
caused by an RNA virus, namely West Nile virus (WNV). The virus 
causes severe disease in birds, horses, and other mammals, but most 
human infections occur through the bite of infected mosquitoes. 
About 1 in 150 infected people develop neurological disease and die. 
It is common in Africa, Europe, the Middle East, North America, and 
Western Asia (Leta et al., 2018; CDC, 2023). In addition, Yellow fever 
is caused by an arbovirus and is transmitted to humans through the 
bites of infected Aedes and Haemagogus mosquitoes. It is a high-
impact high-threat disease with the risk of cross-boundary 
transmission (Leta et al., 2018; WHO, 2023a).

Moreover, the Zika virus is transmitted to humans through the 
bites of infected mosquitoes, mainly Ae. aegypti, particularly in 
tropical regions. Zika virus infection clinical manifestation is similar 
to other arboviruses, with fever, skin rash, conjunctivitis, muscle and 
joint pain, fatigue, and headache (Leta et al., 2018; WHO, 2023b). On 
the other hand, Chikungunya fever is caused by an RNA virus 
belonging to the alphavirus genus, the Togaviridae family. Infection in 
humans occurs through the bite of infected female mosquitoes 
(commonly Ae. aegypti and Ae. albopictus). More than 2 million cases 
arise each year. The disease is now identified in more than 110 
countries (Bettis et al., 2022).

Among nematode infections transmitted by mosquito vectors, 
filariasis is mainly caused by the filarial worm Wuchereria 

bancrofti, and less commonly Brugia malayi and Brugia timori. 
Anopheles is the main filariasis vector in Africa, however, in the 
Americas the main vector is Culex. It is also transmitted by the 
bite of infected Aedes and Mansonia species. Filariasis has been 
considered a neglected tropical disease. However, it is the second 
leading cause of permanent malformation and disability, next to 
leprosy worldwide. Lymphatic filariasis affects the lymphatic 
system and causes abnormal enlargement of body parts, which can 
cause pain, severe disability, and social stigma. It affects more 
than 120 million of people in 72 tropical and subtropical countries. 
Over 882 million people in 44 countries worldwide remain 
threatened by lymphatic filariasis and require preventive 
chemotherapy to stop the spread of this parasitic infection 
(Bizhani et al., 2021; WHO, 2021).

To reduce the threat and burden of these vector-borne diseases, 
insecticides have been widely used in the last many years. However, 
due to the frequent and prolonged use of insecticides to control insect 
disease vectors and pests of crops, mosquitoes developed resistance to 
several classes of insecticides. As a result, bacteria belonging to the 
Wolbachia genus have been proposed as potential candidates for 
mosquito-borne disease control strategies (van den Berg et al., 2021). 
A brief timeline of Wolbachia isolation, the impact of infection, and 
utilization as a prevention method is presented in Figure 1 (Werren 
and O’Neill, 1997; Carrington et al., 2011; Kamtchum-Tatuene et al., 
2017; Dorigatti et al., 2018).

Wolbachia is a genus of Gram-negative, non-spore-forming, 
obligate intracellular parasitic bacteria that frequently infect 
mosquitoes. It is a member of the Alphaproteobacteria belonging to 
the Rickettsiales order. The bacterium was first isolated in 1924 by 
Hertig and Wolbach from the Cx. pipiens germlines (Hertig and 
Wolbach, 1924). Later in 1936, Hertig, designated it as Wolbachia 
pipientis (Hertig, 1936; Philip, 1956).

In the last two decades, different strains of Wolbachia were isolated 
and identified by genome sequencing: Wolbachia wAna, Wolbachia 
wSim, Wolbachia wMel, and Wolbachia wMoj from Drosophila species 
(Salzberg et al., 2005). Then different Wolbachia strains are grouped 
into two major phylogenetic lineages. More than 18 clades, ranging 
from A to R, have been identified, and almost all were isolated from 
arthropods (Landmann, 2019). The general distribution of Wolbachia 
strains and their associated supergroups in mosquitoes are 
summarized in Figure 2 (Inácio da Silva et al., 2021).

Besides mosquitoes, these intracellular bacteria selectively infect 
arthropods, nematodes, and other organisms but are harmless to 
humans (Osei-Poku et al., 2012). It forms endosymbiotic relationships 
that range from parasitism to mutualism (Zug and Hammerstein, 
2012; Sullivan, 2017). Parasitism and mutualism are host, 
environment, temperature, and density-dependent induced by the 
same genetic machinery and shifted by selection (Bordenstein et al., 
2009; Zug and Hammerstein, 2015; Rohrscheib et  al., 2016). 
Parasitism persistently affects several hosts’ biological indicators, 
such as physiology, immunity, and host development (Werren et al., 
2008; Gutzwiller et al., 2015). The host’s capacity for reproduction 
was also altered. Additionally, it makes arthropods sterile, and 
infertile, with reduced longevity, which strongly impacts male 
mosquitoes (Werren and Windsor, 2000; Ahmed et al., 2015; Sicard 
et al., 2019). On the other hand, mutualism provides resistance to 
viral pathogens or the provision of metabolites during host nutritional 
stress (Allman et al., 2020; Kaur et al., 2021).

Abbreviations: AMP, Antimicrobial peptides; CHIKV, Chikungunya virus; CI, 

Cytoplasmic incompatibility; DDT, Dichlorodiphenyltrichloroethane; DENV, Dengue 

Virus; IIT, Incompatible insect technique; IMM, Integrated mosquito management; 

NO, Nitric oxide; PCR, Polymerized chain reaction; RNA, Ribonucleic acid; ROS, 

Reactive oxygen species; SIT, Sterile insect technique.
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FIGURE 1

Wolbachia Timeline. From first isolation to ongoing research.

FIGURE 2

Wolbachia strains isolated from mosquito grouping. Of the 76 isolated Wolbachia strains, 28 (36.8%) belong to super-group A (Red), 23 strains (30.3%) 
are also grouped in super-group B (Green), 11 strains (14.5%) are also grouped under both A and B (Red and Green), while 14 (18.4%) were non 
annotated (Blue).
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The bacterium has the ability to be transmitted vertically through 
insect eggs and spread horizontally across populations (Hedges et al., 
2008; Zug and Hammerstein, 2012; Duron et al., 2015). A vertically 
transmitted Wolbachia is frequently found in the insect’s 
endosymbionts, with a 28%–30% prevalence of naturally infected 
mosquitoes (Kittayapong et al., 2000; Dorigatti et al., 2018; Inácio da 
Silva et al., 2021). Furthermore, there are different types of symbiont 
transmission, from vertical (genetic) to horizontal (infectious), with 
horizontal transmission opting for parasitism. In contrast, vertically 
transmitted endosymbionts evolve toward reciprocity (Zug and 
Hammerstein, 2015) among naturally infected genera: Aedes, Culex, 
Drosophila, and other insect species (Osei-Poku et al., 2012; Sicard 
et al., 2019; Inácio da Silva et al., 2021) but not commonly reported in 
Ae. aegypti and Anopheles species.

Even though Wolbachia infection is transmitted between 
unrelated species, it spreads more quickly among related species. As a 
result, strains that naturally exist in mosquitoes are suitable for trans-
infection into different vector species, enabling bacterial diffusion 
among mosquito populations (Turelli and Hoffmann, 1991).

Wolbachia-infected mosquitoes reduce mosquito-borne diseases 
by reducing competent mosquito populations or the vector’s number 
of mosquitoes and/or pathogen replication (Yen and Failloux, 2020). 
This is due to CI stimulated by the dynamics of Wolbachia strains 
introduced into a mosquito population and immune modulation 
(Kambris et  al., 2010), which are triggered to change the host’s 
behavior and the pathogenic transmission effect (Sinkins et al., 2005; 
Hedges et al., 2008; Kambris et al., 2009, 2010; Dorigatti et al., 2018). 
This phenomenon reduces pathogen replication and disease 
transmissions by vectors to humans and/or animals.

In this review, we  focused on assessing the role of Wolbachia 
infection in the genera Aedes, Anopheles, and Culex in reducing 
vector-borne diseases. Global electronic databases (PubMed, Web of 
Sciences, Scopus, and Pro-Quest) were used to search potentially 
relevant and most recent articles published from 2000 to 2022. 
Wolbachia, Anopheles, Aedes, Culex, and mosquito were used alone or 
in combination as a keyword during the literature search. The search 
was conducted from November 15th to December 12th, 2022. Papers 
were chosen according to topic pertinence; only research articles 
published in English and articles with all the required information 
were included in the review. Data were extracted from the included 
articles’ texts, figures, and tables, of the included articles. Preliminary 
946 articles were accessed, of which only 56 were used for review, as 
shown in Supplementary Figure S1 and Supplementary Table S1.

2. Wolbachia strain and mosquito 
infection

This study retrieved 56 original studies. Of these, 32 and 13 studies 
reported infection of Aedes and Anopheles species by Wolbachia. Other 
11 original studies revealed infection in Culex species 
(Supplementary Figure S1 and Supplementary Table S1).

2.1. Wolbachia infection in Aedes species

The genus Aedes includes more than 950 species and is one of the 
most widespread mosquito genera in the world (Rogers, 2023). 

Among them, Ae. aegypti and Ae. albopictus are the most known 
biological vectors of vector-borne diseases (Brelsfoard and Dobson, 
2011; Silva et al., 2017; Damiani et al., 2022) and are included in this 
study. These two main species are primarily responsible for spreading 
filariasis, dengue, yellow fever, chikungunya, West Nile Virus, and 
Zika fever, which can result in serious human diseases (Hoey, 2000; 
Brasil et al., 2016). These illnesses are a major public health problem 
resulting in millions of infections and thousands of fatalities yearly 
(Caragata et al., 2021).

Due to the disease’s severity and the limitation of current 
prevention patterns, entomopathogenic bacteria have been explored 
to enhance current control measures and proposed as an effective 
strategy to reduce the increasing problem of vector-borne diseases 
(Turley et al., 2009; Mohanty et al., 2016; Yen and Failloux, 2020).

A recent molecular study by Li et  al. (2023) in the Chinese 
province of Hainan revealed that the prevalence of Wolbachia was 
86.7% from field-collected Ae. albopictus (Li et al., 2023). Another 
study conducted in eastern Thailand by Kittayapong et  al. (2002) 
demonstrated the maternal transmission of Wolbachia from field-
collected Ae. albopictus was nearly 100%. Wild infections also have 
efficient vertical transmission across host generations, essential for 
symbiosis. Even though there was no natural infection report of Ae. 
aegypti populations by Wolbachia, many studies indicated trans-
infection techniques to infect non-wild infected mosquito populations 
(Turley et al., 2009; Walker et al., 2011; Jeffries and Walker, 2015; 
O’Neill, 2018; Ding et al., 2020; Liew et al., 2021). This technique 
established stable vertical transmission in Ae. albopictus, Ae. aegypti 
and Anopheles species (McMeniman et al., 2009; Iturbe-Ormaetxe 
et al., 2011; Calvitti et al., 2014).

2.1.1. Wolbachia infection and its effect on Aedes 
species

Wolbachia infection on Aedes is becoming an increasingly popular 
alternative candidate strategy for controlling vector-borne disease 
transmission (Brelsfoard and Dobson, 2011). According to research 
findings, infected females can successfully mate with infected and 
uninfected males and give live Wolbachia-positive offspring (Sinkins, 
2004; O’Neill, 2018). On the other hand, when uninfected females 
mate with infected males, they produce non-viable eggs (Figure 3) 
(Charlat et al., 2001; Poinsot et al., 2003; Werren et al., 2008; Brelsfoard 
and Dobson, 2011; Beebe et al., 2021). As a result of male sperm 
infection, haploid cells do not effectively fuse with uninfected eggs, 
causing the failure of embryonic development or early embryonic 
death (Caragata et al., 2021). Other research findings pointed out that 
Wolbachia-infected male nutrition can be linked to reduced fertility 
and fecundity in mates (Islam and Dobson, 2006; Beebe et al., 2021). 
This disrupts the normal development of the zygote produced by 
infected males and uninfected females mating (Serbus et al., 2008).

The study conducted in Crevalcore, Italy by Puggioli et al. (2016) 
focused on using a specific Ae. albopictus line that was genetically 
modified to produce sterile males generated by introducing wPip in 
the ARwP line. The finding showed bidirectional reproductive barriers 
between infected and uninfected mosquitoes, meaning that when 
infected males mate with uninfected females or vice versa, the eggs 
produced fail to develop or hatch, thus leading to a reduction in the 
overall mosquito population (Puggioli et al., 2016). Similarly, the study 
conducted by Moretti et al. (2018) in Italy focused on a genetically 
manipulated line of Ae. albopictus mosquitoes using ARwP-M reduced 
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Ae. albopictus populations. This suggested the introduction of a 
combined ARwP-M line, which carries wPip and wMel-induced 
sterility and virus protection to fight Ae. Albopictus-borne viruses. This 
could be a potential strategy for controlling Ae. albopictus populations 
and reducing the transmission of chikungunya and dengue viruses 
(Moretti et al., 2018).

Based on this, to reduce the Ae. albopictus population in the field, 
Zheng et al. (2019) used Incompatible Insect Technology (IIT), which 
utilizes sterilization with the maternally inherited endosymbiont 
Wolbachia, but the accidental release of females infected with the same 
strain of Wolbachia as the released males could comprise its 
effectiveness (Zheng et al., 2019). In this scenario, a study conducted 
in Nanyang, Singapore by Ong et  al. (2022) reported that an IIT 

combined with a sterile insect technique (IIT-SIT) releasing X-ray 
irradiated Wolbachia-infected male mosquitoes resulted in a 98% 
reduction in Ae. aegypti populations also showed an 88% reduction in 
the incidence of dengue fever (Ong et al., 2022).

Likewise, an on-field trial performed in South Miami, 
United  States, by Mains et  al. (2019) showed the release of many 
infected Ae. aegypti males significantly reduced the egg-hatching rate 
in areas populated by infected males, consistent with the CI 
expectations. Similarly, the number of Ae. aegypti were significantly 
reduced in areas where infected males were getting infected compared 
to untreated areas, reducing the Zika virus burden (Mains et al., 2019). 
Moreover, the release of sterile or incompatible males resulted in the 
suppression of both wild-type and wMel-infected Ae.aegypti 

FIGURE 3

The possible crosses between Wolbachia-infected and/or uninfected mosquitos. Maternal transmission of Wolbachia effects. (A) When Wolbachia 
uninfected female and male mosquitoes mate, they will give a viable egg that will continue the next generation and disease transmission. To tackle it, 
intervention, IIT, and/or SIT are needed. Similarly, (B) when infected females and males mate, they produce infected viable eggs. However, the 
development of the offspring continues the phenotype, adult behaviors may change, the life span is short, and the population declines. As a result, no 
more diseases frequently occur, but intervention like SIT is still needed. (C) When infected females mate with uninfected males, they produce infected 
viable eggs that can grow but are less susceptible to developing pathogens and transmitting diseases. The adult life span may be short and may not 
effectively bite humans and other hosts. Nevertheless, control intervention such as SIT is needed. (D) When an uninfected female mating with an 
infected male, no more viable egg is produced or early embryonic death occurs in the new generation. As a result, no more intervention is needed. 
Key: W+: Wolbachia infected, W−: Wolbachia uninfected, ×: Mates.
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populations, confirming the utility of bidirectional incompatibility in 
the field (Beebe et al., 2021) as demonstrated in northern Queensland, 
Australia by Beebe et al. (2021).

The main limitation of the IIT is releasing infected male mosquitos 
maternally inherited. To overcome this constraint, a combination 
strategy between IIT techniques and the Sterile Insect Technique (SIT) 
was also tested, whereby overwhelming numbers of sterile insects are 
released into the wild (Zheng et al., 2019; Villegas-Chim et al., 2022). 
SIT is a control method applied against agricultural pests as well as 
human disease vector populations, by providing the release of sterile 
or incompatible males (Werren et al., 2008). According to Iturbe-
Ormaetxe et  al. (2011), Wolbachia transinfection experiments are 
more successful when the donor and recipient organisms are 
closely related.

Likewise, Moreira et  al. (2009a,b) and Bian et  al. (2010) 
demonstrated that bacterial infection can occur in different body parts 
of Ae.aegypti like the midgut, fat body, brain, and salivary gland, with 
a high prevalence in the reproductive tissues, both ovaries and testicles 
(Bi and Wang, 2020). Another study conducted in Mexico by Mejia 
et  al. (2022) found relatively greater Wolbachia densities in 
reproductive tissues than those in the somatic tissues (Mejia et al., 
2022). This implies that reproductive parts infection can inhibit the 
vector fecundity and fertility.

Beyond the reproductive system, the brain also is a target for 
Wolbachia infection, affecting oviposition and host-seeking behavior. 
However, this condition does not alter the attraction of mosquitoes to 
the human odor (Wiwatanaratanabutr et al., 2010; Turley et al., 2014) 
but rather, the blood-feeding ability by affecting the proboscis’s 
anatomy (Turley et al., 2009; Moreira et al., 2009a; Bian et al., 2010).

A study by Caragata et al. (2016a) demonstrated that Wolbachia 
infection can induce diet-nutritional stress in Ae. aegypti reducing 
vector susceptibility versus Dengue virus and the avian malarial 
parasite Plasmodium gallinaceum. Similarly, Geoghegan et al. (2017) 
found that infection alters lipid/cholesterol metabolism including 
differential cholesterol and lipid profiles (Geoghegan et al., 2017). 
These findings suggest a possible competition for nutrients between 
Wolbachia and other pathogens inhibiting replication and shortening 
vector life span.

According to De Oliveira et al. (2017), Ae. albopictus demonstrated 
greater competitive ability in a variety of laboratory settings. Its larvae 
outperformed Ae. aegypti (both infected and uninfected groups) in 
terms of development and performance index survival rate. Wolbachia 
boosted the larval survival rate of Ae. aegypti. This finding indicated 
that larval density greatly impacts the competition for nutrients in 
infected vectors (De Oliveira et al., 2017).

According to a study conducted by Islam and Dobson (2006) on 
the impact of Wolbachia on Ae. albopictus, uninfected larvae, had the 
best survival rate, partly because males infected with wAlbB or wAlbA 
had lower survival rates. Dutra et al. (2016), recorded similar results 
at Penn State Brazil and found that wMel infection of Ae. aegypti 
caused faster larval growth in males and females at greater densities 
but did not affect females living in less crowded settings (Dutra et al., 
2016). While wMelPop infection of Ae. aegypti exhibited highly 
inhibitory effects of larval food level, the effect of strain alone was not 
significant, according to a different study conducted in Queensland, 
Australia by Kho et  al. (2016). These differences may be  due to 
bacterial density and host susceptibility. Thus a higher density causes 
more pronounced effects. For instance, W. pipientis strain wMelPop is 

known for shortening life spans when inserted into the main dengue 
vector Ae. aegypti (Thomas et al., 2011; Yeap et al., 2014) but not in Ae. 
albopictus (Mousson et  al., 2010), as demonstrated by 
Wiwatanaratanabutr et al. (2010).

According to Ross et  al. (2017) wMel and wMelPop-CLA 
infections of Ae. aegypti could not be  transmitted to the next 
generation when mosquitoes were exposed to 26–37°C across all life 
stages. In contrast, under the same temperature range, an increase in 
infection density allowed the infection to be inherited from mother to 
offspring (Ross et al., 2017).

Besides vertical transmission, innate immune priming is also 
strain and density-dependent. Indeed, epithelial cells that are also 
involved in regulating innate immune responses to bacteria and 
parasites produce a significant number of reactive oxygen species and 
antimicrobial peptides (Ryu et al., 2010; Pircalabioru et al., 2016). In 
Ae. aegypti, an increased level of reactive oxygen compounds 
suppresses the replication of West Nile virus (Hussain et al., 2013), 
Dengue virus (Bian et al., 2010; Frentiu et al., 2014), Chikungunya 
virus (Aliota et  al., 2016a), and Zika virus (Aliota et  al., 2016b). 
Furthermore, it confers resistance to various ribonucleic acid (RNA) 
viruses and virus-induced death in flies, but it reduces adult vectorial 
capacity (Mohanty et  al., 2016). Replication of West Nile virus is 
significantly reduced in the presence of Wolbachia by the alteration of 
GATA4 expression which inhibits virus assembly (Hussain et  al., 
2013). Those imply that Wolbachia infection has evolutionary, 
biological, and developmental impacts on mosquito vectors.

On the other hand, Quek et al. (2022) found that in the absence 
of Wolbachia, microfilariae quickly lose their capacity to develop in 
the mosquito vector because of their inability to break out of their 
shells and get through the gut wall. They also showed that the enzyme 
chitinase, essential for microfilariae to leave their shells, was low in 
Wolbachia-depleted microfilariae, preventing them from leaving their 
shells. When chitinase was added to Wolbachia-depleted microfilariae 
in a lab, they could break out of their shells just as well as the ones that 
were not treated. So, it looks like Wolbachia has a big role in the 
transmission of filariasis and suggests that anti-Wolbachia treatment 
mediates a more accelerated impact on the elimination of lymphatic 
filariasis (Quek et al., 2022).

2.2. Wolbachia infection in Anopheles 
mosquitoes

Among all retrieved articles in this review, 13 were on Wolbachia 
infection of Anopheles species (Supplementary Figure S1 and 
Supplementary Table S1). There are more than 460 recognized species 
in the genus Anopheles. An. gambiae and An. funestus are the most 
significant global malaria vectors (Sinka et al., 2012; Wiebe et al., 
2017). Currently, An.stepheni is going to be  the main concern for 
malaria transmission in Africa. The genus Anopheles is most well-
known for conveying malaria but also transmits other diseases like 
filarial worms (Coetzee, 2020; Kientega et al., 2022).

The first recorded on-field infection of Wolbachia in Anopheles 
species was reported in Burkina Faso by Baldini et al. (2014) using 
16S rRNA gene analysis from An. gambiae reproductive tissue. This 
study also isolated a new strain of Wolbachia, namely wAnga. 
Similarly, other research conducted in Senegal reported the first 
Wolbachia on-field infection in another species, namely An.
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funestus, using the 16S rRNA gene and isolating new strains called 
wAnfu-A and wAnfu-B (Niang et al., 2018). In 2022 Waymire et al. 
detected Wolbachia haplotypes in wild Anopheles stephensi in 
eastern Ethiopia (Waymire et  al., 2022). Despite this evidence, 
according to a phylogenies screening conducted in 2019 by 
Chrostek and Gerth on Wolbachia 16S rRNA presence in An. 
gambiae there is no congruence between host and symbiont 
phylogenies (Chrostek and Gerth, 2019).

2.2.1. Wolbachia infection and parasite 
development Anopheles species

Once the Anopheles infection is established, the inherent 
mechanism is similar to the Aedes and Culex species, as shown in 
Figure 2 (Hughes et al., 2011). However, the role of Wolbachia in 
inhibiting the malaria parasites in Anopheles mosquitoes is still not 
well-known (Straub et  al., 2020), In vitro trans-infection of An. 
gambiae with wMelPop and wAlbB strains performed by Hughes et al. 
(2011) demonstrated the bacteria distributed throughout the fat body, 
head, sensory organs, and other tissues.

On the other hand, a study conducted in Pennsylvania, 
United States, by Hughes et al. (2012) found that the wAlbB strain 
significantly increases P. berghei oocyst levels in the infected An. 
gambiae midgut while wMelPop modestly suppresses oocyst levels. 
Another study from East Lansing, United States, by Joshi et al. (2014), 
reported that wAlbB infections of An. stephensi had reduced female 
fecundity and caused a minor decrease in male mating 
competitiveness. Later, Joshi et al. (2017) revealed wAlbB infection in 
An. stephensi led to a reduction in parasite numbers of up to 92% at 
the sporozoite stage and more than half at the oocyst stage. This 
finding implies that wAlbB strain infections can reduce the parasite 
density depending on the Plasmodium species and vector population. 
This evidence is in agreement with what was reported by Baldini et al. 
(2018) on natural Wolbachia infection in the malaria mosquito 
Anopheles arabiensis in Tanzania.

Another study conducted in Dangassa, Mali, by Gomes et  al. 
(2017) found the Wolbachia infection in the field-collected An. coluzzii 
was positive for wAnga and revealed a significantly lower prevalence 
and intensity of P. falciparum sporozoite. Similarly, in Bobo-Dioulasso, 
Burkina Faso, Shaw et al. (2016) revealed that Wolbachia infections in 
natural Anopheles populations affect egg laying and negatively 
correlate with Plasmodium development. Finally, in 2020 Wong et al. 
reported that Wolbachia infection in An. gambiae is able to reduce the 
mosquito life span and provide resistance to pathogen infection 
(Wong et al., 2020).

2.3. Wolbachia infection in Culex species

Among all retrieved articles in this review, 11 have as subjects the 
epidemiology and infection of Culex species (Supplementary Table S1). 
The genus Culex has several species; however, Cx. pipiens and Cx. 
quinquefasciatus, reviewed in the selected studies, are vectors for 
various human diseases, such as arbovirus diseases like the West Nile 
virus, Japanese encephalitis, and filariasis (Harbach, 1985; Omar, 
1996; Paramasivan et al., 2003).

The first Wolbachia infection in mosquitoes was reported from 
Cx. pipiens reproductive tissues by Hertig and Wolbach (1924). Later 
on, different studies showed that the prevalence of Wolbachia in this 

species ranges from 65% to 100% in field-collected females and nearly 
100% in males (Karami et al., 2016; Bergman and Hesson, 2021).

2.3.1. Wolbachia infection and its effect on the 
Culex species

The mode of infection and its effect on Culex physiology is similar 
to Aedes. However, Hague et al. (2020) demonstrated that the infected 
host raises temperature preference. In contrast to the uninfected, most 
hosts infected with Wolbachia supergroup A prefer cooler 
temperatures than uninfected ones, On the other hand, supergroup B 
infected hosts prefer warmer temperatures (Hague et al., 2020). These 
findings suggest that Wolbachia infection-inducing host behavior’s 
alterations facilitate bacterial replication and disease spread (Moreira 
et  al., 2009b; Glaser and Meola, 2010; Caragata et  al., 2016b). 
Interestingly similar evidence has not been reported for Aedes 
and Anopheles.

According to Atyame et  al. (2011) a considerable amount of 
Wolbachia diversity can be generated within a single host species in a 
short time, and playing a key role in their evolution. Furthermore, a 
recent study by Zhang et al. (2020) clarified the immune system’s role 
in Cx. pipiens infection, according to the author the competition for 
scarce nutrients may not be the primary cause of Wolbachia-mediated 
pathogen suppression, as evidenced by the fact that the presence of 
Wolbachia per se does not always alter pathogen infections. Instead, it 
is brought on by host immunological reactions (Zhang et al., 2020).

In vitro insecticide susceptibility studies by Berticat et al. (2002) 
and Duron et  al. (2006) showed that the symbiotic maternally 
inherited Wolbachia affected Cx. quinquefasciatus and Cx. pipiens 
insecticide resistance depending on infection density and the type of 
insecticide used (Berticat et al., 2002; Duron et al., 2006). Therefore, a 
medium-density infection synergises with deltamethrin and other 
organophosphates, but not with Dichloro-diphenyl-trichloroethane 
(DDT) (Berticat et al., 2002; Duron et al., 2006; Shemshadian et al., 
2021). Likewise, Echaubard et al. (2010) also reported that a medium-
density infection in Cx. pipiens made the vector insecticide-susceptible 
whereas with a higher density infection caused insecticide-resistance. 
These results may partially explain the presence of high-density 
infections in pesticide-resistant mosquitoes in the field (Echaubard 
et al., 2010).

Similarly, in vitro infection with wPipSJ made Cx. quinquefasciatus 
less susceptible to entomopathogenic bacteria as demonstrated by 
Díaz-Nieto et al. (2021). These findings agree with on-field records, 
where Cx. quinquefasciatus infected by wPipSJ are more resistant to 
Bacillus wiedmannii var. thuringiensis, and B. thuringiensis subsp. 
israelensis, and Lysinibacillus sphaericus bacterial infections (Díaz-
Nieto et al., 2021).

3. Discussion

Integrated Mosquito Management (IMM) strategies are currently 
the best option for reducing mosquito populations (CDC, 2020). This 
implementation is based on understanding mosquito biology, ecology, 
and mosquito pathogen interaction. Indeed, IMM programs employ 
several strategies, together with insecticides, such as larval breeding 
source reduction through community participation and biological 
control techniques like predatory fish and symbiotic bacteria (Dodson 
et al., 2017; CDC, 2020).
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Currently, scientific evidence has underscored the appropriate use 
of the symbiotic bacteria W. pipientis as a new weapon in the fight 
against mosquitoes as vector-borne diseases. Compared to insecticide-
based methods, it has the advantage of potentially being more cost-
effective and environmentally friendly (Iturbe-Ormaetxe et al., 2011). 
In addition, Wolbachia infection density was positively correlated with 
insecticides, making this management strategy even more attractive 
(Berticat et al., 2002; Duron et al., 2006; Shemshadian et al., 2021). 
These suggest that reducing vector population and other pathogen 
replication in the host also increases the vectors’ susceptibility to 
different insecticides.

When considering Wolbachia infection as a pathogen for 
inhibition and population reduction, factors such as strain, density, 
distribution, and infection frequency must be considered (Bian et al., 
2010). The mechanism of Wolbachia infection to protect the host from 
pathogens is immune priming, in which symbiotic infection 
upregulates basal immune responses and primes insect defenses 
against subsequent pathogen infections (Ye et al., 2013). However, 
Hughes et  al. (2012) reported that the wAlbB strain significantly 
increases P. berghei oocyst levels in the infected An. gambiae. These 
various effects imply that Wolbachia strains differ in their interactions 
with the host and/or pathogen, and these variations may be used to 
elucidate the molecular processes that prevent pathogen development 
in mosquitoes.

In addition to strain and density, the distribution of bacterial 
infections within the mosquito’s body also significantly impacts 
mosquito population decline. Infection of the reproductive tract 
causes host reproductive failure due to CI (Li et  al., 2023). 
Reproductively infected mosquitoes cannot produce viable 
offspring or transmit the bacteria to their offspring (Sinkins, 2004; 
O’Neill, 2018). On this basis, releasing Wolbachia-infected male 
mosquitoes into the field decreased the fecundity and the fertility 
of wild mosquito populations. Wolbachia Incompatible Insect 
Technology (IIT) performing this strategy has proven to be  a 
promising method for eliminating invasive mosquito populations 
such as Ae. aegypti and Ae. albopictus and reducing the incidence 
of vector-borne diseases such as dengue, chikungunya, and Zika 
(Pagendam et al., 2020).

To enhance the effect of population reduction of mosquitoes in 
the human community, IIT can be combined with radiation-based 
SIT, which is rearing, sterilization, and release of large numbers of 
male mosquitoes to mate with fertile wild females, thereby reducing 
offspring production from the target population (Zheng et al., 2019; 
Chen et al., 2023). This further reinforces the dependence on strain 
type and density in infection vertical transmission.

Even though the release of Wolbachia-carrying mosquitoes into 
communities is not immediately stopping the epidemic, it leads to 
mosquito population declines over several months (Iturbe-Ormaetxe 
et al., 2011; Liew et al., 2021). These imply that Wolbachia influences 
the transmission effect when mosquitoes are exposed for an extended 
time to obtain the capacity of Wolbachia strains to infiltrate the 
uninfected mosquito population in the community.

Besides, before and during the implementation of releases of 
Wolbachia-infected mosquitoes for mosquito population suppression 
or replacement. It is important to keep engaging with the community 
and educating them to increase their understanding of this method, 
including clear and specific health risk assessment information 

(Sánchez-González et  al., 2021). In addition to maintaining 
community support, programs should evaluate and monitor to 
determine how well they reduce the mosquito population (Sánchez-
González et  al., 2021; Villegas-Chim et  al., 2022). Household 
perception surveys in different areas of Singapore provided a good 
understanding of public acceptance and sentiments toward using 
Wolbachia-Aedes technology (Liew et al., 2021). In addition, Texas and 
California in the United States, Thailand, Mexico, and Australia have 
released Wolbachia-infected mosquitoes and reported a significant 
drop in Ae. aegypti mosquitoes to control dengue, chikungunya, and 
Zika also gaining acceptance in the community (Wiwatanaratanabutr 
et al., 2010; Torres et al., 2020; Villegas-Chim et al., 2022).

The main difficulty with using Wolbachia for controlling vectors 
in the community is that the main vectors, like Ae.aegypti and 
Anopheles species, are not usually naturally infected. Trans-
infection in the laboratory is necessary to ensure the bacterium is 
stably transmitted in these vector populations. In addition, 
culturing obligate intracellular bacteria is a challenge. Insect cells 
support Wolbachia growth, but culturing is long and difficult to 
manipulate cells. Modified Eagle’s Minimum Essential Medium, 
Schneider’s Insect Medium, Mitsuhashi-Maramorosch Insect 
Medium, and their one-to-one combinations are tested and effective 
for Wolbachia culture (Angeloni, 2021). Moreover, experts must 
transfer Wolbachia’s strain into a new host once it grows in the 
cell culture.

4. Conclusion

Different Wolbachia species and strains have been isolated at 
different times. These different Wolbachia species and strains 
commonly infect and affect mosquito species differently. Once 
Wolbachia-infected mosquitoes release, they may reduce or prevent 
disease transmission through two mechanisms: (1) by reducing 
mosquito population density and/or survival rate; (2) by reducing the 
ability of mosquitoes to transmit diseases and/or pathogen replication 
or development. It causes the hosts’ CI, phenotypic changes, and 
nutritional competition with other pathogens. These triggers reduce 
adult survivorship, inhibit mosquito reproduction, and prevent 
pathogen replication or development. Wolbachia infection from 
mosquitoes also sensitizes status to insecticides. Accordingly, 
Wolbachia can be  used for biological control of mosquito-borne 
diseases, a public health problem in the tropical and sub-tropical 
world and some developed countries. Wolbachia reduces infection and 
transmission of diseases such as malaria, filariasis, dengue, 
chikungunya, yellow fever, zika, and West Nile fever.
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