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Bacteriophages constitute a ubiquitous threat to bacteria, and bacteria have 
evolved numerous anti-phage defense systems to protect themselves. These 
systems include well-studied phenomena such as restriction endonucleases and 
CRISPR, while emerging studies have identified many new anti-phage defense 
systems whose mechanisms are unknown or poorly understood. Some of these 
systems involve overcoming lysogenization defect (OLD) nucleases, a family of 
proteins comprising an ABC ATPase domain linked to a Toprim nuclease domain. 
Despite being discovered over 50  years ago, OLD nuclease function remained 
mysterious until recent biochemical, structural, and bioinformatic studies revealed 
that OLD nucleases protect bacteria by functioning in diverse anti-phage defense 
systems including the Gabija system and retrons. In this review we will highlight 
recent discoveries in OLD protein function and their involvement in multiple 
discrete anti-phage defense systems.
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1. Introduction

Bacteria are under constant threat from viruses termed bacteriophages, or phages. It is 
estimated that there are 1031 phage particles in nature (Hendrix et al., 1999; Mushegian, 2020), 
making them the most abundant biological agent on the planet. To protect themselves from this 
ubiquitous threat, bacteria have evolved numerous systems to ward off phage infections 
(Hampton et al., 2020; Georjon and Bernheim, 2023). A recurring theme in many of these 
defense systems is the targeted cleavage of phage nucleic acid. The restriction-modification 
(R-M) system constitutes a classic example (Loenen et al., 2014), while more recently CRISPR 
sequences were discovered to generate immunological memory of previous infections and 
ultimately generate acquired defense (Mojica et al., 2005; Barrangou et al., 2007). Similar to how 
the R-M system once ushered in the modern era of recombinant DNA technology, the CRISPR/
Cas9 system has likewise revolutionized biological and industrial research.

The impact of R-M and CRISPR/Cas9 systems demonstrates the fruitfulness of basic 
biological research into anti-phage defense mechanisms, and recent years have witnessed the 
discovery of myriad anti-phage defense systems, many of which remain relatively 
uncharacterized. Some anti-phage defense systems feature the activity of prokaryotic Argonaute 
proteins that employ DNA endonuclease activity as the driving mechanism of anti-phage 
defense (Swarts et al., 2014; Kuzmenko et al., 2020). Others, like BREX (bacteriophage exclusion; 
Goldfarb et al., 2015), involve methylation to distinguish self from non-self DNA but do not rely 
on nucleolytic degradation to achieve cell defense (Gordeeva et al., 2019). Other systems do not 
achieve defense through the preservation of the cell but rather through abortive infection, in 
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which infected cells effect cell death before the phage can complete its 
replicative cycle (Lopatina et al., 2020). Systems resulting in abortive 
infection include CBASS (cyclic oligonucleotide-based antiphage 
signaling system) and PYCSAR (pyrimidine cyclase system for 
antiphage resistance) systems, which use cyclic dinucleotides as 
signaling molecules (Cohen et al., 2019; Tal et al., 2021). Systematic 
surveys of genomes, in particular focusing on genomic defense 
islands, continue to uncover new defense systems (Doron et al., 2018; 
Gao et al., 2020; Millman et al., 2022), most of which remain poorly 
understood. A close look at several systems, including the Gabija 
system (Doron et al., 2018; Cheng et al., 2021) and retrons (Millman 
et  al., 2020), illuminate a recurring appearance of overcoming 
lysogenization defect (OLD) family nucleases. A classification scheme 
has been proposed in which OLD proteins can be assigned to different 
classes depending on their surrounding genetic context (Dot et al., 
2023). In this review we will focus on the composition, structure, and 
function of Class 1, Class 2, and Class 3 OLD nucleases across diverse 
anti-phage defense systems.

2. Class 1 OLD proteins: phage-phage 
interference and structure overview

Although defense islands have been increasingly observed to 
harbor anti-phage defense systems (Makarova et al., 2011), Class 1 
OLD systems belie this trend as they are instead composed of single 
genes not found proximal to other candidate defense genes (Figure 1; 

Schiltz et al., 2019). The archetype for understanding Class 1 OLD 
proteins, and indeed the original discovery and namesake for the 
entire OLD family of proteins, arises from early phage genetics 
experiments. Gianpiero Sironi showed that P2 phage was unable to 
lysogenize E. coli mutants he named lyd (lysogenization defective), 
and subsequently identified P2 mutants that could lysogenize lyd 
mutants (Sironi, 1969). Sironi named this P2 mutant phenotype old 
for overcoming lysogenization defect. Subsequent work determined 
that lambda phage is unable to lysogenize a wild-type P2 prophage but 
that this phage interference is eliminated by mutations in old (Lindahl 
et  al., 1970). Lyd mutants turned out to reside in recB and recC 
(Lindahl et al., 1970) components of the RecBCD helicase-nuclease 
complex that plays critical roles both in homologous recombination 
and in defense against phages via double-stranded DNA degradation 
(Dillingham and Kowalczykowski, 2008). Expression of the P2 Old 
protein is sufficient to kill recBC− cells (Sironi et al., 1971), a phenotype 
that continues to be used to assess P2 Old function (Schiltz et al., 
2020). P2 Old’s interference with lambda phage was an early example 
of prophage-encoded anti-phage defense, a phenomenon that is now 
recognized as widespread (Patel and Maxwell, 2023). Indeed, the P2 
old locus has been observed to encode other anti-phage systems at this 
position (Rousset et al., 2022; Vassallo et al., 2022).

After early phage genetics defined the protein name and function 
in P2, studies of OLD nucleases mostly disappeared for many years. 
One notable exception was the purification and characterization of a 
P2 Old construct fused to maltose-binding protein (MBP; Myung and 
Calendar, 1995). This study established that P2 Old-MBP displayed 
5’to 3′ exonuclease activity on dsDNA. Furthermore, ATP was found 
to enhance but not be required for DNA cleavage, and the ATPase 
activity was not stimulated by the addition of DNA. Whether these 
activities were unique to P2 Old or were common to OLD proteins 
would remain unknown until recently (Table 1). A few years later, 
bioinformatic analysis showed that OLD proteins were composed of 
an N-terminal ATP-binding cassette (ABC)-family ATPase and a 
C-terminal Toprim domain (Figure 2; Aravind et al., 1998). ABC 
ATPases are found in diverse proteins ranging from membrane 
transporters to nuclear structural maintenance of chromosomes 
(SMC) proteins including condensins and cohesins (Krishnan et al., 
2020). The Toprim domain is a divalent metal-binding domain found 
in topoisomerases, DnaG-type primases, RecR proteins, and OLD 
family nucleases (Aravind et al., 1998). Toprim domains possess a 
conserved acidic motif that binds to divalent cations which promote 
phosphoryl transfer reactions (Keck et al., 2000; Kato et al., 2003; 
Schmidt et al., 2010), suggesting that DNA cleavage by OLD proteins 
may follow canonical two-metal DNA cleavage mechanisms (Steitz 
and Steitz, 1993).

Decades would pass until the field of OLD nuclease research was 
reignited recently with detailed studies of OLD nuclease structure and 
function, as well as bioinformatic and genetic analyses of their 
function in anti-phage defense systems. A critical breakthrough was 
the first structural determination of a full-length OLD protein, the 
Class 1 OLD in Thermus scotoductus (TsOLD; Figure 2; Schiltz et al., 
2020). The structure revealed the protein to adopt a homodimeric 
structure in which dimerization was mediated through a dimerization 
domain inserted into the ABC ATPases. Although the ATPases are 
docked in a conformation not competent to achieve ATP hydrolysis, 
the structure confirmed that the ATPase domain has structural 
homology with the ATP-binding cassette (ABC) family of ATPases. 

FIGURE 1

Genomic layouts of OLD protein classes. Gene neighborhood 
organizations for Class 1, 2, and 3 OLD proteins are shown, with OLD 
proteins in blue. Class 1 OLD proteins appear as single genes. Class 2 
OLD proteins are synonymous with GajA, and are found together 
with GajB (green), which shows homology to UvrD/PcrA/Rep-like 
helicases. Class 3 OLD proteins are found in retron cassettes and 
have two possible genomic layouts depending on OLD positioning 
relative to the reverse transcriptase (RT, orange) and non-coding 
RNA (ncRNA, white). Class 3A OLD proteins are found in type I-B2 
retrons, while Class 3B OLD proteins are found in type I-B1 retrons.
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Further structural studies will be required to determine whether Class 
1 OLD proteins may exist in higher multimeric complexes or associate 
with other proteins. Biochemical characterization of TsOLD showed 
that, like P2 Old, TsOLD displays robust 5’to 3′ exonuclease activity 
on linear dsDNA, as well as the ability to linearize circular plasmid 
DNA substrates. However, TsOLD is unlike P2 OLD in that the 
addition of ATP has essentially no effect on DNA cleavage by TsOLD 
(Table 1; Schiltz et al., 2020).

Mutagenesis studies in P2 Old showed that the conserved acidic 
metal-binding residues of the Toprim domain, as well as the conserved 
Walker A lysine critical for ATP binding, were all required for killing 
recBC− cells, implicating both the ATPase and Toprim domains as 
essential for at least some in vivo activities (Schiltz et  al., 2020). 
However, although the structural determination of TsOLD was a 
watershed moment propelling OLD protein research forward, the only 
Class 1 OLD protein established to provide defense against a phage 
remains P2 Old’s defense of prophages against lambda. The anti-phage 
defense functions of OLD proteins are better understood from studies 
of multicomponent systems featuring Class 2 or Class 3 OLD proteins.

3. Class 2 OLD proteins: the Gabija 
system

Recent discoveries of diverse anti-phage defense systems show 
that OLD proteins not only function on their own as Class 1 proteins 
but also are found in multicomponent anti-phage defense systems 
such as Class 2 OLDs found in the Gabija system (Doron et al., 2018). 
The genetic organization of the Gabija system was discovered 
independently by two groups. In the first instance, as part of a 
systematic discovery of anti-phage defense systems, the Sorek group 
identified a system composed of an OLD protein (GajA), and a UvrD/
PcrA/Rep-like helicase (GajB), a system they would name Gabija after 

the Lithuanian mythology goddess of fire (Figure 1; Doron et al., 
2018). They estimated the Gabija system is present in 8.5% of a set of 
38,167 microbial genomes, while more recent bioinformatic tools 
designed to identify anti-phage defense systems place Gabija 
frequency closer to 15% (Payne et al., 2022; Tesson et al., 2022). The 
second Gabija system discovery came from the Chappie group which 
was studying OLD nucleases and termed them as Class 1 or Class 2 
depending on whether they were found alone (Class 1) or in tandem 
with a UvrD/PcrA/Rep-like helicase (Class 2; Schiltz et al., 2019).

The first structural work on Class 2 OLD nucleases was performed 
on isolated Toprim domains from Burkholderia pseudomallei 
(BpOLD) and Xanthomonas campestris p.v. campestris (XccOLD; 
Schiltz et al., 2019). Their Toprim domains contain an extra helical 
domain insert that differentiates them from Class 1 OLD proteins and 
makes Class 2 OLD proteins about 50 amino acids longer on average 
(Figure 2). Structural analysis of the BpOLD Toprim domain shows 
its conserved acidic motif binds two Mg2+ ions and suggests a 
canonical two-metal mechanism for DNA cleavage. Biochemical 
assays with full-length BpOLD and XccOLD show nonspecific 
endonuclease and exonuclease activity on lambda phage DNA which 
is unaffected by ATP concentration (Table 1). The authors proposed 
that the BpOLD ATPase domain, which is competent to hydrolyze 
ATP (Cheng et al., 2021), plays a regulatory role in the cleavage of 
substrates by the Toprim domain (Schiltz et al., 2019).

The most studied Gabija system is from Bacillus cereus VD045 and 
is found to offer protection against phages of the Siphoviridae family 
including the SPβ, Φ105, and rho14, as well as phages from the 
Podoviridae family such as Φ29 (Table 1; Doron et al., 2018). Although 
initial biochemical characterization described the B. cereus GajA 
(BcGajA) as functionally distinct from OLD nucleases (Cheng et al., 
2021), structural superposition of full-length monomers from 
T. scotoductus OLD and BcGajA reveals an RMSD of 4.4 Å despite a 
sequence identity of only 22.2% (Figure 2; Schiltz et al., 2020; Antine 

TABLE 1 Functional properties of OLD protein classes.

OLD 
class

Surrounding 
genetic context

Select 
examples

Targeted 
phages

Structural 
data

DNA cleavage 
activities

Nucleotide 
effect on DNA 
cleavage

ATP 
hydrolysis 
activity?

Class 1 Single genes P2 Old (UniProt: 

P13520)

Lambda None Nonspecific 5′ to 3′ 

exonuclease

Higher [ATP] causes 

slight increase in 

DNA cleavage

Yes

T. scotoductus 

OLD (UniProt: 

E8PLM2)

Unknown Homodimeric 

assembly (PDB: 

6P74)

Nonspecific 5′ to 3′ 

exonuclease; 

linearizes circular 

DNA

Negligible Yes

Class 2 

Gabija

Adjacent to UvrD/

PcrA/Rep-like helicase

B. cereus VD045 

GajA (UniProt: 

J8H9C1)

SBSphiC, SPβ, 

Φ105, rho14, 

Φ29

Octamer with 4:4 

ratio of GajA:GajB 

(PDB: 8SM3)

Site-specific nicking 

Activity

Higher [ATP] 

strongly inhibits 

DNA cleavage

No

B. pseudomallei 

OLD (UniProt: 

A3NFC3)

Unknown Isolated Toprim 

domain (PDB: 

6NK8)

nonspecific 5′ to 3′ 

exonuclease; 

linearizes circular 

DNA

Negligible Yes

Class 3 

retrons

Upstream (3A) or 

downstream (3B) from 

reverse transcriptase 

and non-coding RNA

E. coli 200,499 

Retron-Eco8 

(UniProt: 

P0DV58)

T4, T7, SECΦ4, 

SECΦ6, SECΦ18

None Unknown Unknown Unknown
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FIGURE 2

Structural similarity and multimeric assembly of Class 1 and Class 2 OLD proteins. (A) Schematics showing domain organization within Class 1 T. 
scotoductus OLD and Class 2 B. cereus GajA OLD proteins. A dimerization domain (tan) is inserted into each ABC ATPase domain (blue). The larger size 
of BcGajA arises from a helical insert into the Toprim domain (red) that is conserved among Class 2 OLD proteins and makes them larger than Class 1 
OLD proteins by about 50 amino acids on average. (B) Structural superposition of TsOLD (PDB: 6P74) and BcGajA (PDB: 8SM3) full-length monomers 
shows structural similarity (RMSD  =  4.4  Å) despite only 22.2% sequence identity. (C) TsOLD dimerizes and BcGajA tetramerizes in crystal structures, but 
in neither structure are the ATPases poised for ATP hydrolysis. (D) Two separate GajB dimers (green) bind to a GajA homotetramer to assemble an 
octameric GajAB complex.
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et al., 2023). On the basis of their structural similarity and their shared 
genomic proximity to UvrD/PcrA/Rep-like helicases, we suggest that 
all GajA proteins are Class 2 OLD proteins, and vice versa.

Like all Class 2 OLD proteins, BcGajA comprises an N-terminal 
ABC ATPase domain and a C-terminal Toprim domain. BcGajA is 
currently the only OLD protein known to cleave DNA with sequence 
specificity (Table 1), as it nicks DNA at a site found both in lambda and 
T7 phage dsDNA (Cheng et al., 2021). Interestingly, in lambda DNA 
the two cut sites overlap, resulting in apparent dsDNA cleavage activity. 
It is worth noting that BcGajA resides in a gram-positive bacteria that 
is not infected by lambda or T7 phages, and thus the significance of 
this cut site being found in lambda and T7 phage DNA is not clear. 
BcGajA endonuclease activity is robust under low ATP concentrations, 
while high nucleotide concentrations inhibit BcGajA DNA binding 
and cleavage (Cheng et al., 2021, 2023). Interestingly, BcGajA is the 
first OLD protein shown to lack ATP hydrolysis activity (Table 1). 
These results led the authors to propose that the ATPase domains 
regulate the Toprim domain by inhibiting its DNA cleavage activity in 
the presence of high nucleotide concentrations and that GajA becomes 
activated upon nucleotide depletion resulting from phage invasion, 
replication, and transcription. Recent studies have reported nucleotide 
depletion mechanisms in other anti-phage defense systems (Hsueh 
et  al., 2022; Tal et  al., 2022), supporting the idea that nucleotide 
depletion may be common in abortive infection mechanisms.

The second component of the Gabija system, GajB, is predicted to 
be a UvrD/PcrA/Rep-like helicase (Doron et al., 2018). UvrD helicases 
translocate along ssDNA in the 3′ to 5′ direction and couple the binding 
and hydrolysis of one ATP with the unwinding of one base-pair of 
duplex DNA (Matson, 1986; Lee and Yang, 2006). Recent structural 
and biochemical data have shed light on the function of GajB and its 
interactions with GajA. Structural studies show that BcGajB binds to a 
pre-formed BcGajA tetramer to assemble a 4:4 octameric complex in 
which with two sets of GajB dimers flank a centralized GajA tetramer 
(Figure 2; Antine et al., 2023). Although BcGajA purified in the absence 
of BcGajB displays robust endonuclease nicking activity (Cheng et al., 
2021), BcGajB is required for anti-phage defense via an abortive 
infection mechanism (Doron et al., 2018; Cheng et al., 2023). A recent 
study shows that BcGajB, surprisingly, does not exhibit any helicase 
activity but instead functions as a (d)ATP/(d)GTPase (Cheng et al., 
2023). Furthermore, the addition of either ssDNA or dsDNA stimulates 
nucleotide hydrolysis by GajB. The authors propose that BcGajB senses 
3′ termini, possibly originating from BcGajA DNA cleavage, which 
activates its (d)ATP/(d)GTPase hydrolytic activity, thereby driving 
nucleotide depletion and contributing to cell death (Cheng et al., 2023). 
Further studies will be required to see whether these results, including 
a lack of GajB helicase activity, are generalizable to other Gabija systems.

4. Class 3 OLD proteins: retron-driven 
anti-phage defense

Retrons are genetic elements found in bacteria comprising a reverse 
transcriptase and an adjacent non-coding RNA. Their discovery stems 
from a 1984 study identifying a small multi-copy, single-stranded DNA 
(msDNA; Yee et al., 1984), which subsequent studies determined was 
composed of a ssDNA covalently linked to a non-coding RNA used as 
a template by the reverse transcriptase (Dhundale et al., 1987; Lampson 
et  al., 1989). Retron function remained mysterious until a recent 

breakthrough study that demonstrated retrons belong to anti-phage 
defense systems triggering cell death through abortive infection 
(Millman et al., 2020). These defense systems contain three components: 
the aforementioned reverse transcriptase and non-coding RNA, as well 
as an effector protein (Figure 1). Effector proteins vary tremendously 
and include cold shock proteins, zinc finger nucleases, and proteases. 
Out of 4,802 genomes analyzed, the retron effector protein was an OLD 
nuclease 4% of the time (Millman et al., 2020). OLD nucleases found 
as effector proteins in retron defense systems have been classified as 
Class 3 OLD enzymes, with further subdivision depending on whether 
the old gene lies upstream (Class 3A) or downstream (Class 3B) of the 
reverse transcriptase (Dot et  al., 2023). Within the retron naming 
system, these genomic organizations have been described as type I-B2 
or type I-B1, respectively (Mestre et al., 2020).

Class 3 OLD enzymes have not yet been characterized through 
biochemical and structural means like either Class 1 or Class 2 OLD 
enzymes, but AlphaFold models show that, like their Class I and Class 
2 counterparts, they comprise an N-terminal ABC ATPase and a 
C-terminal Toprim domain. Most of what is known about Class 3 OLD 
proteins arises from genetic studies of anti-phage defense. The best 
characterized Class 3 OLD protein belongs to Retron-Eco8, which 
provides defense against T4, T7, SECΦ4, SECΦ6, and SECΦ18 through 
an abortive infection mechanism (Table  1; Millman et  al., 2020). 
Mutational analysis shows that mutations in the conserved aspartates 
in the YADD motif of the reverse transcriptase, or in the conserved 
guanosine branching point in the non-coding RNA, or in the Walker 
A lysine of the OLD nuclease each eliminate anti-phage defense activity 
(Millman et al., 2020). These data demonstrate that all three retron 
components are necessary for anti-phage defense by Retron-Eco8.

The mechanisms by which retrons in general and Class 3 OLD 
enzymes in particular lead to either phage recognition or abortive 
infection remain elusive. A recent study shows that T7, SECΦ4, 
SECΦ6, and SECΦ18 phages were all able to escape anti-phage defense 
by Retron-Eco8 through mutations in phage single-stranded binding 
(SSB) protein (Stokar-Avihail et al., 2023). This study showed that 
expressing the phage SSB in cells that express Retron-Eco8 was 
sufficient to drive cell toxicity and that mutations in the SSB were 
sufficient to alleviate that toxicity. Furthermore, pull-down experiments 
showed that wild-type but not mutant phage SSB was pulled down with 
Retron-Eco8 msDNA. While these data demonstrate a direct 
association between retron msDNA and phage SSB, they do not 
explain the role of the Class 3 OLD enzyme, which was already 
established to be essential for anti-phage defense (Millman et al., 2020). 
Further studies of Class 3 OLD enzymes will be required to understand 
their role in mediating retron-dependent anti-phage defense.

5. Future considerations

The last several years have seen a marked increase in studies 
examining the structure, biochemistry, and in vivo function of OLD 
proteins. The results of these studies reveal a complicated landscape 
in which the biochemical properties and functions of OLD proteins 
can vary from one another and depend heavily on the surrounding 
genetic, cellular, and chemical context. Many outstanding questions 
in the field remain, and below we highlight just a few of them:

Do Class 1 OLD proteins provide broad-spectrum anti-phage 
defense on their own? The only known example of a Class 1 OLD 
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protein offering protection against a phage is the idiosyncratic example 
of P2 prophages providing Old-dependent defense only against 
lambda phage. Although the broad-spectrum anti-phage defense by 
Class 2 (Gabija) and Class 3 (retron) OLD proteins has been 
definitively established, there remains no known example of a bacterial 
or archaeal Class 1 OLD protein sufficient to drive broad-spectrum 
anti-phage defense. Multicomponent systems like Gabija and retrons 
have shown that each genetic component is necessary for anti-phage 
defense, and so it would be valuable to learn of cellular systems where 
an OLD protein alone is sufficient to drive anti-phage defense.

What are the regulatory relationships between OLD ATPases, 
Toprim domains, and DNA engagement? It may be that the answer 
depends on the specific OLD protein in question. For example, ATP 
has been reported to increase DNA cleavage for P2 Old, have minimal 
effect on DNA cleavage in TsOLD, and strongly inhibit DNA cleavage 
activity in BcGajA (Table 1). More work will be required to understand 
the regulatory relationships between the ATPase and Toprim domains. 
Moreover, although structural studies of OLD proteins have been 
critical breakthroughs, there remains a paucity of structural data of 
OLD proteins bound to DNA. Such studies will be  required to 
understand how the protein engages with DNA, the physical basis for 
any sequence- or structural specificity OLD proteins may have, and 
what regulatory mechanisms might prevent DNA binding or cleavage 
depending on the surrounding biochemical context.

How do phages escape these defense systems? While bacteria have 
evolved complex mechanisms to impede viral infection, phages 
continually develop mechanisms to overcome them (Gao and Feng, 
2023). One such mechanism involves the release of the Gabija anti-
defense 1 (Gad1) protein by phage Φ3T to thwart the Gabija system 
of B. cereus VD045 (Yirmiya et al., 2023). To resist anti-phage defense, 
Gad1 binds to the GajA dimerization domain of the GajAB complex 
and prevents DNA binding and cleavage (Antine et al., 2023). Similar 
phage proteins called Thoeris anti-defense 1 and 2 (Tad1 and Tad2) 
have been recently discovered in the Thoeris system, another widely 
distributed bacterial anti-phage defense system (Leavitt et al., 2022). 
Future studies will no doubt illuminate other escape mechanisms, the 
understanding of which may be  critical for the development of 
successful phage therapy (Kortright et al., 2019).

How many classes of OLD proteins exist, and in how many different 
systems? Class 4 OLD proteins have been proposed to contribute to the 
function of the PARIS system (Rousset et al., 2022; Dot et al., 2023). 
Unlike the other three classes, in the PARIS system the ATPase and 
Toprim domains are encoded on separate genes (designated ariA and 
ariB, respectively; Rousset et al., 2022). However, the authors noted 
that sometimes AriAB is encoded as a single-gene fusion, in which 
case it is not clear whether the system comprises a separate OLD class, 
or whether the system operates differently from Class 1 OLD proteins. 

Further studies will be  required to determine whether the PARIS 
system constitutes a separate OLD class. Another recent study noted 
that a component of the anti-plasmid Wadjet system (Doron et al., 
2018), jetD, has homology with the Toprim domain of OLD nucleases, 
while the jetABC components include an ABC ATPase with homology 
to the bacterial condensin complex MukBEF (Deep et al., 2022). These 
studies suggest we have much to learn about the myriad systems in 
which an ABC ATPase and a Toprim domain work in concert in 
defense systems. Future studies will surely uncover in more detail how 
OLD proteins have been leveraged by organisms to defend themselves.
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