
Frontiers in Microbiology 01 frontiersin.org

Genotypic characterization, 
antimicrobial susceptibility and 
virulence determinants of 
Campylobacter jejuni and 
Campylobacter coli isolated from 
pastured poultry farms
Amal Awad 1, Hung-Yueh Yeh 2*, Hazem Ramadan 3 and 
Michael J. Rothrock 2

1 Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura 
University, Mansoura, Egypt, 2 U.S. National Poultry Research Center, Agricultural Research Service, 
United States Department of Agriculture, Athens, GA, United States, 3 Department of Hygiene and 
Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt

Aim: Campylobacter is the leading bacterial pathogen that causes foodborne 
illnesses worldwide. Pasture farming is regarded as an important source of 
agricultural production for small farming communities. Consumer preference 
for pasture-raised animal products has increased; however, there is a paucity of 
information on the microbiological quality of pasture-raised poultry products. 
The purpose of this study was to explore genetic relatedness of thermophilic 
Campylobacter isolates, to assess antibiotic resistance phenotypically and 
genotypically, and to screen the presence of virulence determinants of 
Campylobacter isolates from pasture-raised poultry farms from southeastern 
United States.

Methods: Ninety-seven Campylobacter isolates previously identified by Q7 BAX® 
System Real-Time PCR were genotyped by multilocus sequence typing (MLST). 
Campylobacter isolates were then evaluated for their phenotypic antimicrobial 
susceptibility against nine antimicrobial agents using Sensititre plates. Additionally, 
Campylobacter isolates were tested for the presence of antimicrobial resistance-
associated elements. Furthermore, Campylobacter isolates were screened for the 
presence of 13 genes encoding putative virulence factors by PCR. These included 
genes involved in motility (flaA and flhA), adhesion and colonization (cadF, docC, 
racR, and virB11), toxin production (cdtA, cdtB, cdtC, wlaN, and ceuE) and invasion 
(ciaB and iamA).

Results: Among 97 Campylobacter isolates, Campylobacter jejuni (n  =  79) and 
Campylobacter coli (n  =  18) were identified. By MLST, C. jejuni isolates were 
assigned to seven clonal complexes. Among them, ST-353, ST-607 and ST-21 
were the most common STs recognized. All C. coli (n  =  18) isolates were included 
in CC-828. Interestingly, eight STs identified were not belonging any previous 
identified clonal complex. Campylobacter isolates displayed a high resistance rate 
against tetracycline (81.4%), while a low rate of resistance was observed against 
macrolides (azithromycin and erythromycin), quinolones and fluoroquinolones 
(nalidixic acid and ciprofloxacin), aminoglycosides (gentamicin), ketolide 
(telithromycin), amphenicol (florfenicol) and lincomycin (clindamycin). Thirteen 
isolates (13.54%) were pan-susceptible to all tested antibiotics, while nine isolates 
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were multi-antimicrobial resistant (MAR; resist to three or more antimicrobial 
classes). Interestingly, there were no isolates resistant to all antimicrobial classes. 
Thr86Ile mutation was identified in all quinolones resistant strains. Erythromycin 
encoding gene (ermB) was identified in 75% of erythromycin resistant isolates. The 
A2075 mutation was detected in one erythromycin resistant strain, while A2074 
could not be  identified. The tetO gene was identified in 93.7% of tetracycline 
resistant isolates and six tetracycline susceptible isolates. In conclusion, the 
results of this study revealed that Campylobacter isolates from pasture-raised 
poultry farms showed the ST relatedness to Campylobacter isolates commonly 
associated with humans, indicating pasture-raised broiler flocks, similar to 
conventionally-reared broiler flocks, as a potential vector for antibiotic-resistant 
and pathogenic strains of thermophilic Campylobacter to humans.
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Introduction

Thermophilic Campylobacter spp., particularly Campylobacter 
jejuni and Campylobacter coli, have been established as leading causes 
of food-borne illnesses worldwide (Vetchapitak and Misawa, 2019; 
European Food Safety Authority, 2021; Sher et  al., 2021). The 
U.S. Centers for Disease Control and Prevention (Centers for Disease 
Control and Prevention, 2022) estimated that 1.5 million U.S. residents 
are infected with Campylobacter each year. Most patients have acute, 
self-limiting gastroenteritis, but some may have severe and long-
lasting illnesses, which require antibiotic treatment, particularly in 
immunocompromised patients (Ma et al., 2014). Additionally, the 
infection by Campylobacter may be  associated with a number of 
complications such as polyarthralgia, Guillain-Barre syndrome (GBS), 
Miller Fisher syndrome and even death (Kaakoush et al., 2015).

Campylobacteriosis is transmitted by eating raw or undercooked 
poultry meat (Centers for Disease Control and Prevention, 2022). 
Campylobacter contaminates poultry meats prior to or during 
processing representing a potential health threat to consumers (Suzuki 
and Yamamoto, 2009). Campylobacter contamination in poultry farms 
could occur via feed, water, soil, contact animals, biosecurity threats, 
and vehicles (Ghareeb et al., 2013).

The survival and pathogenicity of Campylobacter species are all 
influenced by several virulence factors (Casabonne et  al., 2016). 
Bacterial motility, adherence to the intestinal epithelial walls, 
colonization and cytotoxin production are the main bacterial 
virulence factors. Several genes related to Campylobacter virulence 
factors have recently been identified including adhesion and 
colonization (flaA, flhA, cadF, and racR), invasion-associated markers 
(ciaB, iam, and virB11), and ganglioside mimicry (wlaN) 
(Bolton, 2015).

There is a growing antibiotic resistance crisis in clinical medicine 
since antibiotics were historically used in food animal production 
either for treatment or for growth promotion, which led to human 
exposure and infection through a variety of pathways, including meat 
and poultry products (Price et  al., 2007). Moreover, a significant 
portion of the antibiotics provided are not absorbed by the animals 
and are excreted in the urine and feces. In Campylobacter infections, 
antibiotic therapy is commonly required for immunocompromised 

patients and those with severe campylobacteriosis (Kaakoush et al., 
2015). Generally, Campylobacter infections are treated with macrolides 
(erythromycin, clarithromycin, and azithromycin), although 
fluoroquinolones (ciprofloxacin) are the most effective drugs to treat 
diarrhea (Aarestrup et  al., 2008). Additional alternative drugs for 
treatment are tetracycline, doxycycline, and chloramphenicol (Skirrow 
and Blaser, 2000).

Pastured poultry farms in the USA are considered an important 
source of animal production that may provide an important 
opportunity to strengthen rural communities (Conner et al., 2008). 
Consumer preference of free-range and pasture-raised animal 
products such as meat, milk, and eggs has grown (Stampa et al., 2020). 
Because there is a paucity of information on the quality of pasture-
raised chickens, many customers feel that these products are of 
superior quality in contrast to conventionally-farmed chickens, due to 
their more natural growing conditions (Yeung and Morris, 2001). 
There is insufficient research on genotyping, presence of virulence 
determinants, and antibiotic resistance of Campylobacter isolates from 
pasture-raised poultry farms; therefore, the purpose of this study was 
to explore genetic relatedness of thermophilic Campylobacter isolated 
from pasture-raised poultry farms and the following processing 
operations of broiler carcasses, and to assess antibiotic resistance 
phenotypes and genotypes as well as to screen the presence of 
virulence determinants in the retrieved isolates.

Materials and methods

The farm description, sample collection and processing, and 
Campylobacter isolation methods were previously described 
(Rothrock et al., 2016). Briefly, the samples were collected from feces, 
pasture soil, cecal content at processing, whole carcass rinsates and 
final whole carcass products. All samples were collected in the field 
and were brought back to the laboratories in a cooler packed in ice. 
The total amount of fecal and soil samples was at least 25 grams per 
sample. For homogenization, three grams (feces, cecal and soil 
samples) were diluted 1:3 in 10 mM phosphate buffered saline (PBS) 
in sterile filtered stomacher bags (Seward Laboratories, Inc., Bohemia, 
NY, United States). For rinsates, 100 mL of 10 mM PBS were added to 
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each carcass within the storage bag, and the bags were vigorously 
shaken for 1 minute. The rinsates were collected into the sterile filtered 
stomacher bags (Seward Laboratories, Inc.). All samples were 
homogenized for 1 minute with a Stomacher® 400 Blender (Seward 
Laboratories, Inc.), and these homogenates were used for the 
downstream Campylobacter isolation. A volume of 100 μL from the 
above homogenized suspension was plated onto Campy-Cefex agar 
(prepared in the laboratory; Stern et  al., 1992). The plates were 
incubated at 42 ± 1°C for 36 to 48 h in a microaerobic condition (85% 
N2, 10% CO2 and 5% O2) (Hiett et  al., 2008; Yeh et  al., 2013). 
Presumptive Campylobacter colonies were selected and enumerated 
on Brucella agar supplemented with 10% lyzed horse blood for 
isolation (prepared in the laboratory; Stern et al., 1992). The plates 
were incubated as described above. Speciation of Campylobacter was 
carried out using a Q7 BAX Real-Time PCR system according to the 
manufacturer’s instructions as described previously (Yeh et al., 2022). 
An end-point multiplex PCR assays were also performed. The 16S 
rRNA primers specific to Campylobacter in the PCR assays generated 
amplicons both in C. jejuni and C. coli samples, verifying the isolates 
as Campylobacter (Linton et al., 1997). The PCR assays with hipO 
primers amplified a 323-bp product in the C. jejuni samples, but not 
in the C. coli samples, verifying the isolates as C. jejuni (Caner et al., 
2008). The PCR with primers from the ask gene generated about a 
550-bp gene fragment that identified the samples of C. coli (Linton 
et al., 1997). Campylobacter isolates were frozen at −80°C in Luria-
Bertani broth with 20% glycerol until downstream analyses 
were performed.

Bacterial cultures and genomic DNA 
isolation

Campylobacter jejuni (n = 79) and C. coli (n = 18) isolates from our 
stock in the U.S. National Poultry Research Center, Agricultural 
Research Service, U.S. Department of Agriculture, Athens, GA, 
United States were used in this study. Bacterial cultures were revived 
in Mueller-Hinton agar plates at 42°C for 48 h under the microaerobic 
condition as described as above.

DNA was extracted from pure bacterial cultures of 79 C. jejuni 
and 18 C. coli using the DNeasy Blood & Tissue Kit (Qiagen Inc., 
Germantown, MD, United  States) in accordance with the 
manufacturer’s instructions. DNA concentrations were measured 
spectrophotometrically using a DeNovix DS-11 FX spectrophotometer 
(DeNovix Inc., Wilmington, DE, United States).

Multilocus sequence typing of 
Campylobacter isolates

Amplification of seven housekeeping genes was performed 
according to the procedures described by Dingle et al. (2001) using 
the primer sets given in the Campylobacter MLST website.1 All PCR 
products were purified with a DNA Clean & Concentrator™-5 kit 
(Zymo Research, Irvine, CA, United  States). The purified PCR 

1 https://pubmlst.org/bigsdb?db=pubmlst_campylobacter_seqdef

products were sent to the core facilities at the USDA ARS Genomics 
and Bioinformatics Research Unit (Stoneville, MS, United States) 
for DNA sequencing with an ABI 3730xl Genetic Analyzer (Thermo 
Fisher Scientific, Foster City, CA, United States) using a BigDye 
terminator v.3.1 Chemistry. Allelic profile, sequence type (ST) and 
clonal complex (CC) were assigned to the isolates using the allelic 
profile query function in the MLST database. Minimum spanning 
tree (MST) of MLST allelic differences was generated using 
BioNumerics (version 7.6; Applied Maths, Austin, TX, 
United States).

Antimicrobial susceptibility test

Antimicrobial susceptibility of C. jejuni and C. coli isolates was 
determined using a Sensititre™ system (Thermo Fisher Scientific) 
according to the manufacturer’s instructions described previously 
(Yeh et al., 2022). Sensititire™ Campylobacter CAMPY AST plates 
were used in this study (Thermo Fisher Scientific). The results were 
read photometrically using Sensititre™ Vizion™ Digital MIC 
Viewing System (Thermo Fisher Scientific) in associated with the 
SWIN software (version 3.3). Quality control was performed using 
C. jejuni, ATCC 33560. The breakpoints for Campylobacter resistance 
were interpreted according to the guidelines from Clinical and 
Laboratory Standards Institute M45, 3rd Edition (Clinical and 
Laboratory Standards Institute (CLSI), 2015) as follows: azithromycin, 
≥8 μg/mL; erythromycin, ≥32 μg/mL; gentamicin, ≥8 μg/mL; 
tetracycline, ≥16 μg/mL; ciprofloxacin, ≥4 μg/mL; florfenicol, ≥16 μg/
mL; nalidixic acid, ≥32 μg/mL; and clindamycin, ≥8 μg/mL.

Molecular detection of antibiotic 
resistance-associated genes

Resistance-associated genes of tetracycline, quinolones and 
macrolides in resistant isolates were determined. For tetracycline, the 
presence of the tetO gene was determined as described previously by 
Gibreel et al. (2004). Primers DMT 1 and DMT 2 (Table 1) were used 
to amplify a 559-bp product of the tetO gene in Campylobacter 
genomes. The mismatch amplification mutation assay (MAMA-PCR) 
was used to detect point mutations at Thr-86-Ile in QRDR of the gyrA 
gene (Zirnstein et al., 1999) and Ala-2074-Cys and Ala-2075-Gly in 
23S rRNA gene (Alonso et al., 2005) for quinolone- and erythromycin-
resistant isolates, respectively. Also, the ermB gene was used for 
screening the erythromycin resistant isolation according to the 
protocol described by Zhou et al. (2016). Primer sequences for PCR 
amplification are listed in Table 1.

Detection of virulence-associated genes

Campylobacter isolates were screened for the presence of some 
virulence determinants by PCR, including the genes responsible for 
motility (flaA and flhA), adhesion and colonization (cadF, docA, racR, 
and virB11), cytotoxin production (cdtA, cdtB, cdtC, ceuE, and wlaN) 
and invasion-associated markers (iam and ciaB). Primer sequences 
and protocol for PCR amplification of the above virulence factors are 
listed in Table 1.
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Statistical analysis

To determine if the differences in the frequencies of isolate recovery 
was significant among the examined sources as well as frequencies of 
virulence genes among the examined isolates, these frequencies were 
used as inputs to create contingency tables and the significance was 
determined by Chi-square (X2) test, with a cutoff level for p-value equal 
to 0.05. The results of resistance phenotypes and frequencies of virulence 
genes were converted into binary data (0/1), where the presence of a 
virulence gene received scores of 1, whereas susceptibility to 
antimicrobials and the absence of a virulence gene received scores of 0. 
To determine the association of resistance phenotypes and virulence 
genes to sequence types (STs) among the examined Campylobacter, a 

heatmap with hierarchical clustering based on the binary data (0/1) of 
antimicrobial resistance and virulence genes was created using the 
package “pheatmap” in R software (version 217 3.4.2).

Results

Genetic diversity of Campylobacter isolates 
using MLST

MLST analysis showed high genetic diversity among both C. jejuni 
and C. coli isolates (Figure  1). A total of 19 different STs were 
identified: 14 for C. jejuni and five for C. coli (Table 2). The STs found 

TABLE 1 Oligonucleotide primers used in this study.

Virulence 
trait/function

Target gene Sequence (5' – 3')
Annealing 

temperature
Product 
size (bp)

Reference

Motility

flaA
F: GGATTTCGTATTAACACAAATGGTGC

R: CTGTAGTAATCTTAAACATTTTG
48 °C 1,700 Campynet

flhA
F: GGAAGCGGCACTTGGTTTGC

R: GCTGTGAGTGAGATTATAGCAGC
55 °C 735 Müller et al. (2006)

Adhesion and 

colonization

cadF
F: TGGAGGGTAATTTAGATATG

R: CTAATACCTAAAGTTGAAAC
45 °C 400 Konkel et al. (1997)

docA
F: ATAAGGTGCGGTTTTGGC

R: GTCTTTGCAGTAGATATG
50 °C 725 Müller et al. (2006)

racR
F: GATGATCCTGACTTTG

R: TCTCCTATTTTTACCC
50 °C 584 Datta et al. (2003)

virB11
F: GAACAGGAAGTGGAAAAACTAGC

R: TTCCGCATTGGGCTATATG
56 °C 708 Bacon et al. (2000)

Cytotoxin 

production

cdtA
F: CCTTGTGATGCAAGCAATC

R: ACACTCCATTTGCTTTCTG
55 °C 370 Hickey et al. (2000)

cdtB
F: CAGAAAGCAAATGGAGTGTT

R: AGCTAAAAGCGGTGGAGTAT
57 °C 620 Datta et al. (2003)

cdtC
F: CGATGAGTTAAAACAAAAAGATA

R: TTGGCATTATAGAAAATACAGTT
55 °C 182 Datta et al. (2003)

wlaN
F: TGCTGGGTATACAAAGGTTGTG

R: AATTTTGGATATGGGTGGGG
60 °C 330 Müller et al. (2006)

ceuE
F: CCTGCTCGGTGAAAGTTTTG

R: GATCTTTTTGTTTTGTGCTGC
57°C 794 Bang et al. (2003)

Invasiveness

ciaB
F: TTTCCAAATTTAGATGATGC

R: GTTCTTTAAATTTTTCATAATGC
50 °C 1,165 Müller et al. (2006)

iam
F: GCGCAAAATATTATCACCC

R: TTCACGACTACTATGCGG
56 °C 518

Carvalho et al. 

(2001)

Erythromycin 

resistance

ermB F: CAGGTAAAGGGCATTTAACGACG

R: CATCTGTGGTATGGCGGGTAAG

58 °C 738 Zhou et al. (2016)

23S rRNA at 

position 2074

23S rRNA at 

position 2075

23SRNA-F

ERY2074R

ERY2075R

F: TTAGCTAATGTTGCCCGTACCG

R: AGTAAAGGTCCACGGGGTCTGG

R: TAGTAAAGGTCCACGGGGTCGC

59 °C 485

485

Alonso et al. (2005)

tetO DMT 1 F:5GGCGTTTTGTTTATGTGCG 3

R:5ATGGACAACCCGACAGAAGC3

559 Gibreel et al. (2004)

MAMA-PCR (gyrA 

mutation) C. jejuni

CampyMAMAgyrA1

CampyMAMAgyrA5

F: TTTTTAGCAAAGATTCTGAT

CAAAGCATCATAAACTGCAA

265 Zirnstein et al. 

(1999)

MAMA-PCR (gyrA 

mutation) C. coli

GZgyrACcoli3F

CampyMAMAgyrA8

F:TATGAGCGATATTATCGGTC

R:TAAGGCATCGTAAACAGCCA

192 Zirnstein et al. 

(1999)
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in C. jejuni included ST-607 (n = 19), ST-353 (n = 16), ST-50 (n = 15), 
ST-6091 (n = 8), ST-457 (n = 5), ST-460 (n = 3), ST-1838 (n = 3), 
ST-3115 (n = 3), ST-467 (n = 2), ST-12 (n = 1), ST-939 (n = 1), ST-2231 

(n = 1), ST-5602 (n = 1) and ST-6772 (n = 1). C. jejuni isolates from 
broiler feces showed the most diversity, including 11 STs, followed by 
seven STs found in broiler cecae. Further, 12 C. jejuni STs could 

FIGURE 1

A heatmap supported by a dendrogram showing the distribution of antimicrobial resistance phenotypes, resistance and virulence genes among the 
examined Campylobacter assigned to various multilocus sequence types (ST). Dark blue squares indicate the presence of virulence and resistance 
genes and phenotypic resistance; gray squares indicate absent genes and phenotypic susceptibility.
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TABLE 2 Distribution of C. jejuni and C. coli MLST (ST) according to samples’ sources.

Source of 
isolates

C. jejuni C. coli

CC-353 CC-
354

CC-
607

CC-
21

CC-
460

CC-
49

UA UA CC-828

ST-
353

ST-
2231

ST-
1838

ST-12 ST-
457

ST-
6772

ST-
939

ST-
3115

ST-
607

ST-
50

ST-
460

ST-
467

ST-
5602

ST-
6091

ST-
8064

ST-
825

ST-
1082

ST-
829

ST-
1063

Broiler ceca (16) 1 2 1 1 1 1 2 2 3 2

Broiler feces (37) 5 3 1 1 2 10 4 2 1 1 5 1 1

Carcass rinse (10) 2 1 1 1 2 2 1

Whole carcass 

rinse final (6)

2 2 2

Broiler soil (10)a 2 1 3 1 2 1

Layer feces (7) 1 3 2 1

Pig feces (4) 1 2 1

Cow feces (2) 2

Cow soil (2)a 1 1

Layer soil (3)a 2 1

Total 16 1 3 1 5 1 1 3 19 15 3 2 1 8 1 2 8 6 1

aSoil sources indicate isolates recovered from the pasture topsoil in the same area the fecal samples were collected on that sampling day.
UA, undefined CCs.
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be assigned to six previously described CCs (CC21, CC607, CC353, 
CC49, CC354, and CC460), whereas two (ST-5602 and ST-6091) 
belonged to undefined CCs. The STs found in C. coli were assigned to 
a single previously described CC828 included ST-8064 (n = 1), ST-829 
(n = 6), ST-825 (n = 2), ST-1082 (n = 8) and ST-1063 (n = 1).

Thermophilic isolates used in this study were originating from 
nine pastured poultry and livestock raised flocks, including broiler 
feces, broiler soil, broiler ceca, whole carcass rinse, pig feces, layer 
feces, layer soil, final whole carcass rinse, cow feces, and cow soil. By 
studying the frequency distribution of the recovered C. jejuni and 
C. coli from different sources, a significant (p < 0.05) associations of 
isolate recovery to the examined sources was obvious 
(Supplementary Table S1).

Concerning the distribution of C. jejuni and C. coli STs according 
to the source of samples, 7STs were detected belonging to CC-353 
which was the most frequent clonal complex identified including 
ST-353 from broiler ceca, broiler feces, whole carcass rinse, layer feces, 
cow feces, cow soil and layer soil, ST-2231 from carcass rinse, ST-1838 
from broiler feces (3), ST-12 from broiler feces (1), ST-457 was 
detected from carcass rinse and broiler soil, ST-6772 was detected 
from broiler ceca (1) and ST-939 was detected from broiler feces. 
Regarding CC 607, only ST-607 from broiler ceca, broiler feces, 
carcass rinse, broiler soil, layer feces and pig feces was identified. From 
CC-21 only ST- 50 was detected from broiler ceca, broiler feces, 
carcass rinse, whole carcass rinse, broiler soil, layer feces and pig feces. 
In addition to CC 460, ST- 460 was identified from broiler feces and 
layer feces and CC49 from which ST-467 was detected from broiler 
ceca and broiler feces. Furthermore, two STs not assigned to any clonal 

complex were also identified including ST-5602 from broiler feces and 
ST-6091 was detected from broiler ceca, broiler feces and pig feces. 
Regarding C. coli only CC-828 were detected and 5 STs were identified 
including ST- 8064 (broiler feces), ST- 825 (broiler ceca), ST-1082 
(broiler ceca, carcass rinse, whole carcass rinse, broiler soil), ST-829 
(broiler ceca, broiler feces, carcass rinse, broiler soil) and ST-1063 
from broiler soil (Table 2).

Antimicrobial susceptibility of 
Campylobacter jejuni and Campylobacter 
coli isolates

Frequency of antibiotic resistance of the C. jejuni and C. coli 
isolates to various antibiotics is presented in Table 3 and Figure 1. In 
total, 75 (95%) of the C. jejuni isolates were resistant to various 
numbers of antibiotics tested. Fifty-nine isolates (75%) were resistant 
to tetracycline alone, four isolates (5%) were resistant to two 
antibiotics (azithromycin and tetracycline), and another four (5%) 
were pan susceptible to all nine antibiotics tested. Twelve isolates 
were resistant to at least three antibiotics, and therefore considered 
multi-drug resistant (MDR), with one isolate showing resistance to 
eight antibiotics (azithromycin, clindamycin, erythromycin, 
florfenicol, gentamicin, telithromycin, tetracycline, and nalidixic 
acid). For C. coli, five (28%) and two (11%) isolates were resistant to 
tetracycline and clindamycin, respectively. However, two (11%) 
C. coli isolates were resistant to five antibiotics (tetracycline, 
azithromycin, clindamycin, erythromycin, and telithromycin). All 

TABLE 3 Results of antimicrobial susceptibility testing for the examined Campylobacter isolates.

Antimicrobials Class
C. jejuni (n=79) C. coli (n=18)

Resistant No. (%) Resistant No. (%)

Tetracycline Tetracycline 59 (74.68%) 5 (27.78%)

Clindamycin Lincomycin 0 2 (11.11%)

Tetracycline, Azithromycin Tetracycline, Macrolide 1 (1.27%) 0

Tetracycline, Clindamycin Tetracycline, Lincomycin 4 (5.06%) 0

Tetracycline, Erythromycin Tetracycline, Macrolide 1 (1.27%) 0

Tetracycline, Gentamicin Tetracycline, Aminoglycoside 1 (1.27%) 0

Tetracycline, Ciprofloxacin, Nalidixic acid Tetracycline, Quinolone 1 (1.27%) 0

Tetracycline, Clindamycin, Erythromycin Tetracycline, Lincomycin, Macrolide 1 (1.27%) 0

Azithromycin, Ciprofloxacin, Clindamycin Macrolide, Quinolone, Lincomycin 1 (1.27%) 0

Ciprofloxacin, Clindamycin, Nalidixic acid Quinolone, Lincomycin 1 (1.27%) 0

Tetracycline, Azithromycin, Ciprofloxacin, Clindamycin Tetracycline, Macrolide, Quinolone, Lincomycin 1 (1.27%) 0

Tetracycline, Azithromycin, Clindamycin, Erythromycin Tetracycline, Macrolide Lincomycin 1 (1.27%) 0

Azithromycin, Ciprofloxacin, Clindamycin, Nalidixic acid Macrolide, Quinolone, Lincomycin 1 (1.27%) 0

Tetracycline, Azithromycin, Clindamycin, Erythromycin, 

Telithromycin
Tetracycline, Lincomycin, Macrolide, Ketolide

0 2 (11.11%)

Tetracycline, Azithromycin, Clindamycin, Florfenicol, 

Nalidixic acid

Tetracycline, Macrolide, Lincomycin, Amphenicol, 

Quinolone

1 (1.27%) 0

Tetracycline, Azithromycin, Clindamycin, Erythromycin, 

Florfenicol, Gentamicin, Telithromycin, Nalidixic acid

Tetracycline, Macrolide, Lincomycin, Amphenicol, 

Aminoglycoside, Ketolide, Quinolone

1 (1.27%) 0

Total 75 (95%) 9 (50%)
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C. coli isolates were sensitive to the quinolone class antibiotics 
(nalidixic acid and ciprofloxacin).

Detection of antimicrobial resistance 
mechanisms

The tetO gene that is responsible for tetracycline-resistant was 
detected in 80 isolates (82.5%) including 71 (89.9%) for C. jejuni and 9 
(50%) for C. coli. Interestingly, the tetO gene was not detected in five 
phenotypically resistant isolates, but was detected from six 
phenotypically sensitive strains. The point mutation in gyrA responsible 
for quinolone resistance of C. jejuni (n = 5) and C. coli (n = 1) isolates 
was detected using MAMA-PCR. All phenotypically resistant isolates 
had a point mutation in the gyrA. For erythromycin-resistant isolates, 
ermB was detected in three isolates. The mutated A2075 was found in 
one isolate, while the A2074 mutation could not be identified.

Distribution of virulence genes

Analysis of virulence gene distribution among C. jejuni and C. coli 
isolates revealed that all 97 Campylobacter isolates harbored the 
virulence genes tested (Table 4). All isolates contained the flaA gene 
(100%) and the other genes were detected in a high prevalence rate, 
including flhA (84.5%; 82/97), cadF (84.5%; 82/97), docA (85.6%, 
83/97), ciaB (80.4%, 79/97), racR (83.5%, 81/97), cdtC (84.5%; 82/97), 
cdtB (84.5%, 82/97), cdtA (82.5%, 80/97), ceuE (72.2, 70/97), and 
VirB11 (58.8%, 57/97). On the other hand, the wlaN gene was detected 

in only 35 isolates (36.1%) and iam gene was found in only 29 isolates 
(29.9%). In addition, the frequency of genes encoding adhesion and 
colonization factors in C. jejuni was significantly higher than that in 
C. coli (Table 4).

Discussion

Within the poultry industry, concerns have been expressed over 
the microbiological safety of pasture-raised poultry products despite 
consumer confidence in these types of production. The continuous 
exposure of the flocks to the pasture environment increases the 
possibility of contact with other sources of Campylobacter such as wild 
birds, insects, etc. (Berg, 2001). Due to the growing preference of this 
type of meat product, the question of whether the welfare benefits for 
this type of production is aligned with appropriate food safety should 
be explored. As a result, the current study was carried out to explore 
the genetic relatedness, virulence, and antimicrobial susceptibility of 
thermophilic Campylobacter by characterizing 97 isolates from 
pasture-raised poultry farms and the following processing operations.

Campylobacter sequence-based genotyping techniques yield data 
that is consistent across host sources, reproducible, and suitable for 
population genetic study (Dingle et al., 2001). Multi-locus sequence 
typing (MLST) identifies clonal complexes and links Campylobacter 
species to specific animal sources (Dingle et al., 2002; Colles et al., 
2008). In this study, Campylobacter genotypes identified by MLST 
were diverse based on the number of samples taken from each flock. 
These results are in an agreement with the results reported by Colles 
et al. (2010) who found a great diversity in Campylobacter genotypes 
isolated from free-range broiler flocks. However, Bull et al. (2006) and 
Lindmark et al. (2006) reported a lower ST diversity of up to three STs 
within housed flocks. These discrepant findings highlight the 
importance of collecting large numbers of samples from a flock in 
order to identify the full range of variability within a flock. The most 
common clonal complexes CC607, CC21 and CC353 were 
predominant among C. jejuni strains in our study. These CCs were 
reported also as the most common CCs identified from human 
samples in various geographic regions (Dingle et al., 2001; de Haan 
et al., 2010; Smid et al., 2013). On the ST level, ST-353 and ST-50 were 
reported also as the most widely distributed STs among human and 
broiler C. jejuni isolates (Harvala et al., 2016; Elhadidy et al., 2018). 
These results highlight the importance of poultry sources for 
human campylobacteriosis.

The presence of thirteen virulence genes was investigated by PCR 
to confirm the pathogenic potential of these isolates. Significant 
differences in the occurrence of virulence genes were observed, 
C. jejuni isolates had a higher virulence potential than C. coli isolates. 
These results are in an agreement with those reported by Casabonne 
et al. (2016) and Wieczorek et al. (2013) from conventionally raised 
broiler flocks. Our results showed that the flaA gene was detected in 
all strains, and the flhA gene was found in most of the isolates 
examined. Similar findings are also reported by Rossler et al. (2020) 
that flaA and flhA genes were detected in all their isolates collection. 
Mobility of Campylobacter, involving the coordination of many genes 
(such as flaA and flhA), is important for passage through the stomach 
and gut (Gilbreath et al., 2011). The presence of flaA and flhA genes 
in a high proportion of the isolates examined suggests that motility 
and virulence mechanism are synchronized during Campylobacter 

TABLE 4 Prevalence of virulence gene markers from C. jejuni and C. coli 
isolates.

Virulence 
factors

Target 
genes

C. jejuni 
(n=79) 

(%)

C. coli 
(n=18) 

(%)

Total 
(n=97) 

(%)

Motility

flaA 79 (100%) 18 (100%) 97 (100%)

flhA 78 (98.7%) 4 (22.2%) 82 (84.5%)

p value 0.0054*

Adhesion and 

colonization

cadF 79 (100%) 3 (16.7%) 82 (84.5%)

docA 78 (98.7%) 5 (27.8%) 83 (85.6%)

racR 77 (97.5%) 4 (22.2%) 81 (83.5%)

virB11 56 (70.9%) 1 (5.6%) 57 (58.8%)

p value 0.645

Cytotoxin 

production

cdtA 77 (97.5%) 3 (16.7%) 80 (82.5%)

cdtB 78 (98.7%) 4 (22.2%) 82 (84.5%)

cdtC 78 (98.7%) 4 (22.2%) 82 (84.5%)

ceuE 69 (87.3%) 1 (5.6%) 70 (72.2%)

wlaN 31 (3.8%) 4 (22.2%) 35(36.1%)

p value 0.2396

Invasiveness

ciaB 74 (93.7%) 4 (22.2%) 78(80.4%)

iam 14 (17.7%) 15 (83.3%) 29 (29.9%)

p value 0.00001*

*Indicates statistical significance.  
Bold values are just indicates the p values after statistical analysis.
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pathogenesis (Wieczorek et al., 2015; Zhang et al., 2016; Frazão et al., 
2017; Rossler et al., 2020).

The Campylobacter adhesion to fibronectin F (cadF) gene, 
encoding an adhesin and fibronectin-binding protein that involves in 
the process of invasion and influences the microfilament organization 
in host cells (Zhang et al., 2016), was also detected in most of our 
isolates (Table 4). Similar observations have been reported that the 
high frequency of the cadF gene in Campylobacter species was 
detected from poultry productions and processing operations 
(Rozynek et  al., 2005; Frazão et  al., 2017; Rossler et  al., 2020). 
Additionally, Ziprin et al. (1999) demonstrated that Campylobacter 
cadF-negative strains are not able to colonize in chicken 
gastrointestinal tract. Therefore, the cadF gene product may play a 
similar function in human pathogenesis and causing disease.

The Guillain-Barré syndrome associated gene (wlaN) and its gene 
product have ganglioside-like structures and is responsible for specific 
lipooligosaccharides (LOS) synthesis (Hermans et al., 2011). This LOS 
synthesis is thought to be involved in the development of Guillain-
Barré and Miller-Fischer syndromes after C. jejuni infection (Gilbert 
et  al., 2000; Linton et  al., 2000). The presence of this gene in 
Campylobacter may increase the risk for suffering post-neurological 
conditions. Our findings indicate its presence in 36.1% of the total 
thermophilic Campylobacter isolates, which is in line with many 
previous studies in conventional poultry management systems 
(Talukder et al., 2008; Koolman et al., 2015; Wieczorek et al., 2018).

Campylobacter toxins are important virulence marker 
determinants. One of the toxin groups is the cytolethal distending 
cytotoxins, which are encoded by the cdt genes and form polycistronic 
cdt operons. The gene products include CdtA, CdtB, and CdtC 
cytotoxins, which are toxic to host enterocytes (Carvalho et al., 2013). 
These cytotoxins play important roles in development of diarrhea by 
interfering with the proliferation and differentiation of intestinal crypt 
cells (Scuron et al., 2016). The three subunits are required for the full 
activity of the toxins (Lapierre et al., 2016). CdtB displays enzymatic 
Dnase activity resulting in cell-cycle arrest and cell death, while CdtA 
and CdtC are responsible for the translocation of CdtB across the 
target cell membrane (Lara-Tejero and Galan, 2001). In this study, 
these toxin genes were detected in majority of C. jejuni isolates 
(98.7–97.5%).

Campylobacter survival in the digestive tract is highly dependent 
on the ciaB gene. This gene can secret a CiaB protein that is responsible 
for the invasion and colonization of this microorganism in chicken 
intestines (Hermans et al., 2011). Among Campylobacter isolates, it 
was found in a frequency of 80.4%. Similarly, in conventionally reared 
broilers, the ciaB gene was detected in a similar prevalence by Raeisi 
et al. (2017) and Wieczorek et al. (2018). Because the ciaB gene is 
important in the early stages of colonization, their removal may causes 
bacterial failure to survive the stress of passage through the gut 
followed by colonization failure (Ziprin et al., 2001). Additionally, 
regulatory protein R (racR) gene and its gene product regulate 
temperature during growth and colonization of this microorganism 
in the hosts. The prevalence of racR in our study is 83.5%, which is 
similar to that reported in conventional broiler flocks by Datta et al. 
(2003) and Talukder et al. (2008); however, Hanning et al. (2012) 
demonstrated a lower racR prevalence rate (34%) in a pasture-raised 
broiler flock study.

The enterochelin binding lipoprotein encoded by siderophore 
transport (ceuE), which has an important role in virulence and 

regulation of the siderophore transport system (Hermans et al., 2011), 
was detected in 72.2% of the Campylobacter isolates.

The use of antibiotics, either overuse or abuse, in food animals 
contributes to the establishment of antimicrobial resistance (AMR) in 
commensal and zoonotic enteric bacteria (Varga et  al., 2009; van 
Boeckel et al., 2015). To prevent the spread of AMR Campylobacter 
through the food chain, it is critical to continuously monitor its 
antimicrobial resistance and resistance mechanisms. In this study, five 
(5.2%) Campylobacter isolates were resistant to quinolones and 
fluroquinolones [nalidixic acid (n = 4) and ciprofloxacin (n = 1)]. The 
lower resistance of quinolones and fluoroquinolone-resistant isolates 
in this study may be  related to that the U.S. Food and Drug 
Administration (FDA) banned the use of fluoroquinolones in poultry 
production in the United States in 2005 (Griggs et al., 2005). However, 
other studies argued that the FDA’s restriction on fluoroquinolones in 
chicken production may not be  enough to mitigate the resistant 
Campylobacter in poultry products, because fluoroquinolone-resistant 
Campylobacter was found in persistent pollutants of poultry products 
even after discontinuous on-farm fluoroquinolone use (Price et al., 
2007). Monitoring the prevalence of resistant strains in chicken flocks, 
production facilities, consumer poultry products, and human diseases 
is therefore crucial in order to accurately evaluate the effectiveness of 
this policy. The low frequency of resistance to quinolones and 
fluoroquinolones in this study may also related to the fact that 
antibiotics were not utilized by any farms during the duration of this 
study. Luangtongkum et al. (2006) reported a significant difference 
between antimicrobial resistance rates of <2% vs. 46–67% in organic 
and conventional raised poultry farms, respectively.

The Campylobacter isolates that displayed resistant to quinolones 
and fluroquinolones [ciprofloxacin (MIC = 8 μg/mL) and nalidixic 
acid (MIC = 64 μg/mL), respectively] were further examined for the 
presence of the most common mutation site. A point mutation at 
position 86 leading to threonine replacement by isoleucine was 
detected in the QRDR of the gyrA gene from our isolates. A 
MAMA-PCR was used to determine the presence of this type of 
mutation (Zirnstein et al., 1999; Payot et al., 2004). In this protocol, a 
conserved forward primer, CampyMAMAgyrA1, and a reverse 
mutation detection primer, CampyMAMAgyrA5 were used to 
generate a 265-bp PCR product, indicating the presence of the 
Thr-86-Ile (ACA to ATA) mutation in the C. jejuni gyrA gene. This 
method was used as an alternative to nucleotide sequencing because 
it is not accessible in ordinary microbiology laboratories. Our results 
revealed that this mutation was found among all phenotypically 
resistant isolates. In contrast, this mutation was found to be absent in 
some quinolone resistance isolates, leading researchers to speculate 
that it could be linked to alternative resistance mechanisms (Bolton 
et al., 2013; Elhadidy et al., 2018; Yeh et al., 2022).

Emergence of resistance to erythromycin by Campylobacter isolates 
has been reported (Deng et al., 2015; Liu et al., 2019; Jehanne et al., 
2021). Resistance of Campylobacter to this macrolide is chromosomally 
mediated, most commonly due to a shift in the target site on the 23S 
rRNA subunit. These mutations have been identified at locations of 
2074 and 2075 (Vacher et al., 2003). The transitory mutation A2075G 
is the most prevalent among erythromycin-resistant Campylobacter 
isolates, while the A2074C mutation is less identified among the 
resistant strains (Vacher et al., 2003). In erythromycin resistant isolates 
in this study (MIC >64 μg/mL), A2075G was detected in one isolate, 
while A2074G could not be identified from any isolate. Additionally, 
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ermB was found in three out of nine erythromycin-resistant isolates, 
while Elhadidy et al. (2020) could not identify ermB gene from any 
erythromycin-resistant Campylobacter isolates. These findings on the 
molecular basis of macrolide resistance in Campylobacter revealed the 
importance of additional resistance mechanisms in Campylobacter 
encoding erythromycin resistance such as CmeABC is a multi-drug 
efflux pump system broadly distributed in Campylobacter, representing 
an important mechanism for antibiotic resistance (Lin et al., 2002).

Interestingly, one isolate in this study was gentamicin resistant 
(MIC>32 μg/mL). This result is congruent with that of Luangtongkum 
et al. (2006), who reported that none of the Campylobacter species 
isolated from conventionally or organically raised broilers were 
gentamicin resistant. Similarly, Giacomelli et al. (2014) and Elhadidy 
et al. (2018) could not identify gentamicin resistant isolates among 
Campylobacter isolates from poultry in Italy and Belgium, 
respectively. On the other hand, Saenz et al. (2000) found a 25% 
prevalent rate of gentamicin resistant isolates from broilers in Spain. 
The common low prevalence of gentamicin resistance may contribute 
to few usages of this antibiotic during the poultry production (Saenz 
et al., 2000; Roth et al., 2019).

Our results showed the high prevalence of tetracycline resistance 
among the isolates (MIC >64 μg/mL) (Table 3). These findings are also 
reported by other researchers from Kenya, Finland, Iraq, Poland, and 
USA (Luangtongkum et al., 2006; Nguyen et al., 2016; Pohjola et al., 
2016; Wieczorek et al., 2018; Shakir et al., 2021) where C. jejuni and 
C. coli were isolated from small scale and backyard chicken flocks. In 
addition, Bailey et al. (2019) found that tetracycline resistances in 
organic farms were more common than the conventional farms. The 
reports have demonstrated that the plasmid-encoded tet (O) gene is 
responsible for tetracycline resistance in Campylobacter (Gibreel et al., 
2004; Wozniak-Biel et al., 2018; Elhadidy et al., 2019), and this gene 
can be horizontally transferred between C. jejuni and C. coli isolates 
in the intestines of food animals and humans (Kim et  al., 2010). 
Interestingly, the presence of phenotypic tetracycline resistant isolates 
that did not harbored tet (O) gene may be  related to the genetic 
inactivated of efflux pumps (Jeon et  al., 2011). The high rates of 
resistance reported for tetracycline could be attributed to the overuse 
during the poultry production (Giacomelli et al., 2014).

In conclusion, MLST analysis showed high genetic diversity among 
both C. jejuni and C. coli isolates. The identified STs were reported also 
as the most common STs identified from human samples in various 
geographic regions. These results highlight the importance of poultry 
sources for human campylobacteriosis. Additionally, Campylobacter 
isolated from pasture-raised poultry flocks from this study were 
generally consistent with Campylobacter previously isolated from 
conventionally reared broiler flocks in regard to ST prevalence and 
diversity, antibiotic resistance patters, and virulence. Thus, in terms of 
public health risk of campylobacteriosis, these results indicate that 
pasture-raised poultry products appear to be equivalent conventionally 
reared products, but still represents a potential zoonotic source of 
Campylobacter that requires further investigation.
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