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Changing atmospheric composition represents a source of uncertainty in our 
assessment of future disease risks, particularly in the context of mycotoxin 
producing fungal pathogens which are predicted to be more problematic with 
climate change. To address this uncertainty, we profiled microbiomes associated 
with wheat plants grown under ambient vs. elevated atmospheric carbon dioxide 
concentration [CO2] in a field setting over 2  years. We also compared the dynamics 
of naturally infecting versus artificially introduced Fusarium spp. We  found 
that the well-known temporal dynamics of plant-associated microbiomes 
were affected by [CO2]. The abundances of many amplicon sequence variants 
significantly differed in response to [CO2], often in an interactive manner with 
date of sample collection or with tissue type. In addition, we found evidence that 
two strains within Fusarium – an important group of mycotoxin producing fungal 
pathogens of plants – responded to changes in [CO2]. The two sequence variants 
mapped to different phylogenetic subgroups within the genus Fusarium, and had 
differential [CO2] responses. This work informs our understanding of how plant-
associated microbiomes and pathogens may respond to changing atmospheric 
compositions.
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1. Introduction

We are currently experiencing a period of rapid global change, which is complicating efforts 
to predict and prepare for future agricultural challenges. In particular, the increasing 
concentration of atmospheric carbon dioxide (hereafter, [CO2]) from anthropogenic emissions 
is having complex effects on agricultural ecosystems. Progressively stronger impacts of 
increasing [CO2] on Earth’s energy budget and climate system are well known, but [CO2] also 
interacts contemporaneously with plant physiology in ways that may have implications for plant 
growth rate, water balance, disease dynamics, and other determinants of productivity (Long 
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et al., 2006). The microbiome revolution has highlighted the myriad 
ways in which plant-associated microbes influence plant growth 
(Hawkes et  al., 2021), but insufficient effort has been given to 
understanding how global change phenomena impact microbiomes 
of agricultural crops (Hacquard et al., 2022). Further study is needed 
to clarify how changing [CO2] affects multipartite plant-pathogen-
microbiome interactions.

Plant-associated microbiomes are dynamic communities that 
change and develop over time. Therefore, changing environmental 
conditions (e.g., [CO2]) could influence microbial physiology and 
reproduction, which could subsequently impact microbial fitness or 
species interactions. For example, previous work showed that a 
dominant bacterial endophyte of soybean, Methylobacterium, was less 
abundant under elevated relative to ambient [CO2] conditions 
(Christian et  al., 2021). One of the key microbiome functions of 
interest that we would like to understand, and ultimately to direct, is 
the ability to constrain the success of plant pathogens within the 
community (McLaren and Callahan, 2020). Thus, studies of pathogens 
as members of plant-associated microbiomes, under conditions that 
reflect key global change phenomena, are needed.

In practice, most experiments that manipulate [CO2] are not able 
to separate direct CO2 effects on microbes from effects that may 
be indirectly driven by the responses of plants to [CO2] (Whitaker and 
Bakker, 2019; Jin et al., 2020). However, it is likely that effects of [CO2] 
will be more pronounced for plants, which use CO2 as a substrate for 
photosynthesis, than for most microbes. Thus, additional clarity is 
needed regarding the extent to which plant responses to elevated 
[CO2] may interact with their associated microbiomes or with 
individual antagonistic symbionts (i.e., pathogens) of particular 
importance. For example, by alleviating limitations on the availability 
of carbon for fixation, elevated [CO2] permits plants to adjust stomatal 
conductance, increase water use efficiency, and increase biomass 
accumulation (Ainsworth and Rogers, 2007; Leakey et al., 2009). At 
the same time, longer durations of stomatal closure could reduce rates 
of infection by certain microbes, as stomates are important sites of 
ingress by pathogens and endophytes (Huang et al., 2018). Alternately, 
improved access to carbon may alter the chemical composition of 
plant tissue, potentially rendering it less nutritious or lowering the 
concentration of defensive compounds (Cuperlovic-Culf et al., 2019; 
Hay et al., 2020). Rates of plant development and timing of senescence 
may also be impacted (Gray and Brady, 2016), which may move plant-
microbe interactions into different portions of the growing season, or 
affect the likelihood of confluence between exposure to inoculum and 
the presence of weather events that impact microbial establishment. 
Furthermore, greater availability of CO2 can impact carbon inputs to 
roots and soil (as in Lipson et al., 2005), which can lead to greater 
microbial biomass in soil (Liu et al., 2017), enhanced mycorrhizal 
symbiosis (Compant et al., 2010) and higher rates of respiration in 
soils under elevated [CO2] (Pendall et al., 2001). Previous research has 
demonstrated that elevated [CO2] can reduce the benefits provided by 
some fungal endophytes of grasses (Chen et al., 2017).

Wheat (Triticum aestivum) is a globally important cereal that 
responds to changes in [CO2]. Wheat grown at 550 ppm [CO2] 
produced 10.4% higher grain yield but with 7.4% lower grain protein, 
compared to growth at 380 ppm [CO2] (Högy et  al., 2009). 
Concerningly, [CO2]-responsiveness of grain characteristics like 
protein content appears to be related to strength of resistance against 
the disease Fusarium head blight (FHB); i.e., cultivars of wheat that 

are more resistant to FHB also showed larger reductions in grain 
protein at elevated [CO2] (Hay et al., 2022). A persistent and damaging 
disease of small grain cereal crops, FHB is caused by several species 
within the genus Fusarium, and in North America primarily by 
Fusarium graminearum (McMullen et al., 2012). While there is yield 
loss associated with FHB, the accumulation of toxic fungal metabolites 
(e.g., deoxynivalenol [DON]) in the grain can be even more damaging 
(Bakker et al., 2018). Manipulative experiments can help determine 
the risk that this and other crop diseases will pose under a changing 
climate system. However, it is evident that disease management in the 
future will depend on how selected crop varieties, evolved pathogen 
populations, and the broader microbiome respond to changing 
environmental conditions (Váry et al., 2015).

In the present research, we performed two related experiments 
over two consecutive years to assess the impacts of elevated [CO2] on 
native microbial communities and Fusarium head blight disease risk 
in wheat. Wheat plants were grown in a Free Air Concentration 
Enrichment (FACE) system located in central Illinois (Aspray et al., 
2023). The first experiment had the overall aim to test the impact of 
[CO2] on the wheat microbiome. We predicted that (1) elevated [CO2] 
would measurably impact the structure of plant-associated 
microbiomes, including via interactive effects with plant tissue type 
and collection date, which are already known to impact microbiome 
structure, and that (2) relative abundances of individual microbial taxa 
within the community would display significant changes in response 
to [CO2], collection date, and plant tissue type. (3) We also predicted 
that Fusarium spp. naturally found on the plants would have greater 
relative abundance on wheat heads than on leaves, would increase in 
relative abundance over time as disease progressed, and would 
respond to elevated [CO2]. In a second experiment, our aim was to 
assess Fusarium head blight disease development under ambient 
relative to elevated [CO2], in field conditions, using intentional 
inoculation with F. graminearum. In this experiment, we tested an 
additional hypothesis that (4) disease would vary between [CO2] 
treatments, based on previous reports that FHB symptoms can 
be more severe at elevated [CO2] under controlled conditions (Váry 
et al., 2015; Cuperlovic-Culf et al., 2019).

2. Materials and methods

2.1. Experimental field site

Research was conducted at the Soybean Free Air Concentration 
Enrichment (SoyFACE) facility (Aspray et al., 2023), where wheat was 
grown at ambient (~400 ppm) and elevated [CO2] (~600 ppm) for two 
growing seasons. Hard red spring wheat cultivar Glenn (moderately 
resistant to FHB; Mergoum et  al., 2006) was hand planted in 
2.7 m × 1.5 m plots (8 rows, 15 cm row spacing, 250 plants m−2) within 
the larger ambient and elevated [CO2] plots (each ~280 m2). The 
surrounding field and most of the area within the SoyFACE 
experimental plots were planted with soybean (Glycine max). All plots 
were rain watered and were not fertilized prior to planting. The 
SoyFACE experimental farm is operated as a maize-soybean rotation, 
where maize receives ~200 kg N ha−1 and the soybean does not receive 
N fertilizer (Aspray et al., 2023). Air temperature, relative humidity, 
and rainfall throughout the growing season were monitored onsite 
and at the Water and Atmospheric Resources Monitoring (WARM) 
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station in Champaign1 and the Surface Radiation (SURFRAD) station 
(Aspray et al., 2023). Maximum and minimum temperatures during 
the June and July growing season were similar between years, while 
accumulated precipitation differed substantially (2017 = 110 mm, 
2018 = 356 mm; Prism Climate Group at Oregon State University, 
2023). In 2017, wheat was planted on June 6th, with n = 3 randomized 
blocks (one ambient and one elevated [CO2] plot per block). In 2018, 
wheat was planted on May 23rd, with n = 4 randomized blocks.

We performed two experiments within the SoyFACE site: (1) A 
profiling of the microbiome and of naturally present Fusarium spp. 
associated with wheat plants, and (2) An inoculation experiment, 
where F. graminearum strain Gz3639 was intentionally inoculated 
onto select wheat plants and disease progression was monitored.

2.2. Experiment 1: microbiome profiling 
and naturally present Fusarium spp.

2.2.1. Plant sample collection and processing
In 2017, we  harvested plant tissues for microbiome profiling 

beginning 1 week after anthesis and continuing at weekly intervals (24 
July, 31 July, and 8 August). In 2018, sampling was expanded to a 
fourth timepoint, beginning at anthesis and extending for 3 weeks (10 
July, 17 July, 24 July, and 31 July). On each sampling date, four plants 
were harvested per plot, by cutting the stem just above the soil surface. 
Plants were bagged individually and transported on dry ice to the 
laboratory, where they were stored at −20°C until further processing.

Tissue samples were placed into 50 mL aluminum grinding 
canisters, lyophilized for 2 days and homogenized to powder using 
metal ball bearings (0.95 cm diameter, 5 per tube) in a Geno/Grinder 
tissue homogenizer (SPEX SamplePrep) at 1650 rpm for 7 min. For 
samples from 2017, the spike and the flag leaf from each plant were 
separately processed. Thus, there were 144 tissue samples from 2017 
(3 blocks × 2 [CO2] treatments × 3 collection dates × 2 tissue types × 
4 individual plants). For samples from 2018, we adjusted the tissue 
processing method to ensure that a standard quantity of tissue was 
available in every case; spikes and flag leaves were bulked across plants 
within a plot, homogenized, and subsampled in duplicate. Thus, there 
were 128 tissue samples from 2018 (4 blocks × 2 [CO2] treatments × 
4 collection dates × 2 tissue types × 2 subsamples).

DNA extractions were performed on 20 mg of pulverized tissue, 
except for the 2017 flag leaf samples which were processed in their 
entirety, due to low biomass (minimum 16.7 mg). Extracts of DNA 
were diluted to 5 ng μL−1. Generation of amplicons for sequencing was 
accomplished using a two-stage PCR. For bacteria in 2017, we targeted 
the v5-v6 region of the 16S ribosomal RNA (rRNA) gene, using 
primers 779F (Chelius and Triplett, 2001) and the reverse complement 
of 1114F (Lundberg et al., 2012). In 2018, we targeted the v4 region 
using primers 515F and 806R (Caporaso et al., 2011), in order to 
reduce the abundance of chimeric sequences seen in 2017 (12.2% of 
reads). For fungi in 2017 we targeted the first internal transcribed 
spacer (ITS1) using primers ITS1f and ITS2 (Smith and Peay, 2014); 
while in 2018 we  targeted the second internal transcribed spacer 
(ITS2) using primers ITS3_KYO2 and ITS4_KYO3 (Toju et al., 2012) 

1 https://warm.isws.illinois.edu/warm/

to improve differentiation among Fusarium spp. (Bakker, 2018). 
Negative controls were included in the amplicon sequencing libraries, 
by performing blank DNA extractions and performing PCR with no 
template DNA. Mock communities of known composition and 
structure were used as reference samples. The bacterial mock 
community was catalog item MSA-1003 from the American Type 
Culture Collection, while the fungal mock community was from 
Bakker (2018).

Each PCR mixture consisted of 0.5 U Phusion High-Fidelity DNA 
Polymerase and associated Phusion Green HF buffer (ThermoFisher), 
dNTPs at 200 μM final concentration, upstream and downstream 
primers each at 0.5 μM final concentration, 2.5 μL of template DNA, 
and nuclease-free water to 25 μL per reaction. Thermal cycling 
consisted of: 98°C for 30 s; 25 cycles of: 98°C for 10 s, 55°C for 30 s, 
72°C for 15 s; and a final extension step at 72°C for 5 min. Amplicons 
were purified using AMPure XP beads (Beckman Coulter). Sample-
specific barcodes were added to the amplicons via a second PCR step, 
using the Nextera XT Index Kit (Illumina) according to the 
manufacturer’s protocol except that we used Phusion High-Fidelity 
DNA Polymerase. Thermal cycling was as for amplicon generation, 
except that only 8 cycles were performed. Indexed amplicons were 
bead cleaned as described previously, and DNA concentration was 
determined via the Quant-iT dsDNA Assay Kit (Invitrogen), using a 
qPCR instrument (BioRad CFX96) to measure fluorescence. Indexed 
amplicons were pooled in equimolar ratios.

After pooling, libraries were analyzed on a TapeStation instrument 
(Agilent) for assessment of amplicon size distribution and 
concentration. Libraries were then size-selected via gel recovery 
(Lonza FlashGel) to remove probable primer dimers. In total, three 
libraries were sequenced using a MiSeq instrument (Illumina): library 
1 consisted of bacterial plus fungal amplicons from 2017 samples (v2 
500 cycle sequencing kit), library 2 consisted of bacterial amplicons 
from 2018 samples (v2 500 cycle), and library 3 consisted of fungal 
amplicons from 2018 samples (v3 600 cycle). Raw sequence data, as 
output by the MiSeq software, are available in the NCBI Sequence 
Read Archive (BioProject PRJNA544326).

2.2.2. Bioinformatics of microbiome sequence 
data

Amplicon sequences were processed in R v.4.0.2 (R Core Team, 
2022) using DADA2 (Callahan et al., 2016). Briefly, primer sequences 
were removed using Cutadapt (Martin, 2011). Reads were filtered to 
permit a maximum of 2 expected errors (Edgar and Flyvbjerg, 2015), 
trimmed at the 3′ ends to remove low quality bases, error-corrected, 
and denoised. Then, forward and reverse reads were merged, 
permitting up to one mismatch in the overlapping region, and 
chimeras removed. The DADA2 output yields Amplicon Sequence 
Variants (ASVs), or clusters of sequencing reads that differ by as little 
as 1–2 single nucleotide polymorphisms (Callahan et al., 2017). Lastly, 
the ITS datasets were additionally processed through ITSx v.1.1.2 
(Bengtsson-Palme et al., 2013) to trim off conserved ribosomal RNA 
gene regions flanking the ITS, as well as to flag ASVs of likely 
non-fungal origin for removal.

Putative taxonomic assignments for ASVs were made using a 
naïve Bayesian classifier (Wang et al., 2007), with the Silva reference 
alignment v.138 (Quast et al., 2013) for the bacterial dataset and the 
UNITE database v.8.2 (Kõljalg et al., 2013) for the fungal dataset. 
Within the bacterial datasets, ASVs assigned to chloroplast or 
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mitochondria were culled. Negative control samples were used to 
identify putative contaminants (Davis et al., 2018); 24 ASVs were 
removed from the biological samples as probable contaminants. Mock 
community controls were processed along with the biological samples. 
The resulting sample-by-ASV abundance tables are provided in the 
Zenodo digital repository (Whitaker and Bakker, 2023).

2.2.3. Statistical analyses of experiment 1
Manipulation and analyses of the processed microbiome data 

primarily occurred using the packages phyloseq v.1.40.0 (McMurdie 
and Holmes, 2013) and DESeq2 v.1.36.0 (Love et al., 2014). Analyses 
were performed separately by kingdom (bacteria = ‘B’, fungi = ‘F’) and 
all contrasts were made within years (2017 = ‘17’, 2018 = ‘18’) and not 
between years, because aspects of sample processing were confounded 
by year.

To address our first hypothesis about the response of the wheat 
microbiome to [CO2], collection date, and plant tissue type, 
we assessed microbiome community structure and observed richness 
using a linear model framework. Both microbiome structure and 
taxon richness were modeled using a series of linear models via 
residual randomization in a permutation procedure (package RRPP 
v.1.3.0; 1,000 permutations; Collyer and Adams, 2018). The RRPP 
package allows for the analysis of complex mixed model designs via 
the explicit selection of denominators for F-ratio calculations, as well 
as the ability to use Type III sum of squares in pseudo-F statistic 
calculations. We tested [CO2], collection date, and plant tissue type as 
fixed effects, and the nested factor of block into [CO2] as a random 
effect, along with all statistical interaction terms. The denominators 
for F-ratio calculations were chosen following rules specified by 
Underwood (1996) and are indicated in the supplemental tables of raw 
model results (Supplementary Tables S1, S2). For the microbiome 
structure analyses, the response variable was a Euclidean distance 
matrix calculated from the variance-stabilized ASV abundance table 
(DESeq2), after the removal of infrequent and low abundance taxa 
(i.e., ASVs found fewer than 5 times in less than 10 samples were 
removed prior to analysis). This distance matrix was used to visualize 
patterns in community structure, via principal coordinate ordinations, 
which were split by year, microbial kingdom, and experimental 
treatments as necessary to explore significant treatment interactions. 
For the 2018 datasets, we also constructed trajectory plots using the 
mean principal coordinates of community distances (De Cáceres et al., 
2019), to better display changes in community structure between 
[CO2] treatments across collection dates.

To address our second hypothesis and identify specific microbial 
taxa that responded to [CO2], collection date, plant tissue type, and 
the interactions among these factors, we  performed a differential 
abundance analysis using DESeq2 (Love et  al., 2014). Briefly, 
abundances (i.e., raw counts of sequences observed per ASV) were 
modeled as the response, using negative binomial generalized linear 
models. The base model included the main fixed effects of [CO2], 
collection date, and tissue type, as well as the nested random effect of 
the Block × CO2 interaction term. To assess the significance of 
differential abundances across main effects, the deviance of the full 
base model was compared to a reduced model lacking the effect being 
tested (as in Wagner et al., 2016). For example, to test for response of 
ASV abundance to [CO2], we compared the base model described 
above to a reduced model containing only Collection + Tissue + Block 
× CO2. To assess whether two-way interactions among experimental 

factors (i.e., CO2 × Collection, CO2 × Tissue, or Collection × Tissue) 
were significant in predicting microbial ASV abundances, 
we compared deviance of the base model to the base model plus the 
interaction term of interest. Using Wald Tests, we estimated the log2-
fold change in abundance for each ASV across all pairwise contrasts 
within the treatment variables (for example, between any given two 
collection points or between tissue types within a [CO2] level). 
Significance was determined at p < 0.05 after adjustment for multiple 
comparisons using the Benjamini-Hochberg false discovery rate 
(BH-FDR). We performed a second p-value adjustment using the 
BH-FDR for each term in the model which required greater than two 
pairwise comparisons (i.e., collection date and all two-way 
interactions), because in these cases multiple Wald Tests were 
conducted on each ASV.

To address our third hypothesis about the responsiveness of 
naturally-occurring Fusarium populations to [CO2], we examined the 
[CO2] responsiveness of all ASVs from the DESeq2 results that were 
assigned to the genus Fusarium. In 2017, no ASVs assigned to 
Fusarium were responsive to [CO2] treatments. In 2018, 10 ASVs that 
were assigned to the genus Fusarium were significantly responsive to 
the treatment factors (DESeq2). To assign Fusarium ASVs to species 
complexes within the genus (O'Donnell et al., 2015), we aligned the 
ASV sequences together with sequences of reference strains 
F. graminearum PH1 (NCBI accession NC026477) and F. incarnatum 
NRRL 13379 (NCBI accession GQ505680). A maximum likelihood 
phylogeny was constructed using default parameters of CLC 
Genomics Workbench software v. 23.0.1 (Qiagen), with the Jukes 
Cantor model of nucleotide substitution.

2.3. Experiment 2: deliberate inoculation 
with a pathogen

2.3.1. Inoculation with Fusarium graminearum
Inoculum of F. graminearum strain Gz3639 was prepared by 

transferring two mycelia plugs of actively growing culture on V8 
media plates into 20 mL of mung bean broth. The culture was grown 
in the dark at 28°C and 200 rpm for 3 days. The macroconidia were 
then pelleted twice, rinsed, and resuspended in sterile 0.04% Tween 
20. The spores were counted using a hemocytometer and adjusted to 
a concentration of 1 × 105 macroconidia mL−1 in 0.04% Tween 20. In 
2017, 30 flowering wheat spikes (Feekes 10.5.2; 17 July) per plot were 
inoculated by pipetting 10 μL of the spore suspension between the 
palea and lemma of a central floret on each spike. The inoculated 
spikes were on completely different plants than those that were 
sampled for microbiome profiling. In 2017, the inoculated/diseased 
spikes experienced bird and field mice herbivory at greater rates than 
surrounding uninoculated plants. Thus, all the remaining inoculated 
spikes (7 spikes from ambient [CO2] plots and 5 spikes from elevated 
[CO2] plots) were collected at 14 days post inoculation (31 July). In 
2018, 50 flowering wheat spikes (Feekes 10.5.2; 10 July) were selected 
per plot and inoculated with F. graminearum. Fourteen inoculated 
spikes were collected per plot on each of 7, 14, and 21 days after 
F. graminearum inoculation (17 July, 24 July, and 31 July, respectively).

2.3.2. Quantification of disease progression
Harvested wheat spikes were transported to the laboratory on dry 

ice where they were lyophilized and ground, as in Experiment 1. 
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Subsamples of pulverized tissue (20 mg) were extracted for DNA using 
the PureLink Plant Total DNA Purification Kit (Invitrogen). DNA 
extracts were diluted to 5 ng μL−1 (Nanodrop). The density of 
F. graminearum within each wheat spike was measured using 
quantitative polymerase chain reaction (qPCR). To minimize error 
associated with variation in DNA extraction efficiencies, 
F. graminearum DNA abundance was expressed relative to wheat DNA 
abundance (hereafter ‘Fusarium load’), as has been done in other plant-
fungal interaction studies (e.g., Bodenhausen et al., 2021). In 2017, 
we assessed the F. graminearum Tri6 and wheat PR1 genes using the 
primers and methods reported in Taylor et  al. (2022). Specifically, 
Fusarium load was calculated using the 2ΔCq method, where ΔCq is the 
difference between the arithmetic mean of three technical replicate Cq 
values from the wheat vs. the F. graminearum assay.

For samples from 2018, we increased the number of qPCR assays 
to improve the reliability of our measurements, targeting three 
different F. graminearum genes and three different wheat genes. Assays 
for F. graminearum genes RED, TEF, and Tri101 and for wheat genes 
Actin and PAL were reported in Taylor et al. (2022). We added an 
assay, designed in this work, for the wheat translation elongation 
factor 1-α gene, consisting of: upstream primer (GAT TGA CAG GCG 
ATC TGG TAA G), probe (TCC TCA AGA ATG GTG ATG CTG 
GCA; 5′ 6-FAM/ZEN/3′ IBFQ), and downstream primer (GGC TTG 
GTG GGA ATC ATC TT). The qPCR was run using the Juno and 
Biomark HD systems (Fluidigm) with the 192.24 Dynamic Array 
integrated fluidic circuit and following the manufacturer’s protocol 
(Fluidigm PN 100–6,174), with TaqMan Fast Advanced Master Mix 
(Life Technologies). Four technical replicates were run per each 
sample-assay combination. Raw fluorescence values at each PCR cycle 
were processed through the LinRegPCR data analysis program 
(Ramakers et al., 2003), which assesses the amplification efficiency for 
each reaction and calculates a starting quantity, N0. To summarize 
these data, we defined:
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In both 2017 and 2018, pulverized spike tissue was also 
subsampled for determination of DON concentration (hereafter, 
[DON]). Ground tissue (targeting 0.5 g) was extracted with 10 mL 
acetonitrile and water (86:14). 5 mL of each extract was purified with 
a MycoSep 225 Trich cartridge (Romer Labs); 2 mL of the purified 
extract was dried under a stream of nitrogen. Trimethylsilyl (TMS) 
derivatives were prepared by adding 100 μL of a 100:1 freshly prepared 
mixture of 1-(trimethylsilyl) imidazole/trimethylchlorosilane to the 
dried extracts. 900 μL isooctane and 1 mL water were then added to 
each sample and the mixtures were gently vortexed until clear. The top 
isooctane layer was transferred to a GC vial and analyzed by 
GCMS. TMS derivatives of purified DON were prepared in the same 
way and used to construct a standard curve (0.3125 μg to 80 μg). DON 
concentrations were determined with GC–MS with a splitless inlet 
and selective ion monitoring for the triTMS-DON. The GC oven was 
at 150°C at injection and held at 150°C for 1 min before heating to 
280°C at 30°C min−1 and then held at 280°C for 3.5 min. TriTMS-DON 
was detected at 6.2 min.

2.3.3. Statistical analyses of experiment 2
To address the hypothesis regarding the impact of elevated [CO2] 

on FHB development following intentional inoculation with 
F. graminearum, we analyzed the data for each year separately. For the 
2017 data, we constructed linear models with [CO2] as a fixed effect. 
For the more robust 2018 dataset, we  constructed mixed effects 
models using lme4::lmer v.1.1.30 (Bates et al., 2015) with Block × CO2 
as the random effect, and fixed effects of [CO2], days post infection, 
and their interaction. The response variables tested in both years were 
Fusarium load and [DON], which were transformed as necessary to 
meet assumptions of normality and homoscedasticity.

3. Results

3.1. Overview of microbiome diversity

Microbiome profiling identified a diverse set of microbial taxa 
across years and kingdoms. After removal of chimeras, sequences of 
non-microbial origin, and contaminants, there were 552 bacterial and 
165 fungal ASVs in 2017, and 654 bacterial and 1,375 fungal ASVs in 
2018. However, these wheat-associated microbiomes were dominated 
by a small number of ASVs. In 2017, the top 10 most abundant ASVs 
accounted for 75.0% of the total observed reads in the bacterial dataset 
and 96.3% of the fungal dataset. In 2018, the top 10 most abundant 
ASVs accounted for 63.9% of the bacterial and 79.7% of the fungal 
dataset. The majority of bacterial ASVs belonged to the phyla 
Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidota, while 
the majority of fungal ASVs belonged to the phyla Ascomycota and 
Basidiomycota. Mock community reference samples demonstrated 
that our approach provided a reasonable approximation of true 
microbiome composition and structure; Bray–Curtis similarity values 
for the contrast of observed vs. expected mock community profiles 
were 0.653 ± 0.00068 (2017 bacteria), 0.792 ± 0.0028 (2017 fungi), 
0.646 ± 0.017 (2018 bacteria), and 0.817 ± 0.0055 (2018 fungi).

3.2. Responsiveness of microbiome 
structure and richness to [CO2], collection 
date and tissue type

Tissue type (flag leaf vs. spike) was a key driver of differences in 
microbiome community structure across years and microbial 
kingdoms (Supplementary Figure S1). However, despite the clear 
visual separation in community structure between the two tissue types 
in both years, many of the most abundant ASVs were present in both 
tissue types. Specifically, 87.7% (2017 bacteria), 87.5% (2017 fungi), 
80.7% (2018 bacteria), and 95.0% (2018 fungi) of the most abundant 
ASVs were shared between flag leaf and spike habitats. Thus, 
differences in microbial community structure between the two wheat 
tissues primarily reflected altered microbial abundance, rather than 
indicating differential microbial presence and absence.

Additionally, [CO2] and date of sample collection modified the 
effect of tissue type on the microbiome, but these effects were highly 
dependent on sampling year and to a lesser extent microbial kingdom 
(Supplementary Table S1). For example, in 2017 bacterial communities 
were structured by a significant three-way interaction between [CO2], 
tissue type, and the nested random effect of Block × [CO2] (p = 0.045; 
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Figure 1A), while fungal communities were structured by a significant 
four-way interaction between [CO2], collection date, tissue type, and 
the nested random effect of Block × [CO2] (p = 0.024; Figure  1B; 

Supplementary Table S1). Visual inspection of community structure 
changes revealed that the flag leaf communities (and particularly 
fungal communities on flag leaves) were more strongly affected by 

FIGURE 1

Microbiome structural differences by treatment for: (A) 2017 bacteria; (B) 2017 fungi; (C,D) 2018 bacteria; and (E,F) 2018 fungi. Shown are principal 
coordinates ordinations based on pairwise Euclidean distances calculated from a table of variance stabilized abundances of amplicon sequence 
variants. Each point represents a single sample. Ellipses represent one standard error around the centroid for each treatment group. Colors denote 
tissue type (A,B) and color shades denote collection date (C–F). Leaf tissues are shown in green shades (C,E) and spike tissues are shown in purple 
shades (D,F). In all panels, point shapes and line types denote [CO2] treatment.
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[CO2] treatment than were the spike communities (Figures 1A,B). In 
addition, there was also a significant main effect of [CO2] treatment 
on the bacterial communities (p = 0.010; Figure 1A), but not on the 
fungal communities (p = 0.78).

In 2018, separation of the community structure data by tissue type 
revealed a clear pattern of microbiome change over collection date 
(Figures 1C–F). Specifically, bacterial community structure changed 
over the course of wheat flowering and seed set (i.e., by collection date; 
p = 0.001), contingent on the interaction with tissue type (p = 0.035; 
Figures 1C,D). The impact of bacterial community change over time 
was also modified in part by a significant interaction with [CO2] 
(p = 0.006; Figures  1C,D). For fungal communities, the impact of 
tissue type on community structure was moderated by a significant 
three-way interaction of tissue type × [CO2] × collection date 
(p = 0.027; Figures 1E,F), as well as by the interaction of collection date 
× tissue type (p = 0.001), and by a main effect of collection date 
(p = 0.004). Trajectory plots constructed using the mean principal 
coordinates of community distances, showed that [CO2] treatment 
had particularly pronounced effects on bacterial spike, fungal spike, 
and bacterial leaf communities 3–4 weeks after anthesis 
(Figures 2A–D). Specifically, the elevated [CO2] communities 3 weeks 
after anthesis were more similar to the ambient [CO2] communities 
4 weeks after anthesis, as can be seen by evaluating the leftward shift 
in the average microbiome profile along the principal coordinates axis 
1 (Figures 2A–D).

Elevated [CO2] conditions often decreased the observed microbial 
richness, but the magnitude of the reduction varied by year and 
microbial kingdom, as well as interacting significantly with other 
experimental treatments (see Supplementary Table S2 for full ANOVA 
results). In 2017, bacterial richness was moderately affected by the 
nested random effect Block × [CO2] (p = 0.027; 
Supplementary Figure S2A), while fungal richness varied by a 
significant three-way interaction of [CO2] × tissue type × block 
(p = 0.031; Supplementary Table S2; Supplementary Figure S2B). 
Specifically, fungal richness in 2017 decreased under elevated [CO2] 
in spike tissues but not in flag leaves. In 2018, bacterial richness varied 
by the interaction of [CO2] × collection date (p = 0.025), as well as by a 
main effect of collection date (p = 0.007; Supplementary Table S2; 
Supplementary Figure S2C). As in 2017, fungal richness in 2018 was 
more dependent on tissue type. Specifically, fungal richness was 
influenced by a significant three-way interaction between 
[CO2] × tissue type × block (p = 0.001; Supplementary Table S2; 
Supplementary Figures S2D,E). In other words, fungal richness in 
2018 was reduced under elevated [CO2] in both leaf and spike tissues, 
but the magnitude of the effect varied by block 
(Supplementary Figures S2D,E).

3.3. Differential abundance of individual 
microbial taxa across treatments

Differential abundance analysis clarified the responsiveness of 
individual ASVs to experimental factors and provided a more detailed 
understanding of the observed shifts in overall community structure 
(Supplementary Tables S3, S4). Most of the statistically significant 
enrichments or depletions in the abundance of individual ASVs 
occurred across collection dates, either as a main effect (630 
significantly responsive ASVs) or in interaction with either differential 

response to tissue types (1092) or differential response to [CO2] 
treatment (381; Table 1). As main effects, tissue type (spike vs. flag 
leaf) induced significant changes in the abundances of 242 ASVs, 
while [CO2] treatment induced significant changes in the abundances 
of 61 ASVs (Table 1).

Despite the relatively few microbial ASVs that responded to [CO2] 
treatment as a main effect, those ASVs that were significantly 
responsive to [CO2] exhibited large shifts in abundance (overall 
median log2-fold change among [CO2] treatments = 11.1; for 2017 
bacteria = 7.5; 2018 bacteria = 18.0; 2018 fungi = 9.5; Figure  3B). 
Similarly, those ASVs that were significantly impacted by the 
interaction of collection date × [CO2] exhibited large changes in 
abundance (overall median log2-fold change = 8.0; for 2017 
bacteria = 20.1; 2017 fungi = 20.7; 2018 bacteria = 7.5; 2018 fungi = 7.8; 
Figure 3B). Individual microbial ASVs were next most responsive to 
the interaction of collection date × tissue type (overall median log2-
fold change = 7.6; for 2017 bacteria = 20.1; 2017 fungi = 6.1; 2018 
bacteria = 7.2; 2018 fungi = 7.9; Figure 3B). For taxonomic information 
(i.e., phylum) about the microbiota responding to each treatment see 
Supplementary Figure S3.

Microbial taxa that are responsive to [CO2] may have important 
implications for future management of microbiota in crops. Thus, 
we chose to assess the ASVs showing differential abundance across 
[CO2] treatments more closely. In 2017, 13 bacterial ASVs responded 
to [CO2], with the majority being enriched under ambient conditions, 
and many belonging to the phylum Proteobacteria (Figure  3A). 
Interestingly, many ASVs belonging to phylum Proteobacteria were 
depleted over time under ambient [CO2] conditions but enriched over 
time under elevated [CO2] conditions (Figure 3C). ASVs belonging to 
phylum Firmicutes were typically enriched over time but were more 
responsive to elevated than ambient [CO2] conditions (Figure 3C). No 
fungal ASVs were differentially enriched or depleted between ambient 
and elevated [CO2] conditions in 2017 (Figure 3A). However, two 
fungal ASVs were enriched over time conditional on [CO2] treatment, 
including a Sporobolomyces sp. (phylum Basidiomycota), which was 
only enriched over time under elevated [CO2] conditions, and a 
Bipolaris sp. (phylum Ascomycota; Figure 3C).

In 2018, the abundances of 12 bacterial ASVs spanning four phyla 
were significantly impacted by [CO2], with half enriched in each 
[CO2] treatment (Figure  3A). Thirty-five bacterial ASVs were 
differentially enriched or depleted across collection dates conditional 
on [CO2] treatment (Figure  3D). The majority of affected ASVs 
belonged to the phylum Proteobacteria. However, two ASVs belonging 
to phylum Firmicutes (family Paenibacilliaceae) showed the greatest 
median log2-fold change overall and showed a weaker enrichment 
over time in ambient relative to elevated [CO2] (Figure 3D).

In 2018, the abundances of 36 fungal ASVs were significantly 
impacted by [CO2] treatment (Figure  3A). The median log2-fold 
change of Basidiomycota ASVs under [CO2] conditions was 2.8× 
greater than for Ascomycota ASVs (Figure 3A). The magnitude of 
responsiveness to collection date (median log2-fold change) was 1.3× 
higher under elevated [CO2] than under ambient [CO2] conditions 
(Figure 3D). For both the bacterial and fungal kingdoms in 2018, the 
largest changes in microbial abundance under ambient [CO2] 
occurred during weeks 2–3, while under elevated [CO2] the largest 
changes in microbial abundance occurred during weeks 3–4 
(Supplementary Tables S3, S4). In sum, the differential abundance 
analysis of individual ASVs in 2018 was reflective of the shift in 
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FIGURE 2

Trajectory plots of 2018 microbiome community distances: (A) bacterial leaf, (B) bacterial spike, (C) fungal leaf, and (D) fungal spike microbiomes. Each 
point represents the mean principal coordinates of community distance for each [CO2] x Collection Week treatment group. Point shapes denote [CO2] 
treatment. Arrows denote mean treatment trajectory. Colors shades denote collection date. Leaf tissues are shown in green shades (A,C) and spike 
tissues are shown in purple shades (B,D). For clarity, each point is labeled with the collection week number (week 1 – week 4).

TABLE 1 The abundances of many amplicon sequence variants (ASVs) were significantly impacted by experimental factors.

Number 
of ASVs 
tested

[CO2] 
(ambient 

vs. 
elevated)

Collection 
(3 dates in 

2017, 4 
dates in 
2018)

Tissue 
(spike 
vs. flag 

leaf)

[CO2]  ×  Collection [CO2]  ×  Tissue Collection  ×  Tissue

2017 

bacteria
73 13 28 53 46 32 55

2017 

fungi
16 0 3 5 5 2 2

2018 

bacteria
135 12 299 82 176 80 546

2018 

fungi
180 36 300 102 154 88 489

Sum 404 61 630 242 381 202 1092

Shown are counts of significant responses to each treatment factor (i.e., unique responses to all pairwise combinations within each treatment factor, including interactions). See methods for 
full statistical details. The total number of ASVs tested is included as a reference for the size of each microbiome dataset after filtering out infrequent or low abundance taxa.
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microbiome trajectory noted in the overall community structure 
results (Figures 2A–D).

3.4. Responses of naturally present 
Fusarium populations to elevated [CO2]

Fusarium is an important global pathogen of wheat and was 
highlighted here as an indicator of disease risk (i.e., Fusarium head 
blight). In 2017, no ASVs assigned to the genus Fusarium were 
responsive to [CO2]. However, in 2018, several ASVs assigned to the 
genus Fusarium were responsive to the interaction of [CO2] × collection 
date (ASV4, ASV58, ASV63, ASV64) or to the main effect of [CO2] 
(ASV18, ASV33, ASV58, ASV88; Supplementary Table S4). Of these, 
ASV4 and ASV18 were the most abundant (ASV4 = 5.86% and 
ASV18 = 0.72% of filtered fungal sequences from 2018) and were also 
more abundant in spike relative to flag leaf tissue (10.5× and 2.8× 
more abundant in the spike vs. flag leaf for ASV4 and ASV18, 
respectively; Supplementary Figure S4), suggesting they may have a 
potential role in FHB. Inclusion of reference sequences in a maximum 
likelihood phylogeny of our observed Fusarium amplicon sequences 
highlighted that ASV4 was identical to the corresponding amplicon 
from F. graminearum PH-1, and ASV18 was identical to the 
corresponding amplicon from F. incarnatum NRRL 13379 (Figure 4C). 

Although the ITS region is not an ideal taxonomic marker for the 
genus Fusarium, it is considered sufficient for identification to the level 
of species complex (O'Donnell et  al., 2022). Thus, ASV4 likely 
represents F. graminearum or a closely related species from the 
Fusarium sambucinum species complex, while ASV18 likely represents 
a species from the Fusarium incarnatum-equiseti species complex. As 
expected for a putative pathogen establishing on a host plant, ASV4 
increased in abundance over time. However, enrichment of this ASV 
was more rapid under elevated relative to ambient [CO2] (Figure 4A). 
In contrast, across all collection dates, ASV18 was 18.7× more 
abundant under ambient relative to elevated [CO2] conditions 
(Figure 4B). Thus, the effects of elevated [CO2] were not consistent 
across members of the genus Fusarium.

3.5. Response of inoculated Fusarium 
graminearum to [CO2]

Within experimentally inoculated plants, we measured Fusarium 
load and [DON] as two metrics of disease progression. Both Fusarium 
load and [DON] differed significantly by [CO2] treatment in 2017 
(p = 0.001, p = 0.004, respectively; Supplementary Table S5; 
Figures  5A,C). However, biological replication was low in this 
experiment because of spikes lost to herbivory, reducing the reliability 

FIGURE 3

Abundances of individual microbial taxa respond to experimental treatments and interactions among treatments. Differential abundance results 
depicted according to year and microbial kingdom: bacteria and fungi in 2017 (17b, 17f) and 2018 (18b, 18f), respectively. (A) The abundances of 
individual microbial taxa are responsive to [CO2] treatment. Positive values indicate enriched abundance under ambient vs. elevated [CO2], and vice 
versa for negative values. (B) Change in abundance (net log2 fold change) for taxa that responded significantly to experimental factors. Violin plots 
show the range of the data and relative distribution. ‘CO2’  =  ambient vs. elevated concentration of carbon dioxide; ‘collect’  =  collection date (3 dates in 
2017, 4 dates in 2018), ‘tissue’  =  spike vs. flag leaf, ‘D  ×  C’  =  interactions between carbon dioxide treatment and collection date, ‘D  ×  T’  =  interactions 
between carbon dioxide treatment and tissue type, ‘C  ×  T’  =  interactions between collection date and tissue type. (C) Individual microbial taxa respond 
to the interaction of [CO2] and collection date in 2017. Positive values indicate a decrease in relative abundance over time within that [CO2] treatment, 
and vice versa for negative values. (D) Individual microbial taxa respond to the interaction of [CO2] and collection date in 2018. Positive values indicate 
a decrease in relative abundance over time within that [CO2] treatment, and vice versa for negative values. For panels (A,C,D): statistically significant 
pairwise contrasts are color coded by microbial phylum; non-significant effects are shown in gray.
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of the 2017 data. A more robust dataset was produced in 2018, as 
herbivory was less problematic. In 2018, both Fusarium load and 
[DON] increased significantly over time (both p < 0.001; 
Supplementary Table S5; Figures 5B,D). However, neither Fusarium 
load nor [DON] were influenced by [CO2] treatment; nor was there 
an interaction between days post infection and [CO2] treatment for 
these response variables (all p > 0.10).

4. Discussion

Our data support the hypotheses that elevated [CO2] measurably 
impacts the structure of plant-associated microbiomes, and that 
relative abundances of individual microbial taxa, including 
economically important fungal pathogens, respond significantly to 
[CO2]. The impact of [CO2] on Fusarium and other microbiota was 
frequently contingent on tissue type and plant development (i.e., 

collection date). Manipulating [CO2] caused moderate shifts in the 
tissue-dependent communities in both years, with stronger temporal 
effects on community turnover in 2018. Our analyses of Fusarium spp. 
naturally found in wheat spikes contrasted with the result of our 
intentional Fusarium inoculation. Specifically, two strains of naturally 
occurring Fusarium, corresponding to two separate species complexes 
within the genus, showed opposing responses to [CO2]; while the 
inoculated F. graminearum strain GZ3639 showed no [CO2] response. 
Our results show that the response of crop-associated microbiomes to 
elevated [CO2] is complex and variable both within and across seasons.

Overall, the magnitude of microbiome changes induced by altered 
[CO2] in wheat was smaller than the differences observed in different 
plant tissue types (i.e., flag leaf vs. spike) or collection date. Similar 
findings have been reported in previous FACE studies. For example, 
Usyskin-Tonne et al. (2020) found that plant compartment (soil vs. 
root) had the greatest impact on belowground wheat bacterial 
communities, followed by plant age, then [CO2]. In our study, it is 

FIGURE 4

Endogenous Fusarium spp. respond differentially to [CO2] treatment in 2018. Line plots depict the proportion of cumulative sequencing read 
abundance attributed to specific amplicon sequence variants assigned to Fusarium: (A) ASV4 and (B) ASV18, according to [CO2] treatment 
(blue  =  ambient, red  =  elevated) and collection week. (C) Depicts phylogenetic placement of ASV4 and ASV18 (arrows), with respect to reference strains 
and other ASVs assigned to Fusarium.
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possible that microbial community responses to [CO2] were indirectly 
mediated by a plant phenological shift under elevated [CO2]. For 
example, elevated [CO2] has been shown to accelerate grain filling and 
senescence in wheat under certain environmental conditions (Li et al., 
2001; Tun et al., 2021), but not others (Hay et al., 2022). However, 
we  did not track phenological development closely, and it is also 
possible that there were other unmeasured co-occurring 
environmental changes created by the [CO2] manipulation. Similarly, 
the shift in microbiome communities under elevated [CO2] identified 
in both tissue types likely reflected the unique changes in those 
microbial habitats. Recent work shows that nutritional properties of 
wheat grain are often altered by elevated [CO2] (Hay et al., 2020), 
while foliar N is known to decrease dramatically under elevated [CO2] 
in C3 crops (Gonçalves et al., 2021).

Overall changes in microbiome community structure were also 
reflected by changes in individual microbial taxa. Proteobacterial taxa 
tended to be enriched over time under elevated [CO2], which matches 
previous reports in rice (Ikeda et  al., 2015). However, differences 
between fungal phyla were more nuanced. Taxa belonging to the 
phylum Basidiomycota tended to experience more dramatic shifts in 
abundance between [CO2] treatments, relative to taxa from 
Ascomycota, but while some taxa were enriched under elevated [CO2], 
others were depleted. The responses of microbial taxa to elevated 
[CO2] may be dependent on the plant response to [CO2], such as 
immune response (Zhou et al., 2019), change in nutritional status 

(Hay et  al., 2020; Gonçalves et  al., 2021), or change in stomatal 
openings (Huang et al., 2018). Shifts in the abundance of individual 
microbial taxa may also depend on the positive and negative 
associations among the microbiota themselves (Connor et al., 2017).

Our results identified two strains of Fusarium, representing two 
distinct species complexes, that responded to [CO2] in 2018. The 
genus Fusarium has over 350 recognized species (Geiser et al., 2021), 
split across 23 species complexes. Several species complexes contain 
etiological agents capable of causing FHB in wheat (especially 
FSAMSC, FIESC, FTSC, and FFSC; Karlsson et al., 2021), with certain 
species complexes being more or less relevant to disease management, 
depending on region, climate and grain crop of interest (Xu and 
Nicholson, 2009). Most research in this area has focused on just one 
species, F. graminearum, although there have been a few studies of 
response to elevated [CO2] in other Fusarium species (e.g., 
F. langsethiae, F. poae, F. pseudograminearum, and F. sporotrichioides; 
Melloy et al., 2010; Kahla et al., 2023). Previous studies have shown 
that the impact of elevated [CO2] was dependent on both the strain 
and wheat cultivar identity (Cuperlovic-Culf et al., 2019), and the 
effect was due in part to variety-dependent changes in grain 
nutritional content (Hay et  al., 2020). Specifically, the increased 
production of mycotoxins at elevated [CO2] was F. graminearum 
strain-dependent, but the results also correlated with cultivar-specific 
losses in grain protein and mineral content (Hay et al., 2020). When 
the FACE field wheat inoculation experiments described here were 

FIGURE 5

Disease symptoms induced by inoculated Fusarium graminearum vary by [CO2] treatment in (A,C) 2017, but not in (B,D) 2018. (A,B) Fusarium load and 
(C,D) DON accumulation, by CO2 treatment (A  =  ambient, E  =  elevated). In 2018 (B,D), data are also shown by days post infection. Each point represents 
a single sample.
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conducted, the authors were not yet aware of these potential strain- 
and cultivar-specific responses to [CO2]. Both the F. graminearum 
strain (Gz3639) and wheat cultivar (Glenn) used in this experiment 
have now been shown to be less responsive than some others are to 
elevated [CO2] (Cuperlovic-Culf et al., 2019; Hay et al., 2020, 2022). 
For these reasons, it is not surprising that no significant differences in 
FHB progression or in DON content were observed in our inoculation 
in 2018. Although effects of [CO2] on FHB progression and DON 
accumulation were suggested in 2017, less than 10% of the inoculated 
wheat heads were recovered due to herbivory; thus, those data were 
likely biased due to herbivore feeding preference.

A key strength of this study is that manipulation of [CO2] was 
accomplished under complex and realistic field conditions, compared 
to the more common experimental setting within controlled 
environment growth chambers. Due to the specialized infrastructure 
required for such an experiment, there have been few studies to date 
that have provided data on contemporary impacts of changing the 
composition of the atmosphere on crop-associated pathogens and 
microbiomes (Ainsworth and Long, 2021). Here, we  studied the 
direct, contemporary effects of [CO2]. However, there are several 
downstream effects of elevated [CO2] that are also certain to impact 
plant-associated pathogens and microbiomes. For example, effects 
associated with climate change, such as patterns of precipitation and 
air temperatures, will also impact plant-microbe associations. 
Temperature has also been shown to influence the outcomes of 
interactions between wheat and F. graminearum (Hay et al., 2021). Of 
course, many of the impacts of climate change occur at larger 
geographic scales and across longer timeframes than can be studied 
within individual cropping seasons. Furthermore, pathogen 
populations can undergo rapid change due to selection and geographic 
mobility (Ward et  al., 2008), and plant breeding continues apace; 
we will not be using today’s crop varieties under tomorrow’s climate 
scenarios. Nonetheless, attempting to simulate future environmental 
conditions remains the best available option for improving our ability 
to anticipate how forces of global change may create challenges for 
crop production and food safety.

Despite successfully manipulating [CO2] in a field setting, some 
artificiality remains in our study. In particular, the FACE infrastructure 
necessitated that some typically mechanized field operations (e.g., 
tilling and pesticide treatments) were performed manually, which may 
have had impacts on microbial transmissibility and colonization 
(Gdanetz and Trail, 2017). Additionally, due to constraints associated 
with other objectives of the FACE site, our wheat was embedded 
within a soybean field. Thus, the wheat plants likely experienced 
atypical plant–plant microbial transfer, versus what would be expected 
within a field planted entirely to wheat (Whitaker et al., 2022). Lastly, 
given the key experimental goal of evaluating [CO2]-induced FHB 
progression after inoculation, we only performed a more detailed 
assessment of naturally-infecting Fusarium differential abundance. 
While other putative pathogens likely exist in the dataset (e.g., 
Bipolaris), a full evaluation of these taxa was beyond the scope of 
this study.

The complexity of evaluating the impact of elevated [CO2] on 
plant-microbiome interactions in a field setting are highlighted by the 
differences between years. Although some confounded factors in the 
amplicon library preparation prevent our direct testing of differences 
between years, the responsiveness of microbiome structure to [CO2] 
likely varied between years due to differences in environmental 

conditions other than [CO2], such as temperature and precipitation 
(Ren et al., 2015). Infection and pathogenicity of Fusarium spp., in 
particular, are driven by moisture conditions during anthesis 
(Vaughan et al., 2016; Moraes et al., 2022). Accumulated precipitation 
in the summer months of 2018 was three-times that of 2017 (Prism 
Climate Group at Oregon State University, 2023), which may have 
contributed to our ability to detect differential abundance responses 
to [CO2] for the two naturally infecting strains (Verheecke-Vaessen 
et al., 2019).

In conclusion, our results describe how the wheat-associated 
microbiome and an economically important complex of cereal 
pathogens respond to experimental manipulation of [CO2] in a field 
setting. A key finding of this work is the demonstration of a link 
between [CO2] effects on the microbiome and collection date, 
which was likely the result of physiological changes in plant nutrient 
status and immune response over time (Cuperlovic-Culf et al., 2019; 
Hay et al., 2020; Rho et al., 2020; Gonçalves et al., 2021; Hay et al., 
2022). A critical next step will be to assess how altered microbiomes 
under elevated [CO2] may lead to unforeseen consequences to crop 
yields or stress tolerance. Current microbiome studies are typically 
restricted to 16S and ITS markers for bacteria and fungi, 
respectively, which are less useful for strain level identification. 
However, the decades of genetic research on FHB-causing Fusarium 
spp. (Geiser et al., 2021) allowed us to show that Fusarium spp. 
response to elevated [CO2] was strain and species-complex specific. 
As sequencing technologies continue to advance, future studies may 
be  better able to detect these strain-specific responses in other 
important genera of pathogens or plant growth 
promoting symbionts.
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