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The management of infectious diseases has become more critical due to the

development of novel pathogenic strains with enhanced resistance. Prevotella

melaninogenica, a gram-negative bacterium, was found to be involved in various

infections of the respiratory tract, aerodigestive tract, and gastrointestinal tract.

The need to explore novel drug and vaccine targets against this pathogen

was triggered by the emergence of antimicrobial resistance against reported

antibiotics to combat P. melaninogenica infections. The study involves core

genes acquired from 14 complete P. melaninogenica strain genome sequences,

where promiscuous drug and vaccine candidates were explored by state-

of-the-art subtractive proteomics and reverse vaccinology approaches. A

stringent bioinformatics analysis enlisted 18 targets as novel, essential, and

non-homologous to humans and having druggability potential. Moreover, the

extracellular and outer membrane proteins were subjected to antigenicity,

allergenicity, and physicochemical analysis for the identification of the candidate

proteins to design multi-epitope vaccines. Two candidate proteins (ADK95685.1

and ADK97014.1) were selected as the best target for the designing of a

vaccine construct. Lead B- and T-cell overlapped epitopes were joined to

generate potential chimeric vaccine constructs in combination with adjuvants

and linkers. Finally, a prioritized vaccine construct was found to have stable

interactions with the human immune cell receptors as confirmed by molecular

docking and MD simulation studies. The vaccine construct was found to have

cloning and expression ability in the bacterial cloning system. Immune simulation

ensured the elicitation of significant immune responses against the designed

vaccine. In conclusion, our study reported novel drug and vaccine targets and

designed a multi-epitope vaccine against the P. melaninogenica infection. Further

experimental validation will help open new avenues in the treatment of this

multi-drug-resistant pathogen.

KEYWORDS

Prevotella melaninogenica, drug target, epitope, peptide vaccine, immunoinformatics

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1271798
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1271798&domain=pdf&date_stamp=2023-09-22
mailto:mohib@bzu.edu.pk
mailto:mohibusb@gmail.com
mailto:suvash_ojha@swmu.edu.cn
https://doi.org/10.3389/fmicb.2023.1271798
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1271798/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Shah et al. 10.3389/fmicb.2023.1271798

Introduction

Prevotella melaninogenica is a gram-negative, anaerobic, black-

pigmented, and short rod-shaped bacterium. It is mainly involved

in polymicrobial infections spreading throughout the body and

mainly in the respiratory tract. Patients suffering from cystic

fibrosis are diagnosed with Prevotella species in their respiratory

tract (Sherrard et al., 2014). P. melaninogenica can be detected in

saliva and at the dorsal and lateral sites of the tongue, which contain

a high proportion. Mucosal surfaces of the aerodigestive tract,

i.e., lungs, are majorly colonized by Prevotella species (Könönen

and Gursoy, 2022). The oral cavity of humans is also a site of P.

melaninogenica colonization. This species is involved in diseases

of the gastrointestinal tract, acute and chronic ailments of the

respiratory tract, and cancers of the digestive tract (Könönen and

Gursoy, 2022). An inflammatory disease, oral lichen planus (OLP),

is caused by P. melaninogenica in the oral mucosa with white

striation lesions, repeated erosions, and pain (Zheng et al., 2022).

P. melaninogenica potentially leads to oral lichen planus

(OLP) through different mechanisms. It uses T6SS protease to

initiate the degradation of the epithelial barrier, which leads to

dysfunction and an imbalance in surface flora (Kondo et al., 2018).

P. melaninogenica, then, infiltrates the basal layer and lamina

propria as target antigens, triggering recognition by innate immune

cells such as macrophages and keratinocytes. Activation of NF-κB

pathways by P. melaninogenica leads to the production of various

cytokines and chemokines. This, in turn, results in the recruitment

and infiltration of CD4+ and CD8+ T lymphocytes that attack

epithelial keratinocytes, which causes the degeneration of the basal

cell layer and leads to further impairment of the epithelial barrier.

This destructive cycle leads to chronic infection and persistent

inflammatory responses in OLP (Zheng et al., 2022).

The subgingival plaque represents the existence of P.

melaninogenica in patients with periodontal diseases. The

significance of periodontal abscesses is categorized by periodontal

pathogens and black-pigmented microorganisms such as P.

melaninogenica (He et al., 2013). Pro-inflammatory short-chain

fatty acids can be produced due to the enhancement of bacterial

pathogenicity in the lungs in the presence of these bacteria. This

is one of the mechanisms that cause resistance to antibiotics.

Resistance can be caused by resistance genes or the production of

an enzyme (beta-lactamase). Resistance can also be developed by

repetitive use or administration of high doses of antibiotics, as in

patients with cystic fibrosis (Lamoureux et al., 2021).

There is an emerging trend toward developing resistance

against tetracycline and penicillin among pigmented species. Beta-

lactamase production causes resistance to penicillin (Troil-linde,

1999). A few antibiotics can still be used against P. melaninogenica

such as metronidazole, clindamycin, imipenem, meropenem, and

cefoxitin, but there is a risk of developing resistance against these

antimicrobials in the near future (Troil-linde, 1999). Moreover,

new therapeutic strategies are required to ensure the prevention of

infections caused by P. melaninogenica.

The vaccine to combat P. melaninogenica infections is still not

available. There is no information about the vaccine’s development

in the literature. This developed a need to design novel drug and

vaccine targets that would be helpful in the near future. In this

context, this study is aimed at identifying novel drug and vaccine

targets against this bacterium to provide alternative potential

therapeutic targets for the efficient action of antimicrobials and

vaccine candidates (Qasim et al., 2023). The approach employed

in this study is significant to minimize labor and focus on

the development of vaccine candidates’ predictions by utilizing

bioinformatics tools.

Materials and methods

The proteins necessary for the survival of P. melaninogenica

were determined by subtractive proteomics. Different tools and

databases were used to find drug and vaccine targets, as shown in

Figure 1.

Retrieval of core gene sequences

The complete genome sequences of the 14 strains of P.

melaninogenica were used to retrieve a core genome from the

EDGAR tool version 2 (Blom et al., 2016). Clustering techniques

were employed to identify duplicate or paralogous proteins viaCD-

HIT analysis (Li and Godzik, 2006), to remove redundancy. The

cutoff value of 60% sequence similarity was kept as a threshold

to obtain non-paralogous proteins, which were used for further

analysis (Qasim et al., 2023). Alignment coverage was obtained by

setting parameters at default.

Determination of human non-homologs

Human host non-homologous proteins were determined by

standalone BLASTp analysis, which was used for scanning against

species non-paralogous proteins with E-value 1e-20, bitscore≥100,

percent identity ≥35, and query coverage ≥35 (Shah et al., 2021).

The human proteome was downloaded from the UniProt database,

comprising 1,076,164 proteins.

Further scanning of pathogen proteins was carried out against

the human gut microbiome. The NCBI database was used to

acquire a human gut microbiome consisting of 75,176 proteins.

BLASTp was performed with criteria as follows: E-value 1e-4,

bitscore ≥100, percent identity ≥50, and query coverage ≥35,

as in our previous studies (Aslam et al., 2020; Shah et al.,

2021; Jaan et al., 2022; Qasim et al., 2023). All the homologs

were discarded.

Identification of pathogen-essential
proteins

After excluding gut microbiome homologs, essential proteins

of the pathogen were determined by subjecting proteins to

the database of essential genes (DEG) (http://tubic.tju.edu.cn/

deg/) (Luo et al., 2021). DEG contains all the genes required

for the survival of the pathogen. BLASTp was performed for

scanning against DEG with cutoff parameters of E-value 1e-4
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FIGURE 1

Schematic representation of approaches followed for therapeutic studies against Prevotella melaninogenica infection.

and bitscore ≥100 for the determination of P. melaninogenica

essential genes.

Identification of virulence proteins

The host defense mechanism is destroyed by the virulence

factors of bacteria, which help to cause the disease through

invasion, colonization, and adhesion. Four categories of virulence

factors are included in the virulence factor database (VFDB)

(Liu et al., 2019), which is used to identify virulence factors in

a pathogen. From 25 pathogenic bacteria, offensive, defensive,

non-specific, and virulence-related proteins are assembled in this

database. Pathogen proteins were subjected to BLASTp analysis

against VFDB with parameters, i.e., E-value 1e-4 and bitscore≥100

(Qasim et al., 2023).

Identification of antibiotic resistance and
host–pathogen-interacting proteins

Databases were employed to identify resistant and host–

pathogen-interacting proteins with criteria such as E-value 1e-4

and bitscore ≥100. There is an emerging trend toward developing

resistance to available antibiotics among bacterial pathogens.

Moreover, antibiotic-resistant genes were identified by the ARG-

ANNOT database (Gupta et al., 2014), with selected criteria by

subjecting pathogen proteins to BLASTp (Aslam et al., 2020). The

host–pathogen interaction database (HPIDB v2.0) (Ammari et al.,

2016) was used for the curation of host–pathogen protein–protein

interactions, which were essential for the survival of a pathogen.

Standalone BLASTp was used for the screening of interacting

proteins against the HPIDB repository (Aslam et al., 2020).

Metabolic pathway determination

Metabolic pathways of living organisms can be retrieved

from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database (Fatoba et al., 2021). Human non-homologous essential

proteins were further subjected to KEGG for metabolic pathway

determination. Functional annotation of proteins was provided

by the KAAS server via these metabolic pathways (Nazir et al.,

2018). Metabolic pathways of the human host and pathogen

were manually compared to find unique and common pathways

in the pathogen. KEGG automatic annotation server (KAAS)

(Moriya et al., 2007) employs BLASTp analysis for these metabolic

pathways. KEGG orthology (KO) identifiers were provided by

the KAAS server for proteins (Fatoba et al., 2021). Unique and

common pathway proteins were enlisted and categorized into

KEGG-dependent and independent proteins. Unique proteins are

those involved only in the pathogen-specific pathways but not

in humans.

Druggability analysis of proteins

Screening of essential, non-homologous proteins was further

performed by subjecting proteins to BLASTp analysis with a cutoff

E-value of 1e-4, against the DrugBank database for identification
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of druggable proteins (Aslam et al., 2021). All FDA-approved drugs

and experimental drugs are contained in the DrugBank database

(Law et al., 2014). Druggable targets showed significant matching

(80% or more) with FDA-approved drug targets, while proteins

not showing any significant matching with already available targets

were considered novel targets and used for subsequent analysis.

Subcellular localization prediction and
topology analysis

Proteins are located in different positions, including the

cytoplasm, inner membrane, periplasmic membrane, and outer

membrane, by subcellular localization prediction. Proteins are

categorized as drug or vaccine targets according to their

location. Cytoplasmic and outer membrane proteins are considered

suitable drug and vaccine targets, respectively (Jaan et al., 2022).

PSORTb v3.0 (http://www.psort.org/psortb/) was employed for

the prediction of the subcellular location of the resulting target

proteins. Further validation of proteins was needed to ensure the

location, which was carried out by a server named subcellular

localization predictor (CELLO v2.5) (http://cello.life.nctu.edu.tw/)

(Yu et al., 2014). The STRING database v10.5 (http://string-db.org)

(Szklarczyk et al., 2016) was employed for the analysis of protein–

protein interactions by setting parameters at default. The number

of interactions was presented by hub proteins showing node degree

(K≥ 5). The transmembrane topology of proteins was predicted by

the TMHMM v0.2 server (Krogh et al., 2001). Proteins spanning

the lipid membrane are termed transmembrane proteins and are

prioritized as potent drug targets (Shah et al., 2021).

Protein structure modeling and validation

Proteins prioritized in the previous step were employed in

SWISS-MODEL for the generation of 3D structures. The server

uses homology modeling techniques for the prediction of protein

structures when experimental structures are not accessible. Reliable

protein templates with expected accuracy were generated (Jaan

et al., 2022). A protein verification tool called “ERRAT” was used to

verify the quality of the 3D structure of proteins. ERRAT signifies

the quality of protein by a parameter called an overall quality factor,

where a high value (≥50) specifies good quality for non-bonded

atomic interactions (Aslam et al., 2020). The molecular weight and

theoretical PI of proteins were determined by the ExPasy server.

The estimation of protein pocket ability to bind small molecules

with high affinity is a valuable step in the identification of

drug targets. PockDrug, an online server (http://pockdrug.rpbs.

univ-paris-diderot.fr.), was used to calculate druggable scores for

the prioritized targets. Protein structure information and ligand

proximity assessment were used to predict the pocket druggability

of proteins by using different estimationmethods via the PockDrug

server. By using pocket estimationmethods, consistent druggability

results were obtained, which differentiatedmore druggable proteins

from less druggable proteins (Shah et al., 2021).

Reverse vaccinology: prediction of
antigenic proteins

For the evaluation of the antigenic nature of proteins,

VaxiJen server v2.0 was employed for outer membrane and

extracellular proteins with criteria, i.e., accuracy rate 70–89%

and probability score >0.5 (Doytchinova and VaxiJen, 2007).

The allergenicity of the shortlisted proteins was evaluated

by the AllergenFP server to distinguish allergens from non-

allergens. Allergic proteins that are harmful to the host were

discarded in this evaluation (Dimitrov et al., 2014). Different

parameters of proteins were assessed by the ExPasy ProtParam

tool, calculating molecular weight, theoretical PI, instability

index, aliphatic index, half-life, number of amino acids, and

GRAVY (Grand Average of Hydropathicity) (Qasim et al.,

2023).

Prediction of T-cell epitopes

For a specific pathogen, vaccine targets are identified with

the help of T-cell epitopes involved in the elicitation of immune

responses. An antigen is processed by an MHC molecule to

bind with either cytotoxic or helper T cells (Shah et al., 2021).

CD4 or CD8T cells are stimulated by an epitope defined as

the shortest immunogenic peptide having the ability to stimulate

immune responses. Two types of major histocompatibility complex

(MHC) classes I and II recognized by CD4 and CD8, respectively,

are represented by T-cell epitopes (Aslam et al., 2020). MHC

prediction was carried out by the Immune Epitope Database

(IEDB) server. For the prediction of MHC class-I epitopes,

vaccine candidates were subjected to the NetMHCpan 4.1

web server with a percentile rank <0.2, recommended by

the IEDB server (Fleri et al., 2017). MHC class-II epitopes

were predicted by the IEDB recommendation of 2.22 with an

adjusted rank of <0.5. Further evaluation of preferred epitopes

was performed.

Prediction of B-cell epitopes

The solvent-exposed regions in the antigen can be identified

by the prediction of B-cell epitopes, by which antibodies can

be recognized (Nazir et al., 2018). For the prediction of B-cell

epitopes, different servers were used. BCPreds, FBCPreds,

AAP, and BepiPred online servers were used to predict linear

B-cell epitopes. BCPred uses the SVM method, which has 5-

fold cross-validation and utilizes five different kernel methods.

Linear-length B-cell epitopes were predicted by subsequent kernel

followed by FBCPred. Biochemical properties such as amino

acid composition, hydrophobicity, hydrophilicity, secondary

structure, and surface accessibility of peptides were used to

predict linear epitopes by BepiPred (IEDB) (Solanki and Tiwari,

2018).

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1271798
http://www.psort.org/psortb/
http://cello.life.nctu.edu.tw/
http://string-db.org
http://pockdrug.rpbs.univ-paris-diderot.fr
http://pockdrug.rpbs.univ-paris-diderot.fr
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Shah et al. 10.3389/fmicb.2023.1271798

Antigenicity, allergenicity, toxicity, and
conservancy analyses

A designated vaccine candidate must be able to act as an

antigen. For this purpose, the VaxiJen v2.0 server was employed

with a threshold value of >0.4. The sequence alignment method

is used in the VaxiJen server, and the physicochemical properties

of peptides are used to confirm their antigenicity (Doytchinova and

VaxiJen, 2007). The allergenic properties of vaccine candidates were

measured by the AllergenFP server. Another server, ToxinPred,

was employed to check the toxic and non-toxic peptides, where

non-toxic peptides were selected for further evaluation (Jaan et al.,

2022). The conservancy level of epitopes was evaluated by the IEDB

server by setting parameters at default, where conserved or variable

epitopes could be assessed (Jaan et al., 2022). These properties of

epitopes were evaluated for the construction of chimeric vaccines.

Multi-epitope vaccine construction

Multi-epitope vaccine constructs were generated by joining

overlapped epitopes ofMHC-I,MHC-II, and B cells with the help of

amino acid linkers (i.e., EAAAK, GGGS, and KK). To increase the

immunogenicity of vaccine constructs, adjuvants were added to the

sequence. Four adjuvants, i.e., HBHA protein, L7/L12 ribosomal

proteins, beta-defensin, and HBHA conserved sequences, were

added to improve the efficacy of vaccine models. PADRE peptide

sequences, containing 13 amino acids (i.e., AKFVAAWTLKAAA),

were also added, which helped induce CD4+ T cells (Aslam

et al., 2020). PADRE sequences help to overcome the problems

of polymorphism and elicit better immune responses. Different

combinations of vaccine constructs were made and checked for

immunogenicity, toxicity, and allergenicity. The SOLPro server was

employed to check the solubility of vaccine constructs (Magnan

et al., 2009).

Analysis of physicochemical properties

Intrinsic physical and chemical characteristics of a substance

are defined as physicochemical properties. For the estimation of

physicochemical properties, the ProtParam tool was used, which

calculated the number of amino acids, half-life, theoretical PI,

instability index, aliphatic index, molecular weight, and GRAVY of

vaccine models (Jaan et al., 2022).

Structure analysis

For the prediction of secondary structure, two online servers,

i.e., PSIPRED and SOPMA, were used. Properties such as

transmembrane helices, bend regions, random coils, and beta

sheets can be assessed through these self-optimized prediction

methods. A graphic presentation of proteins is obtained as output

(Jaan et al., 2022). 3D modeling of chimeric constructs was

generated by Phyre2, increasing the accuracy of alignment by

using the alignment of the Hidden Markov model (Raza et al.,

2021). GalaxyRefine and 3DRefine servers were employed for the

refinement of predicted 3Dmodels, in which side chains are rebuilt

and repacked. The probable errors of 3D models were checked

by the ProSA-web server (Jaan et al., 2022). The Ramachandran

plot was obtained by an online server called PROCHECK, which

explains the stereochemical properties of the protein (Shah et al.,

2021). Phi/Psi angles were assessed by the Ramachandran plot for a

comprehensive understanding of the protein backbone.

Disulfide engineering

Vaccine constructs were disulfide-engineered by DbD2, to

check the stability and conformational entropy of the protein.

Increased stability and decreased conformational entropy of

protein can be confirmed by the accessibility of protein, and it can

add novel disulfide bonds (Craig and Dombkowski, 2013).

Molecular docking analysis

An energy-minimizing step used to obtain a stable structural

configuration of vaccine targets with the ligands is determined by

molecular docking analysis. Immune receptor–peptide interactions

were inferred by docking vaccine constructs with six various

human HLA alleles using the PatchDock server. More refinement

and re-scoring of docked complexes were performed by the Fast

Interaction Refinement in Molecular Docking (FireDock) server,

which gave the 10 best models as a result. Based on the lowest

binding energy, the vaccine construct (V5) was prioritized as the

best-docked complex (Jaan et al., 2022). Furthermore, TLR4 (toll-

like receptor) acquired from PDB (2Z65) was docked with vaccine

construct V5 in the same way by the PatchDock server. The top

10 generated models from the FireDock server were redirected

to PatchDock for refinement. Assumed refined solutions were

recognized by the binding score and global binding energies of

docked refined models.

Molecular dynamic simulation

The stability of the docked complex and molecules’ behavior

was assessed by the molecular dynamic approach. The interaction

between the designed vaccine and receptor was estimated by

the iMOD server. Four main factors are measured by this tool

by estimating the direction and range of basic movements of

the docked complex. These factors include Eigenvalue, B-factors,

covariance, and deformability. A high Eigenvalue indicates the

value of much harder deformation (Jaan et al., 2022).

In silico expression analysis and immune
simulation

The possible expression level of vaccine constructs was tested

by using the Java Codon Adaptation tool (JCAT), which used

back-translated amino acid sequences. E. coli (K12 strain) was
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selected for the expression of the protein. The high expression

level in E. coli was verified by the consequential GC content

and codon adaptation index (CAI) (Jaan et al., 2022). The rho-

independent transcription terminators, cleavage sites of some

restriction enzymes, and prokaryotic ribosome binding sites

were dodged. SnapGene software was used to introduce codon-

adapted sequences into plasmid vector pET30a (+), to construct

recombinant plasmid sequences (Solanki and Tiwari, 2018). C-

ImmSim server was employed for immune simulation to predict

the production of interferons, antibodies, and cytokines in response

to a foreign particle. Parameters were set to default (Puzone et al.,

2002).

Results

Core protein retrieval and CD-HIT analysis

The core genomemethod uses conserved sequences of available

complete genome strains in accordance with the reference genome.

A total of 1,415 core proteins were retrieved from 14 complete

genome strains of P. melaninogenica. Some proteins are produced

in response to duplication events taking place in organisms within

one species, known as paralogous proteins. To reduce redundancy

in sequences, proteins were subjected to CD-HIT analysis (Li and

Godzik, 2006). A total of 1,414 non-paralogous proteins were

obtained by subtracting one duplicate protein from the core protein

sequences. The threshold was set to 0.6 (60%) sequence similarity.

Human host non-homolog analysis

For the identification of novel targets, bacterial proteins

were subjected to homology filters as an essential step for the

screening of human host homologs. After removing the proteins

homologous to the host proteins, 1,295 candidates were obtained

by screening against the human proteome database. Different

metabolic reactions such as homeostasis, development, defense

system, and physiological functions are performed by the gut

flora, which colonizes the human body throughout life (Kho and

Lal, 2018). The scanning of core proteins against the human gut

microbiota was performed by standalone BLASTp, to prevent the

likelihood of serious complications in the host. The resulting 615

proteins were used for downstream analysis.

Identification of essential, virulent,
antibiotic-resistant, and interacting
proteins

A minimal set of genes required to perform basic cellular

functions and important for the survival of an organism are defined

as essential genes. A database of essential genes (DEG) based on

BLASTp scanning was employed to dig out essential proteins of

the pathogen. As a result, 123 proteins were recognized as essential

for the maintenance of cellular functions in P. melaninogenica. The

virulence factor database (VFDB) was used to identify the virulence

proteins of the pathogen. The pathogenic capacity of bacteria to

infect the host is increased by virulence factors (Aslam et al., 2020).

By subjecting proteins to BLASTp scanning, VFDB calculated 19

proteins as virulence factors.

Antibiotic resistance proteins were determined by Antibiotic-

Resistant Gene ANNOTation (ARG-ANNOT) (Gupta et al., 2014).

This analysis determined three proteins as resistant to antibiotics,

which might act as important drug targets in future studies. Host–

pathogen protein–protein interactions (HP-PPI)mediate infectious

diseases in response to molecular cross-conferences between host

and pathogens. For treating infectious diseases, such proteins need

to be identified for the discovery of potential drug targets. Proteins

were subjected to BLASTp against HPIDB v2.0, which identified

only one interacting protein (Ammari et al., 2016). The proteins

from this analysis have the potential to be selected as alternative

drug targets and deserve further experimental investigation.

Identification of pathogen-specific
metabolic pathways

Metabolic pathway analysis is used to find out the preferable

drug target as involved in pathogen-specific unique pathways

(Dorella et al., 2013). The KEGG database was used to predict

the metabolic pathways of Homo sapiens (humans) and P.

melaninogenica, which were 345 and 94, respectively. A manual

comparison of human and bacterial metabolic pathways showed

that 25 unique pathways were present but absent in the human

host, while the remaining 69 pathways were common to both

humans and bacteria. The KAAS server was employed for the

functional pathway analysis of 114 essential, non-homologous

pathogen proteins via BLASTp, which assigned them a KO (KEGG

orthology) identifier (Fatoba et al., 2021). Out of 114 proteins,

only 5 were involved in pathogen-specific unique pathways called

KEGG-dependent (Table 1), while the rest of the 109 proteins were

categorized as KEGG-independent.

The potential therapeutic targets were represented by the

metabolic pathway analysis of non-homologous, essential human

proteins. Suitable and least-targeted were identified by applying

filters to reduce time, labor, and resources. Druggability screening

of the prioritized proteins was performed to find novel druggable

targets, which demonstrated that in KEGG-dependent, one protein

is a novel target, while in KEGG-independent proteins, 90 proteins

are novel and have the potential to be explored as potential

drug targets.

Prediction of subcellular localization

Suitable and effective targets can be identified by predicting

subcellular location for a comprehensive understanding of the

function and mechanisms of proteins. Purification and assay of

membrane-localized proteins are critical, so cytoplasmic proteins

are favored as potent drug targets (Mondal et al., 2015). For

suitable vaccine targets, outer membrane and extracellular proteins

were prioritized for elicitation of better immune responses as

membrane proteins were exposed to host cells (Nogueira et al.,

2021). Subcellular location prediction by CELLO and PSORTb tools
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TABLE 1 P. melaninogenica unique pathway proteins.

Sr. no. Protein IDs KO identifiers Pathway IDs

1 gi|302149751|gb|ADK96013.1| K02517 Lipopolysaccharide biosynthesis

2 gi|302150676|gb|ADK96937.1| K05515 O-Antigen repeat unit biosynthesis

3 gi|302150062|gb|ADK96324.1| K00865 Biosynthesis of secondary metabolites

4 gi|302149000|gb|ADK95262.1| K02551 Biosynthesis of secondary metabolites

5 gi|302149929|gb|ADK96191.1| K03787 Biosynthesis of secondary metabolites

6 gi|302150384|gb|ADK96645.1| K00919 Biosynthesis of secondary metabolites

7 gi|302150673|gb|ADK96934.1| K11753 Biosynthesis of secondary metabolites

8 gi|302150062|gb|ADK96324.1| K00865 Microbial metabolism in diverse environments

9 gi|302149329|gb|ADK95591.1| K06881 Microbial metabolism in diverse environments

10 gi|302149556|gb|ADK95818.1| K08678 Biosynthesis of nucleotide sugars

11 gi|302150676|gb|ADK96937.1| K05515 Beta-Lactam resistance

12 gi|302151208|gb|ADK97469.1| K01448 Cationic antimicrobial peptide (CAMP) resistance

13 gi|302150566|gb|ADK96827.1| K07165 Two-component system

14 gi|302150409|gb|ADK96670.1| K03217 Quorum sensing

15 gi|302150820|gb|ADK97081.1| K03086 Flagellar assembly

16 gi|302150409|gb|ADK96670.1| K03217 Bacterial secretion system

showed three proteins to be cytoplasmic and only one protein to

be outer membrane in the case of KEGG-dependent proteins. In

the case of KEGG-independent proteins, 49 proteins were found to

be cytoplasmic and 23 proteins to be outer membrane in location.

These proteins were prioritized as drug or vaccine targets for

further analysis in accordance with their location.

Drug target prioritization

Further characterization of selected targets was performed by

STRING v10.5 databases for the estimation of protein–protein

interactions. A significant number of interactions were represented

by node degree (K) ≥5 as hub proteins (Szklarczyk et al., 2016).

This characterization prioritized 20 proteins as suitable targets

(Figure 2). The TMHMM server was employed for the prediction

of transmembrane helices set to be less than or equal to 1. Due

to multiple transmembrane helices, there may be complications

in the cloning, expression, and purification of proteins (Solanki

and Tiwari, 2018). For this purpose, proteins with more than

one helix were excluded, and 18 proteins were selected (Table 2).

The molecular weight of selected targets was calculated by the

ExPasy tool, which prioritized proteins with <110 KDa molecular

weight. Proteins submitted to SWISS-MODEL were checked for

model quality estimation by different parameters, i.e., percentage

identity, Q-mean, and GMQE scores, which prioritized three drug

targets. Protein pocket ability prediction is one of the crucial steps

in the development of therapeutic drugs to ensure the affinity of

proteins with small drug-like molecules. The PockDrug server was

employed for this purpose, which identified significant druggable

targets with a drug score of >0.5 (Borrel et al., 2015). Furthermore,

the ERRAT server was used to evaluate the quality of models, which

was considered significant (85%) for all models.

Antigenic membrane protein selection

Surface-exposed or outer membrane proteins which were

exposed to host cells were prioritized for the reverse vaccinology,

in the case of gram-negative bacteria. Certain characteristics

(i.e., instability index, aliphatic index, PI, GRAVY, and molecular

weight) of 24 outer membrane proteins were analyzed by the

ProtParam tool. The AlgPred server was employed to check the

allergenicity of proteins by using the hybrid method for the best

vaccine candidate selection. Antigenicity was estimated by the

VaxiJen server based on the threshold of >0.5. Two proteins with

IDs ADK95685.1 and ADK97014.1 were selected as the best vaccine

targets used for subsequent analysis. By this analysis, it was ensured

that induced immune responses were aimed to target the pathogen,

not the host cells.

Prediction of lead epitopes

Targeted immune responses are induced by the short peptide

fragments of a peptide vaccine; accordingly, allergenic sequences

are avoided. A variety of peptides termed epitopes can bind to

MHC molecules with high affinity as mutations are possible in

MHC-binding epitopes caused by pathogens (Shah et al., 2021).

One of the major keystones in the development of vaccines is

the B- and T-cell epitope prediction (Li et al., 2014). MHC-I and

MHC-II molecules provide both types of T cells, i.e., (i) cytotoxic

T cells and (ii) helper T cells, with epitopes. High-binding affinity
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FIGURE 2

Interaction analysis of predicted drug targets with other proteins using STRING database where query proteins are indicated by red color. The

proteins with the best predicted three-dimensional structures: (A) ADK95883.1, (B) ADK96110.1, (C) ADK96369.1, (D) ADK96424.1, (E) ADK96570.1,

and (F) ADK96796.1, are shown to summarize the drug target’s PPI list.

epitopes were predicted by multiple prediction sources to find

potent vaccine-candidate epitopes. For the prediction of MHC-

binding epitopes in two prioritized vaccine candidates, an IEDB

server was employed. For MHC-I binding, the NetMHCpan 4.1

server was used with criteria of <0.2 percentile rank. Hydrogen

binding can attach peptides with only 8 to 10 amino acids due to

the closed binding site cleft ofMHC-Imolecules (Nazir et al., 2018).

Criteria for binding with human alleles were set to 9-mer length,

and predicted 19 and 16 epitopes for both vaccine candidates

were used for further analysis. These epitopes were further

filtered by toxicity, antigenicity, conservancy, and immunogenicity

analyses, which resulted in 5 and 6 final epitopes for chimera

vaccine construction.

Due to open and shallow pockets, prediction by MHC-

II molecules is less accurate. The IEDB-recommended 2.22

method was employed for the prediction of MHC-II epitopes

with a percentile rank <0.5, and the 15-mer length of amino

acids was selected due to the higher binding affinity of these

molecules as compared with MHC-I (Shah et al., 2021). After

screening, the final MHC-II and MHC-I epitopes were selected

(Supplementary Tables S1, S2). For the prediction of linear B-cell

epitopes, different online servers, i.e., BCPred, BepiPred, FBCPred,

and AAP, were employed. The predicted epitopes of T and

B cells were compared for the determination of overlapping

epitopes (Table 3). These overlapping epitopes may be useful

in the development of a vaccine against P. melaninogenica in

future. Conformational B-cell epitopes have an important role in

antigen and antibody association, but unfortunately, these cannot

be predicted due to the inaccessibility of the 3D structures of all

the proteins.

Vaccine construct modeling

For the construction of chimera vaccine constructs, different

combinations of non-toxic, antigenic, and conserved lead epitopes

were chosen. On the N-terminal of prioritized epitopes, adjuvants

were added to enhance the immunogenic nature of the multi-

epitope vaccine. Linkers, i.e., EAAAK, GGGS, and KK, were

used to join the adjuvants. Allergenicity and antigenicity of the

constructs affected by adjuvants were analyzed by the different

combinations of adjuvants (Solanki and Tiwari, 2018). The

conformation of designed constructs was not altered by adding

linkers. Around the global population, the problems triggered

by polymorphisms in HLA-DR molecules can be overcome

by adding PADRE sequences (synthetic peptides containing 13

amino acids) to vaccine constructs. Better immune protection

and cytotoxic T-lymphocyte (CTL) responses were provided by

PADRE sequences (Wu et al., 2010). Different combinations of

lead epitopes, adjuvants, and PADRE sequences provided eight

vaccine constructs, i.e., V1, V2, V3, V4, V5, V6, V7, and V8

(Table 4).
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TABLE 2 Analysis of shortlisted druggable proteins to check transmembrane alpha helices, molecular weight, and node degree (STRING analysis).

Sr. no. Protein ID Protein name TMHMM No. M. wt
(KDa)

Query
length

STRING

Metabolic pathway-dependent protein

1 ADK97401.1 Dihydroneopterin aldolase 0 13 23 6.55

Metabolic pathway-independent proteins

1 ADK95262.1 2-succinyl-5-enolpyruvyl-6-hydroxy-3-

cyclohexene-1-carboxylic-acid

synthase

0 61 113 6

2 ADK95358.1 Pyridoxal 5′-phosphate synthase 0 31 77 5.09

3 ADK95511.1 Hypothetical protein 0 23 35 6.36

4 ADK95702.1 NAD-dependent DNA ligase OB-fold

domain protein

0 74 155 6.55

5 ADK95883.1 Nicotinate phosphoribosyltransferase 0 49 80 7.82

6 ADK95886.1 Glycosyltransferase 0 33 49 6

7 ADK96013.1 Lipid A biosynthesis

(KDO)2-(lauroyl)-lipid IVA

acyltransferase

1 39 46 6.55

8 ADK96033.1 YbbR-like protein 0 33 46 6.36

9 ADK96110.1 Putative phosphomethylpyrimidine

kinase

0 36 73 7.09

10 ADK96369.1 Putative ACR, COG1399 0 19 34 8.55

11 ADK96424.1 Hypothetical protein 0 43 74 7.45

12 ADK96445.1 Exodeoxyribonuclease VII, large

subunit

0 48 89 5.82

13 ADK96570.1 UvrD/REP helicase 0 103 162 6.73

14 ADK96645.1 4-(cytidine

5′-diphospho)-2-C-methyl-D-erythritol

kinase

0 31 66 6.18

15 ADK96796.1 ATP synthase F1, gamma subunit 0 36 64 8.73

16 ADK96878.1 Hypothetical protein 1 18 23 6.36

17 ADK96880.1 Hydrolase, tatd family 0 30 56 5.64

Antigenicity, allergenicity, and solubility
analysis of vaccine constructs

The antigenic behavior of vaccine constructs was examined

by the AntigenPro server with a cutoff value of >0.90. The

VaxiJen server was employed to estimate the antigenicity, with

a threshold of 0.75 showing good antigenic behavior. The

allergic nature of constructs was checked by the AllergenFp,

and allergic constructs were excluded as being harmful to

the human host. The SOLPro server with a probability

score of >0.5 was employed to analyze the solubility of

the designed chimeric constructs. GC content (30–70%)

and CAI value (0.90–1.0) were considered significant as

inferred from the results. The ProtParam tool was used

to evaluate properties such as the number of amino acids,

aliphatic index, instability index, PI, molecular weight, and

GRAVY. Eventually, vaccine constructs V5 and V8 fulfilled the

standard criteria and were selected for further investigations

(Supplementary Tables S3, S4).

Structure prediction of vaccine constructs

A 2D diagram of the vaccine represents the residues involved

in the formation of coils, b-sheets, and a-helices. These particular

secondary structures of vaccine are involved in its overall

structural stability. The 2D diagram indicates a big picture

of the complete structure of the vaccine construct. Therefore,

prioritized vaccine constructs (V5 and V8) were subjected to

PSIPRED and SOPMA servers for the prediction of secondary

structure to evaluate the stability of peptides (Raza et al.,

2021). The results revealed by servers calculated the percentage

of α-helix (36.90), β-strands (10.69), extended strands (21.80),

and random coils (30.61) for V5 (Supplementary Figure S1A).

Similarly, percentages for V8 were 29.43, 24.44, 11.22, and

34.91, respectively (Supplementary Figure S1B). The function and

stability of proteins are critically analyzed by tertiary structure

prediction. The Phyre2 server was employed for the prediction

of the tertiary structure of prioritized vaccine constructs (V5 and

V8). The vaccine construct V8 was deselected due to limited
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TABLE 3 Comparative analysis of predicted epitopes (bold highlights the selected epitopes).

Protein
IDs

Sr.
no.

Final
positions

Final B-cell epitopes

ADK95685.1 1 2,−50 ATRTINGREYTKVDFENKLRHLSDAQELAAMLNELKLPWYYSDFRGKQL

2 55–83 DTNNVQRRCKTFRLRKKHGGYREITAPKG

3 100–127 DEPTPWAFGFVCGRSVVDNARPHVGKRY

4 168–199 ATVRTKNNKEVLAQGFATSPTLSNFICREMDK

5 208–254 QGITFTRYADDLTFSSDTDILRPQGELVQQVKAIVERYGFRLNEEKT

6 268–294 LMVTEKVNVSRRYVREIRSLLYIWERY

7 303–325 AWKSYRQQHGKTKGHQHCVPLNA

8 349–375 VSRYTSLQQRSKGDIKEVAYKAYMGKY

9 377–417 SNSTEDRMTSANVLPNDNTSSRQLGATSSNPYDPRKKSKRI

ADK97014.1 1 15–45 VQVSAQSGTNSPYSQYGLGALASQATSFNRG

2 52–75 GFHERNQVNYANPASYASVDSLSF

3 82–109 SLQLTNFEENGNKVNAKNADIEYVVASF

4 121–161 LLPYTNVGYNFSNTQNVNAFPSTSSVNATYSNAYNGSGGLH

5 165–236 LGAGWEPFKGFSFGANIGYLWGTLNRNSTNTYSDSYVNTLSKNYSAQVKSYKVDFGAQYTYAVDKKNELTLG

6 253–274 LISTNSQTSISDTTRYVVSNSL

7 278–329 HTFGVGLMWNHNNRLKFGVDYQLQKWAKLKYPQLTTVNGTTSYNLVDGQFND

8 332–379 KFTLGGDYCKGERYRGFFSRMHYRAGFSYASPYLKINGVDGPRELSAS

9 390–427 YNNRSMLNISAEWVNQSVTGMIKENMFRINVGFTFNER

data for three-dimensional structure formation. Hence, V5 was

used for tertiary structure, and distortions in protein structure

were overcome by refinement of structure. Closeness to the

native structure of proteins was acquired by the refinement

of models by GalaxyRefine and 3DRefine. Efficient protein

structure refinement is obtained by applying knowledge-based

force fields and composite physics. Energy minimization steps

and repetitive optimization of hydrogen bonding at the atomic

level are employed by these online servers for refinement

(Raza et al., 2021).

Validation of the refined 3D model was executed by

PROCHECK and PROSAweb, which were used to generate the

Ramachandran plot. This plot assessment elaborates on the

combination and orientation of dihedral angles falling in the

disallowed region on the basis of steric hindrance (Maxwell

and Popelier, 2017). The Z-score (assessed by PROSA Web)

improved from −2.98 to −5.37, which ensured the better quality

of models. More than 90% of residues in the most favored

regions of the Ramachandran plot indicate the better folding

of the protein structure and validate its quality. The results of

the Ramachandran plot analysis of our vaccine showed 95.2% of

residues in the most favored regions, which indicated the good

quality of our vaccine. Visualization of the tertiary structures

was made with Pymol v2.5.5 software for better representation

(Figure 3).

Disulfide engineering and molecular
docking analysis

The designed vaccine construct was stabilized by performing

disulfide engineering, where 13 pairs of amino acids were found

to be able to make disulfide bonds predicted by the DbD2 server.

However, considering the parameters such as energy and chi3, five

pairs were considered favorable. The value of energy was calculated

to be <4 kcal/mole for 5 pairs, with a chi3 value between −105

and+109.

Favorable interactions between vaccine constructs and HLA

alleles were predicted by molecular docking analysis, an energy

minimization step. The vaccine construct (V5) was docked with

six different HLA alleles, i.e., 1A6A, 1AQD, 2Q6W, 3C5J, 4MD4,

and 5NI9, acquired from PDB by using the PatchDock server.

For refinement of models, the results were subjected to the

FireDock server. Docked complex V5-1AQD fulfilled the criteria

by showing the highest docking score (14814) as compared

with the docking score of other docked complexes. Vigorous

immune-stimulatory and CTL response effects can be elicited by

interactions between TLRs (Rana and Akhter, 2016). The vaccine

construct (V5) was further docked with TLR4 (toll-like receptor)

to enhance immune responses (Table 5). Profound interactions

of the docked complex V5-TLR4 were confirmed through

binding energy.
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TABLE 4 Designed multi-epitope vaccine sequences.

Sr. no. Epitope sequence
position

Complete sequence of vaccine construct

1 ADK95685.1 (100–127,

208–254), and ADK97014.1

(52–75, 121–161, 253–274,

332–379, 390–427)

EAAAKMSDLKNLAETLVNLTVKDVNELAAILKDEYGIEPAAAAVVMAGPGAEAAEEKTEFDVILKSAGASKLAVVKLVKD
LTGAGLKEAKDMVDGAPAAIKSGISKDEAEALKKQLEEAGAEVELKEAAAKAKFVAAWTLKAAAGGGSDEPTPWAFGFVCGR
SVVDNARPHVGKRYGGGSQGITFTRYADDLTFSSDTDILRPQGELVQQVKAIVERYGFRLNEEKTGGGSAKFVAAWTLKAAA
GGGSGFHERNQVNYANPASYASVDSLSFHEYGAEALERAGLLPYTNVGYNFSNTQNVNAFPSTSSVNATYSNAYNGSGGLHH
EYGAEALERAGLISTNSQTSISDTTRYVVSNSLHEYGAEALERAGKFTLGGDYCKGERYRGFFSRMHYRAGFSYASPYLKIN
GVDGPRELSASHEYGAEALERAGYNNRSMLNISAEWVNQSVTGMIKENMFRINVGFTFNERHEYGAEALERAGAKFVAAWTL
KAAAGGGS

2 ADK95685.1 (100–127,

208–254), and ADK97014.1

(52–75, 121–161, 253–274,

332–379, 390–427)

EAAAKMAENPNIDDLPAPLLAALGAADLALATVNDLIANLRERAEETRAETRTRVEERRARLTKFQEDLPEQFIELRDK
FTTEELRKAAEGYLEAATNRYNELVERGEAALQRLRSQTAFEDASARAEGYVDQAVELTQEALGTVASQTRAVGERAAKL
VGIELEAAAKAKFVAAWTLKAAAGGGSDEPTPWAFGFVCGRSVVDNARPHVGKRYGGGSQGITFTRYADDLTFSSDTDIL
RPQGELVQQVKAIVERYGFRLNEEKTGGGSAKFVAAWTLKAAAGGGSGFHERNQVNYANPASYASVDSLSFHEYGAEALE
RAGLLPYTNVGYNFSNTQNVNAFPSTSSVNATYSNAYNGSGGLHHEYGAEALERAGLISTNSQTSISDTTRYVVSNSLHE
YGAEALERAGKFTLGGDYCKGERYRGFFSRMHYRAGFSYASPYLKINGVDGPRELSASHEYGAEALERAGYNNRSMLNIS
AEWVNQSVTGMIKENMFRINVGFTFNERHEYGAEALERAGAKFVAAWTLKAAAGGGS

3 ADK95685.1 (100–127,

208–254), and ADK97014.1

(52–75, 121–161, 253–274,

332–379, 390–427)

EAAAKMAENSNIDDIKAPLLAALGAADLALATVNELITNLRERAEETRRSRVEESRARLTKLQEDLPEQLTELREKFTA
EELRKAAEGYLEAATSELVERGEAALERLRSQQSFEEVSARAEGYVDQAVELTQEALGTVASQVEGRAAKLVGIELEAAA
KAKFVAAWTLKAAAGGGSDEPTPWAFGFVCGRSVVDNARPHVGKRYGGGSQGITFTRYADDLTFSSDTDILRPQGELVQQ
VKAIVERYGFRLNEEKTGGGSAKFVAAWTLKAAAGGGSGFHERNQVNYANPASYASVDSLSFHEYGAEALERAGLLPYTN
VGYNFSNTQNVNAFPSTSSVNATYSNAYNGSGGLHHEYGAEALERAGLISTNSQTSISDTTRYVVSNSLHEYGAEALERA
GKFTLGGDYCKGERYRGFFSRMHYRAGFSYASPYLKINGVDGPRELSASHEYGAEALERAGYNNRSMLNISAEWVNQSVT
GMIKENMFRINVGFTFNERHEYGAEALERAGAKFVAAWTLKAAAGGGS

4 ADK95685.1 (100–127,

208–254), and ADK97014.1

(52–75, 121–161, 253–274,

332–379, 390–427)

EAAAKGIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKKEAAAKAKFVAAWTLKAAAGGGSDEPTPWA
FGFVCGRSVVDNARPHVGKRYGGGSQGITFTRYADDLTFSSDTDILRPQGELVQQVKAIVERYGFRLNEEKTGGGSAKFVA
AWTLKAAAGGGSGFHERNQVNYANPASYASVDSLSFHEYGAEALERAGLLPYTNVGYNFSNTQNVNAFPSTSSVNATYSNA
YNGSGGLHHEYGAEALERAGLISTNSQTSISDTTRYVVSNSLHEYGAEALERAGKFTLGGDYCKGERYRGFFSRMHYRAGF
SYASPYLKINGVDGPRELSASHEYGAEALERAGYNNRSMLNISAEWVNQSVTGMIKENMFRINVGFTFNERHEYGAEALER
AGAKFVAAWTLKAAAGGGS

5 ADK95685.1 (55–83,

268–294), and ADK97014.1

(15–45, 82–109, 165–236,

278–329)

EAAAKMSDLKNLAETLVNLTVKDVNELAAILKDEYGIEPAAAAVVMAGPGAEAAEEKTEFDVILKSAGASKLAVVKLVK
DLTGAGLKEAKDMVDGAPAAIKSGISKDEAEALKKQLEEAGAEVELKEAAAKAKFVAAWTLKAAAGGGSDTNNVQRRCKTF
RLRKKHGGYREITAPKGGGGSLMVTEKVNVSRRYVREIRSLLYIWERYGGGSAKFVAAWTLKAAAGGGSVQVSAQSGTNSP
YSQYGLGALASQATSFNRGHEYGAEALERAGSLQLTNFEENGNKVNAKNADIEYVVASFHEYGAEALERAGLGAGWEPFKG
FSFGANIGYLWGTLNRNSTNTYSDSYVNTLSKNYSAQVKSYKVDFGAQYTYAVDKKNELTLGHEYGAEALERAGHTFGVGL
MWNHNNRLKFGVDYQLQKWAKLKYPQLTTVNGTTSYNLVDGQFNDHEYGAEALERAGAKFVAAWTLKAAAGGGS

6 ADK95685.1 (55–83,

268–294), and ADK97014.1

(15–45, 82–109, 165–236,

278–329)

EAAAKMAENPNIDDLPAPLLAALGAADLALATVNDLIANLRERAEETRAETRTRVEERRARLTKFQEDLPEQFIELRDK
FTTEELRKAAEGYLEAATNRYNELVERGEAALQRLRSQTAFEDASARAEGYVDQAVELTQEALGTVASQTRAVGERAAKLV
GIELEAAAKAKFVAAWTLKAAAGGGSDTNNVQRRCKTFRLRKKHGGYREITAPKGGGGSLMVTEKVNVSRRYVREIRSLLY
IWERYGGGSAKFVAAWTLKAAAGGGSVQVSAQSGTNSPYSQYGLGALASQATSFNRGHEYGAEALERAGSLQLTNFEENGN
KVNAKNADIEYVVASFHEYGAEALERAGLGAGWEPFKGFSFGANIGYLWGTLNRNSTNTYSDSYVNTLSKNYSAQVKSYKV
DFGAQYTYAVDKKNELTLGHEYGAEALERAGHTFGVGLMWNHNNRLKFGVDYQLQKWAKLKYPQLTTVNGTTSYNLVDGQF
NDHEYGAEALERAGAKFVAAWTLKAAAGGGS

7 ADK95685.1 (55–83,

268–294), and ADK97014.1

(15–45, 82–109, 165–236,

278–329)

EAAAKMAENSNIDDIKAPLLAALGAADLALATVNELITNLRERAEETRRSRVEESRARLTKLQEDLPEQLTELREKFTA
EELRKAAEGYLEAATSELVERGEAALERLRSQQSFEEVSARAEGYVDQAVELTQEALGTVASQVEGRAAKLVGIELEAAAK
AKFVAAWTLKAAAGGGSDTNNVQRRCKTFRLRKKHGGYREITAPKGGGGSLMVTEKVNVSRRYVREIRSLLYIWERYGGGS
AKFVAAWTLKAAAGGGSVQVSAQSGTNSPYSQYGLGALASQATSFNRGHEYGAEALERAGSLQLTNFEENGNKVNAKNADI
EYVVASFHEYGAEALERAGLGAGWEPFKGFSFGANIGYLWGTLNRNSTNTYSDSYVNTLSKNYSAQVKSYKVDFGAQYTYA
VDKKNELTLGHEYGAEALERAGHTFGVGLMWNHNNRLKFGVDYQLQKWAKLKYPQLTTVNGTTSYNLVDGQFNDHEYGAEA
LERAGAKFVAAWTLKAAAGGGS

8 ADK95685.1 (55–83,

268–294), and ADK97014.1

(15–45, 82-109, 165–236,

278–329)

EAAAKGIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKKEAAAKAKFVAAWTLKAAAGGGSDTNNVQR
RCKTFRLRKKHGGYREITAPKGGGGSLMVTEKVNVSRRYVREIRSLLYIWERYGGGSAKFVAAWTLKAAAGGGSVQVSAQS
GTNSPYSQYGLGALASQATSFNRGHEYGAEALERAGSLQLTNFEENGNKVNAKNADIEYVVASFHEYGAEALERAGLGAGW
EPFKGFSFGANIGYLWGTLNRNSTNTYSDSYVNTLSKNYSAQVKSYKVDFGAQYTYAVDKKNELTLGHEYGAEALERAGHT
FGVGLMWNHNNRLKFGVDYQLQKWAKLKYPQLTTVNGTTSYNLVDGQFNDHEYGAEALERAGAKFVAAWTLKAAAGGGS

Molecular dynamic simulation

In the cellular environment, the stability of docked complexes

was inferred by molecular dynamic simulation studies. The iMOD

server was employed to explore the movement of molecules and

atoms. The relation of the docked complex between the NMA

and the PDB sector was clearly visualized by the B-factor graph

(Figure 4A). The coupling between residues was indicated by a

covariancematrix, where themotions, i.e., correlated, uncorrelated,

and anti-correlated, of different pairs were indicated by red, blue,

and white colors, respectively (Figure 4B). The distortion of each

residue was counted as the deformability of the complex, as shown

in the graphs obtained by the server with higher peaks indicating

the greater deformability (Figure 4C). A low Eigenvalue indicates

that the complex can be deformed easily. The motion stiffness

of the complex was represented by an Eigenvalue (9.549413e-05)

(Figure 4D). The Eigenvalue and variance related to each normal

mode were found to be in an inverse relation (Figure 4F). The
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FIGURE 3

(A) Tertiary structure of the vaccine V5 generated and refined by Phyre 2 and GalaxRefine servers, respectively. (B) Ramachandran plot exhibiting

more than 95% in the Rama-favored regions. (C) Vaccine 3D structure validation by ProSA-web. The Z-score of the refined model is −5.37, which is

lying inside the score range.

TABLE 5 Docking analysis for the interaction studies between vaccine construct V5 and major immune receptors.

Sr. no. HLA alleles PDB ID Score Area Hydrogen bond
energy

Global energy ACE

1 2Q6W 13,898 1,886.3 −1.25 −15.29 7.27

2 1A6A 14,024 1,894.2 −0.9 −11.84 −2.64

3 5NI9 14,416 1,935.3 −3.07 −16.12 9.23

4 TLR4 14,506 1,932 −2.05 −12.82 13.86

5 4MD4 14,544 1,912.2 −5.03 −21.8 9.32

6 1AQD 14,814 1,867.8 −5.34 −25.38 8.99

elastic network model indicated the stiffness of the residues of the

vaccine in the form of springs, with darker grays indicating stiffer

springs (Figure 4E). The interpretation obtained from the results

confirmed the stability of the docked complex (V5-TLR4) in the

cellular environment.

Codon optimization and in silico cloning

For the sake of maximal protein expression, the vaccine

construct’s codon was optimized by JCat (Java Codon Adaptation

Tool) in E. coli (strain K12). The JCat resource provided the

percentage of average GC content up to 70% and CAI value (0.95–

1.0) of adapted sequences, which ensured a high expression rate

of vaccine constructs in E. coli. The adapted codon sequences

were introduced in the plasmid vector pET 28a (+) for the

construction of recombinant plasmid sequences, which ensured

expression and heterologous cloning in E. coli. Cloning of the

vaccine DNA sequence provided a recombinant vector of 6,804 bp

(Supplementary Figure S2).

Immune simulation

Immune simulations play a role in the development of an

immune profile of the vaccine construct. The memory of immune

cells was observed under C-ImmSim analysis to increase their

half-life and successive immune responses by the cell (Bibi et al.,
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FIGURE 4

Molecular dynamics simulation of vaccine construct (V5)–TLR4 complex. The stability of the protein–protein complex was examined by (A) B-factor,

(B) covariance matrix of residue index, (C) deformability, (D) Eigenvalue, (E) elastic network analysis, and (F) variance.

2021). Steadiness and real immune reactions were confirmed by

the outcomes of this server. High IgM values indicated a primary

immune response. Furthermore, the immunoglobulin expression

level (IgG1+IgG2, IgM, and IgG+IgM) was increased, showing a

decrease in antigen concentration (Figure 5A), which confirmed an

increase in the active B-cell population (Figure 5D). Immunization

led to an increase in the concentration of the active cytotoxic and

helper T lymphocytes (Figures 5B, C). The cytokinin levels and

IFN-gamma-inducing properties were also increased after every

dose of the vaccine. Furthermore, the inset plot indicated that the

chances of the danger caused by the vaccine are too low (Figure 5E).

All the immune responses indicated that our vaccine is capable of

causing a potent immune response.

Discussion

P. melaninogenica, due to its irrefutable place within the

CF respiratory microbiota in the pathophysiology of oral lichen

planus (OLP) and periodontal diseases, has gained the attention

of researchers to target this pathogen (Lamoureux et al., 2021).

Although discrepancies in antimicrobial rates were observed, a

constant increase in resistance is still trending, which provoked

the researchers to look for an alternative to the current therapies.

Identification of novel therapeutic drugs by targeting the core genes

of bacterial species might be favorable. In silico approaches have

become popular in designing novel drug and vaccine targets against

pathogenic organisms with the help of bioinformatics.

While looking for an alternative drug target, subtractive

proteomics or genomics were combined with reverse vaccinology

to find a suitable vaccine target. In the present study, 14 complete

genomes of P. melaninogenica were used to extract the core genes

of the bacteria, which remain conserved throughout the species.

The previous studies involved surveys and other experimental

approaches to combat the infections of P. melaninogenica, but no

in silico approaches were applied in the past. A total of 114 proteins

were recognized as essential, virulent, antibiotic-resistant, and non-

homologous, which could serve as novel drug or vaccine targets

determined by in silico analysis.

PPI network analysis of these drug candidates filtered the

hub proteins after predicting the subcellular location of proteins

(Jalili et al., 2016). Druggable screening of the cytoplasmic

proteins prioritized the non-homologs as novel discoveries

in the identification of therapeutic drug targets against P.

melaninogenica. A total of 18 proteins were prioritized as

potential drug targets, of which 1 is KEGG-dependent and 17 are

KEGG-independent (Table 2). Of these proteins, dihydroneopterin

aldolase (ADK97401.1) is involved in the conversion of 7,8-

dihydroneopterin to 6-hydroxymethyl-7,8-dihydropterin in the

folate synthesis pathway of microorganisms. This pathway is very

important for the growth and survival of many microorganisms.

It was selected as a drug target because its inhibition can cause

the death of microorganisms (Wang et al., 2006). Pyridoxal 5′-

phosphate (PLP) (ADK95358.1) is an important coenzyme and

is involved in a variety of reactions. The pyridoxal 5′-phosphate

synthase is responsible for the synthesis of PLP. If PLP-synthase

is inhibited in microorganisms, it leads to a decrease in their

essential amino acids, leading to growth retardation or death

of the microorganisms. Due to this reason, PLP-synthase was

prioritized as a potential drug target (Strohmeier et al., 2006).

Nicotinate phosphoribosyl transferase (NAPRT) (ADK95883.1)

causes the conversion of nicotinic acid into nicotinamide adenine
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FIGURE 5

Immune simulation results of the designed vaccine construct (V5). (A) Immunoglobulin levels with respect to antigen concentration. (B) Cytotoxic

T-cell population per state. (C) Helper T-cell population per state. (D) B-cell population per state. (E) Cytokine and interleukin levels after vaccine

injection. The inset plot indicated high production of IL-2 along with a danger signal.

dinucleotide (NAD) (Audrito et al., 2020). NAD is involved in

energy production and the repair of DNA in the event of any

damage. If NAPRT is inhibited in bacteria, it can lead to many

problems for them. It can also cause sensitivity to certain antibiotics

(Ghanem et al., 2022). Glycosyltransferase (ADK95886.1), involved

in the interconversion of sugars, was also prioritized as a drug target

(Schmid et al., 2016). The putative phosphomethylpyrimidine

kinase (ADK96110.1), the homolog of thiD, is involved in the initial

stage of the biosynthesis of vitamin B1 (thiamin). Thiamin, in its

activated form, thiamin diphosphate (ThDP), is very important

for microorganisms. It is essential for many important metabolic

processes, such as the breakdown of sugars and amino acids.

Therefore, it was considered a drug target (Naz et al., 2019).

Lipid A biosynthesis (KDO)2-(lauroyl)-lipid IVA acyltransferase

(ADK96013.1) is responsible for the growth of bacterial cells at high

temperatures. If this protein is deleted in a bacterium, it cannot

survive at temperatures above 33◦C (Zhou et al., 2021). Moreover,

it is involved in the formation of Lipid A in bacteria, which is

very important for the survival of the bacteria. If it is inhibited in

bacteria, it can lead to the disruption of its outer membrane, which

ultimately results in the death of the bacteria. Thus, it is a potential

drug target against bacterial infections (Six et al., 2008). Another

potential novel drug target is UvrD (ADK96570.1). It is a versatile

protein found in microorganisms. Its role in DNA metabolism

is crucial because it plays various functions such as repairing

DNA mismatches during replication, participating in nucleotide

excision repair and replication, promoting recombination by

removing RecA filaments from DNA, and regulating transcription

through interactions with RNA polymerase (Ordabayev et al.,

2018). Overall, UvrD’s involvement in maintaining DNA integrity

and genomic stability is essential for the proper functioning of

microorganisms (Ordabayev et al., 2018). Its inhibition can cause

the death of microorganisms. Due to these reasons, it showed

the potential to become a drug target. The gamma subunit of

ATP synthase F1 (ADK96796.1) is essential for ATP production

through oxidative phosphorylation in microorganisms (Xu et al.,

2015). It plays a vital role in controlling ATP synthase activity

and maintaining the proton gradient across the membrane. When

the gamma subunit is inhibited, ATP synthesis decreases and the

proton gradient is disrupted, which can impact various aspects of

cellular metabolism, growth, and survival. Prolonged inhibition

of ATP synthesis can ultimately result in cell death (Xu et al.,

2015). Thus, targeting this important protein may be fatal for

the pathogen and is an effective drug target. The novel drug

targets, including aldolases, helicases, hydrolases, synthases, and

transferases, investigated in this study have not been reported

as drug targets in previous studies. According to the centrality–

lethality rule, bacterial pathogens can be targeted by the inhibition

or knockdown of these proteins.

To treat pathogenic infections, various antibiotics are

discovered by using subtractive genomics or proteomics

approaches, but there is still a demand to look for chimeric

vaccine development due to increased antimicrobial resistance in

clinical isolates of P. melaninogenica. Outer membrane proteins

being involved in host–pathogen interaction were prioritized

as potent vaccine targets in the reverse vaccinology approach

(Lu et al., 2014). After analyzing different parameters, two

vaccine candidates, i.e., reverse transcriptase (ADK95685.1)

and hypothetical protein (ADK97014.1), were selected for the

chimeric vaccine construction. Host cells are directly exposed to

bacterial outer membrane proteins; hence, they are considered to

be the most favorable candidate to be used in reverse vaccinology
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against invasive pathogens (Rizwan et al., 2017). Bacterial life and

pathogenesis depend on these proteins as they play an important

role in different functions such as nutrient acquisition, adhesion,

and sustaining bacterial membrane integrity (Mishra et al., 2020).

B- and T-cell immunity is stimulated by antigenic regions

of proteins in epitope mapping using the immunoinformatic

approach, where the non-antigenic portion is excluded. Lead B-

and T-cell overlapped epitopes were used to generate chimeric

subunit constructs with different combinations of adjuvants and

PADRE sequences for better immune responses and to overwhelm

the HLA polymorphism throughout the population (Ghaffari-

Nazari et al., 2015). Maximal expression of the prioritized vaccine

construct (V5) was ensured by in silico cloning in pET 28a (+).

A stable interaction between ligand and receptor was confirmed

by molecular docking of the vaccine construct with human HLAs

and TLR4, which showed the highest docking score. Response to

antigens directly depends on the human body’s defense system,

which is fully equipped to respond. Cytokine and chemokine

production to mediate cellular immune responses and the

recognition of PAMPs (pathogen-associated molecular patterns)

are controlled by TLRs, which are present on the surface of

immune cells.

Innate and adaptive immunity responses might be possible

with the designed vaccine, as inferred by the binding of V5 with

TRL4. The stability and dynamic performance of docked complex

V5-TLR4 were explored by molecular dynamic simulation, where

steady binding of the complex was confirmed by an RMSD

plot. Profound immune responses were expected, as predicted by

immune simulation. Memory B and T cells were developed, and the

production of helper T cells was evident from the results. Efficient

Ig production was indicated by a high level of T cells, supporting

a humoral response. Moreover, practical implementation of the

designed lead vaccine might be advantageous to combat pathogenic

diseases of P. melaninogenica in the near future, as inferred from in

silico approaches.

Conclusion

Before doing biological experiments, it is of utmost

importance to depend on in silico approaches that can give a

better idea about the probability and feasibility of discovering

novel drug and vaccine targets. In the present study, in

silico approaches such as subtractive proteomics and reverse

vaccinology were applied to prospect proteins to serve them

as drug or vaccine candidates from a conserved set of genes

obtained from 14 complete genomes of P. melaninogenica.

Several biological databases, comparative sequence analyses,

and druggability analyses were performed to find the most

potent drug candidate. Ultimately, 18 proteins were enlisted

as prioritized druggable candidates to be addressed as novel

targets against the bacterium that had not been reported in

previous studies.

Two proteins were selected as vaccine candidates to develop a

chimeric subunit vaccine. Maximal expression of the engineered

vaccine construct (V5) was ensured by the in silico cloning

of the chimeric construct in the bacterial system. Furthermore,

the vaccine construct (V5) was docked with human immune

cell receptors and TRL4 to confirm its stable binding and

capability to stimulate cell-mediated immune responses. Steady

binding of the docked complex was inferred by the molecular

dynamic simulation analysis. Effective immunological memory to

control P. melaninogenica infections was validated by immune

simulation. All the proposed therapeutic targets further need

validation in animal models. Various pathogenic strains of P.

melaninogenica can be targeted by these therapeutic candidates

as core genes were the basis of the study. The drug targets

and the vaccine construct designed in this study deserve

experimental validation to devise the proper treatment for the

said pathogen.
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