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In the current situation, wine areas are affected by several problems in a context 
of global warming: asymmetric maturities, pH increasing, high alcohol degree 
and flat wines with low freshness and poor aroma profile. The use of emerging 
biotechnologies allows to control or manage such problems. Emerging non-
Saccharomyces as Lachancea thermotolerans are very useful for controlling 
pH by the formation of stable lactic acid from sugars with a slight concomitant 
alcohol reduction. Lower pH improves freshness increasing simultaneously 
microbiological stability. The use of Hanseniaspora spp. (specially H. vineae and 
H. opuntiae) or Metschnikowia pulcherrima promotes a better aroma complexity 
and improves wine sensory profile by the expression of a more complex metabolic 
pattern and the release of extracellular enzymes. Some of them are also compatible 
or synergic with the acidification by L. thermotolerans, and M. pulcherrima is 
an interesting biotool for reductive winemaking and bioprotection. The use of 
bioprotection is a powerful tool in this context, allowing oxidation control by 
oxygen depletion, the inhibition of some wild microorganisms, improving the 
implantation of some starters and limiting SO2. This can be complemented with 
the use of reductive yeast derivatives with high contents of reducing peptides and 
relevant compounds such as glutathione that also are interesting to reduce SO2. 
Finally, the use of emerging non-thermal technologies as Ultra High-Pressure 
Homogenization (UHPH) and Pulsed Light (PL) increases wine stability by microbial 
control and inactivation of oxidative enzymes, improving the implantation of 
emerging non-Saccharomyces and lowering SO2 additions.
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Introduction

Global warming is already clearly affecting grape ripening by 
modifying the composition and affecting polyphenol contents, 
freshness, acidity, pH, sugars, stability, sensory balance, aroma and 
color (Jones et al., 2005; Mozell and Thach, 2014; Drappier et al., 
2019; Gutiérrez-Gamboa et al., 2021). Additionally, global warming 
is increasing the water stress in vines due to lower rainfall in many 
regions especially during the fruit growth and increasing pests and 
diseases (Jones and Alves, 2012; Sgubin et al., 2022).

The global warming in some regions has produced an 
improvement in quality but it looks that is reaching its peak (Gambetta 
and Kurtural, 2021). A global temperature increase of 0.3–1.7°C is 
expected in the coming years (Drappier et al., 2019), therefore, the 
undesirable effects of temperature on grape maturity will be worst in 
the near future. Several viticultural techniques have been proposed as 
a tool to improve grape maturity in a context of global warming. Some 
of them can produce a 15-day delay in maturity by better adapting 
vine physiology and growth cycle to climatic conditions (Gutiérrez-
Gamboa et al., 2021). Among them, the following can be considered 
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as quite effective: severe shoot trimming, minimal pruning, leaf 
removal, late pruning and specially forced regrowth that can delay 
maturity by up to 2 months (Gutiérrez-Gamboa et al., 2021).

Different physicochemical options can be used to control sugars 
and acidity levels, such as the use of cation exchange resins (Lasanta 
et al., 2012) or electrodialysis with bipolar membranes to increase 
acidity and therefore reduce pH, or membrane technologies (i.e., 
reverse osmosis or nanofiltration) to reduce sugar content (El Rayess 
and Mietton-Peuchot, 2016).

But there are also many possibilities to control some of the most 
important effects of global warming in the winery by using 
fermentation biotechnologies. Concerning the loss of acidity due to 
high temperatures and the consequent effect on pH, freshness, and 
wine stability, a powerful tool is the use of acidifying yeasts that can 
reduce pH during fermentation by producing organic acids from 
sugars. Among them, the malic acid producers Saccharomyces 
cerevisiae (Sc) strains (Yéramian et al., 2007; Vion et al., 2023) and 
especially the lactic acid producers Lachancea thermotolerans (Lt) 
have been studied (Comitini et al., 2011; Morata et al., 2018; Porter 
et al., 2019a). The production of malic acid after a breeding process by 
selected S. cerevisiae yeasts can be higher than 3 g/L (Vion et al., 2023), 
with an impact on the sensory perception of the wines. The main issue 
concerning the production of malic acid is linked to its instability; in 
addition, it can be  metabolized by lactic acid bacteria producing 
colloidal haze in the bottle. Regarding Lt, it has been reported that one 
specific strain produced more than 16 g/L of lactic acid (Banilas et al., 
2016), but it is easy to find strains able to produce 1–5 g/L under 
enological conditions (Morata et  al., 2022a). The use of Lt also 
determines a slight reduction in alcohol content (Ciani et al., 2016; 
Morata et  al., 2019a; Hranilovic et  al., 2021), being the latter a 
concomitant problem in warm areas.

Acidifying non-Saccharomyces yeasts: 
Lachancea thermotolerans

Lachancea thermotolerans (Lt), formerly known as Kluyveromyces 
thermotolerans or Zygosaccharomyces thermotolerans, is a 
Saccharomycetaceae yeast that was first described in 1932 (Kurtzman, 
2003). It is named Lachancea in honor to Dr. Marc-André Lachance, 
University of Western Ontario, Canada. The morphology is similar to 
that of Saccharomyces cerevisiae with an ovoid or spheroidal shape and 
multilateral budding during asexual reproduction and forms 1–4 
ascospores by sexual reproduction (Kurtzman, 2003). Lt has a medium 
fermentative power reaching 5–9% v/v of ethanol (Morata et  al., 
2018), so it should be used in coinoculation or sequential fermentation 
with Sc to complete alcoholic fermentation and produce dry wines. Lt 
has also been described as a low volatile acidity producer (0.1–0.5 g/L) 
(Kapsopoulou et al., 2007; Comitini et al., 2011; Aponte and Blaiotta, 
2016; Morata et al., 2019a) and moreover it is able to reduce volatile 
acidity under aerobic conditions (Vilela-Moura et al., 2008), with a 
moderate formation of ethyl acetate similar to Sc (Morata et  al., 
2019a). Moreover, even if Lt is sensitive to sulfites (Comitini et al., 
2011), some strains can produce effective acidification at 25–75 mg/L 
of total SO2 (Vaquero et al., 2020), and its growth is affected by low 
fermentation temperatures (Vaquero et al., 2020).

Its main application in emerging wine biotechnology is 
acidification and pH control by metabolizing sugars to lactic acid with 

the use of lactate dehydrogenase enzymes (LDH). Pyruvate can 
be reduced to lactate by LDH as an alternative pathway to recover 
NAD+, thus reducing ethanol formation (Hranilovic et al., 2018). 
Bioproduction of lactic acid in Lt is related to the expression of three 
lactate dehydrogenase enzymes (LDH) and appears to be unaffected 
by the expression of alcohol dehydrogenases (ADH) (Sgouros et al., 
2020), because of the similar expression of ADH in high and low lactic 
acid producing strains. LDH2 is up-regulated in high producing 
strains (Sgouros et al., 2020). Moreover, it has been observed in several 
strains that LDH2 and LDH3 are organized in tandem and LDH1 is 
located elsewhere (Gatto et  al., 2020). There are also two lactate 
permeases involved in lactate excretion, JEN1 in a single copy and 2 
sequences of ADY2 (Gatto et al., 2020).

The effect of Lt is very powerful, and it is easy to decrease the pH 
of 0.1–0.5 units, depending on the fermentation time; however, most 
of the acidification is done at the beginning of fermentation, before 
day 6 (Morata et al., 2018). Many Lt strains can degrade malate but 
some of them are also able to produce small amounts of malic acid, up 
to 0.3 g/L (Hranilovic et al., 2018).

Lt has shown a good ability to control pH in real musts or crushed 
grapes from several Vitis vinifera L. white (Albariño, Airen, Vilana, 
Treixadura, Viognier) and red varieties (Tempranillo, Mencía, Merlot, 
Cabernet sauvignon) (Balikci et al., 2016; Morata et al., 2019a; Binati 
et al., 2020; Blanco et al., 2020; Sgouros et al., 2020; Vaquero et al., 
2020, 2021a; Hranilovic et al., 2021, 2022; Zhang et al., 2023). The pH 
reduction is variable depending on several factors, but especially on 
the strain, and usually the reduction can range between 0.3 and 0.5 pH 
units (Table 1). The concomitant alcohol reduction has ranged from 
0.2–0.5% v/v (Table 1). The scale up has been from 0.2–3 L in the 
laboratory to 60 L-400hL at pilot plant scale (Table 1).

The high formation of lactic acid during fermentation with Lt can 
also have another positive effect in warm areas that is the by-product 
inhibitory effect on malolactic fermentation (MLF) (Morata et al., 
2020a; Snyder et al., 2021), resulting in the preservation of malic acid 
that keeps the wines fresher and less flat. A strong inhibitory effect on 
MLF has been observed when lactic acid levels are 4 g/L or higher 
(Morata et al., 2020a), and it is even delayed at concentrations above 
2 g/L. Moreover, it should be considered that lactic acid concentration 
is stable and cannot be degraded by microorganisms, so it preserves 
the wines from undesirable MLF during wine storage, aging on lees or 
bottle aging in sparkling wines.

The sensory impact of biological acidification by Lt is positive, 
producing a ‘citric freshness’ in the wines (Morata et  al., 2020b), 
without ‘dairy notes’ that are more typical in MLF due to the formation 
of carbonyl metabolites such as diacetyl or acetoin. Lt produces these 
compounds at low concentrations like Saccharomyces cerevisiae.

In terms of aroma contribution, Lt has been described as a moderate 
producer of higher alcohols, with influence on aroma modulation by the 
production of floral acetate esters such as 2-phenylethyl acetate (Comitini 
et al., 2011; Gobbi et al., 2013; Morata et al., 2019a). Lt also produces high 
amounts of ethyl lactate that can be  30-folds higher than in Sc 
fermentations (Hranilovic et al., 2021) due to the formation of high levels 
of lactic acid. Furthermore, some strains are able to release terpenes and 
thiols as 4MMP and 3MH (Zott et al., 2011) by potential β-glucosidase 
and carbon-sulfur lyase activities (Rosi et al., 1994; Zott et al., 2011; Porter 
et al., 2019b). Therefore, even when the main effect of the use of Lt in 
wines from areas affected by global warming is on the control of pH and 
alcoholic degree, a positive modulation of aroma can also be obtained by 
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the formation of positive floral and fruity esters or the release of bonded 
thiols and terpenes. Moreover, the acidification produced by Lt increases 
the amount of molecular SO2 by pH effect, helping to reduce the overall 
doses and increasing the effectiveness of its antimicrobial and antioxidant 

functions (Morata et al., 2021). The selection and industrial scale-up of 
this species, including production as dry yeast, is well designed and 
optimized, making Lt a good candidate for industrial production (Morata 
et al., 2022b).

TABLE 1 Relevant literature results concerning wine acidification by fermentation with Lachancea thermotolerans in sequential fermentation or 
coinoculation with S. cerevisiae (Sc).

Vitis 
vinifera 
L. grape 
variety

Scale Total 
SO2 

(mg/L)

Lactic 
acid 
(g/L)

pH 
reduction

Volatile 
acidity 
(g/L)

Alcohol 
reduction 

(% v/v)

Fermentation 
biotechnology

strains Reference

White

Emir 0.8 L 

must

- 0.4–1.28 0.0 0.53–0.73 - Sequential and 

coinoculation with Sc

CBS2860 Balikci et al. 

(2016)

Albariño 30 L 

must

30 2.7 0.3 0.4 0.2 Sequential with Sc L31 Morata et al. 

(2019a)

Airen 1 L must 25–75 0.2–4 0.1–0.5 - - Sequential with Sc Laktia, 

Concerto, 

L31, A54, 

F108, F111

Vaquero et al. 

(2020)

Vilana 2.2 L 

must

30 <0.6–5.5 0.1–0.2 0.52 0–0.3 Sequential and 

coinoculation with Sc

P-HO1 Sgouros et al. 

(2020)

Treixadura 1 L 50 0.2 0.05 0.36–0.39 - Sequential with Sc Lt93 Blanco et al. 

(2020)

Airen 30 L 

must

100 0.9–1 0.2–0.3 0.17–0.25 0.1–0.5 Sequential with Sc L31, Laktia Vaquero et al. 

(2021)

Viognier 3 L must 60 0.1–5.2 0.1–0.5 0.3–0.4 0–0.3 Sequential and 

coinoculation with Sc

Levulia, 

Concerto, 

Laktia, 

ISVV Ltyq 

25, UNIFG 

18

Hranilovic et al. 

(2021)

Rose

Pinot grigio 0.2 L - 0.5–4.4 - 0.19–0.26 0.1–0.35 Sequential COLC27, 

DESP53, 

SOL13

Binati et al. 

(2020)

Red

Tempranillo 800 Kg 

crushed 

grape

30 6.6 0.5 0.4 0.2 Sequential with Sc L31 Morata et al. 

(2019a)

Mencía 1 L 50 7.1–7.2 0.2 0.36–0.42 0.5–0.7 Sequential with Sc Lt93 Blanco et al. 

(2020)

Merlot 3Kg 

crushed 

grape

50 0.6–8.1 0.0–0.5 0.21–0.67 0.9 Sequential and 

coinoculation with Sc

Levulia, 

Concerto, 

Laktia, 

ISVV Ltyq 

25, UNIFG 

18

Hranilovic et al. 

(2021)

Cabernet 

sauvignon

60 L 

grape 

must

60 5.0–7.0 0.5 0.4–0.6 1.9 Sequential and 

coinoculation with Sc

CVE-LT1 

CGMCC 

NO.15161

Zhang et al. 

(2023)

Cabernet 

sauvignon

400hL 

grape 

must

60 2.2–2.8 - 0.7 - Sequential and 

coinoculation with Sc

CVE-LT1 

CGMCC 

NO.15161

Zhang et al. 

(2023)
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Aroma improvement with apiculate 
yeasts from the genus Hanseniaspora 
spp.

Apiculate yeasts of the genus Hanseniaspora usually predominate 
on grape skins at maturity and, in the early stages of spontaneous 
fermentation, they dominate up to an alcohol level of 4–6% v/v 
(Moreira et al., 2011).

Hanseniaspora spp. have apiculate shape, like lemon, with polar 
budding (Martin et al., 2018). These yeasts have been traditionally 
considered as undesired and excluded in the fermentation using SO2, 
because of their potential effect on volatile acidity and ethyl acetate 
formation. However, several species, depending on the strain, produce 
moderate volatile acidity, some of them (e.g., Hanseniaspora vineae – 
Hv) even lower than Sc (del Fresno et  al., 2021a). Additionally, 
Hanseniaspora spp. have been frequently described as overproducers 
of floral and fruity acetate esters such as 2-phenylethyl acetate or 
isoamyl acetate, positively improving flat wines from neutral varieties 
(Moreira et  al., 2011). Moreover, the high glucosidase activity 
observed in some strains (Testa et al., 2020) may contribute to enhance 
the varietal characteristics of wines (Lombardi et al., 2018). Several 
recent reviews have highlighted the usefulness and positive impact of 
these species in wine technology, including aroma improvement and 
the effect on body and structure (Martin et al., 2018; van Wyk et al., 
2023). Therefore, Hanseniaspora can be very useful for improving flat 
wines from regions affected by global warming, also having additional 
interesting applications in biocontrol (van Wyk et al., 2023).

Hv is a very interesting species from an enological point of view 
and described as a ‘friendly’ yeast (Carrau and Henschke, 2021), 
because of its ability to intensify the floral and fruity notes in wines by 
a high acetylation capacity and a highly developed phenylpropanoids 
pathway (Valera et al., 2021; Carrau et al., 2023), compared to other 
species such as H. uvarum. It is also convenient to use due to its good 
fermentative power, easily reaching 8–10% v/v ethanol, and with a 
production of volatile acidity lower than many Sc strains, often with 
values below 0.4 g/L (Martin et al., 2018; del Fresno et al., 2021a). Hv 
produces higher levels of 2-phenylethyl acetate and benzyl alcohol 
(Viana et  al., 2011; Valera et  al., 2021). Benzyl alcohol can 
be synthetized de novo by Hv (Martin et al., 2016) and the average 
content in several vinifications is 14-folds that obtained by Sc (Carrau 
et  al., 2023). Hv yields high terpene contents in some must 
fermentations (x3 on average compared to Sc) (del Fresno et  al., 
2021a). The production of some specific spice compounds such as 
safranal in Hv above its sensory threshold has also been described (del 
Fresno et al., 2022). Protective effects on color has also been observed 
with improved hue parameters that can be representative of a lower 
oxidation in rose wines (del Fresno et al., 2021b).

Hanseniaspora opuntiae (Ho) is also an apiculate yeast but smaller 
than Hv (Vaquero et al., 2022). It can promote the release of some terpenes 
as citronellol (del Fresno et al., 2022; Badura et al., 2023) and has been 
described as a good producer of floral and fruity acetate esters (Bourbon-
Melo et al., 2021; del Fresno et al., 2022), conferring floral notes in wines 
(Luan et al., 2018), with moderate volatile acidity and low levels of ethyl 
acetate (del Fresno et al., 2022). However, the fermentative power is lower 
than in Hv usually reaching 4–6% v/v ethanol depending on strains and 
fermentation conditions. A good compatibility with Lt has been observed 
to achieve good acidification as well as suitable release of aromatic esters 
(Vaquero et  al., 2022). When Hv is used together with Lt, the high 

fermentative performance of Hv strongly decreases the acidification 
capacity of Lt (Vaquero et  al., 2021). As observed for Hv and other 
Hanseniaspora spp., Ho also produces wines with good body, volume and 
a softer mouthfeel (Vaquero et al., 2022).

Bioprotection, aroma enhancement, 
and biocompatibility by 
Metschnikowia pulcherrima

Metschnikowia pulcherrima (Mp) is a globous or ellipsoidal 
multipolar budding yeast that evolves to spherical in adult cells due 
to the accumulation of large amounts of fatty compounds in the 
vacuole (Morata et al., 2019b). Several reviews have focused on the 
properties, characteristics and winemaking applications of Mp 
(Morata et al., 2019b; Sipiczki, 2020). It typically increases the fruity 
profile in wines and produces a positive sensory impact (Varela 
et al., 2017, 2021; Binati et al., 2020). In addition, many strains 
express β-glucosidase and β-lyase activities with remarkable 
intensity, thus promoting the release of free terpenes and volatile 
thiols in aromatic varieties (Barbosa et al., 2018). Some strains can 
be used to reduce the alcohol content of wines (Hranilovic et al., 
2020). This species produces moderate or low levels of volatile 
acidity and H2S (Barbosa et al., 2018). Ethanol tolerance is quite 
good reaching 3–4%v/v in single fermentation (Barbosa et  al., 
2018), and viable cells of Mp can be found in the middle-end of 
alcoholic fermentation.

Mp has been considered an interesting yeast species for bioprotection 
with an effective antimicrobial effect against some non-Saccharomyces 
yeasts, but with good compatibility with Sc (Oro et al., 2014; Di Gianvito 
et al., 2022; Canonico et al., 2023). The antimicrobial and antioxidant 
activity of this species is mainly based on the production of pulcherrimin 
(Morata et al., 2019b; Sipiczki, 2020) and the effect on iron chelation. 
Prefermentative use of Mp has been suggested as an alternative to control 
microorganisms and to avoid or reduce SO2 (Simonin et  al., 2020; 
Windholtz et  al., 2021a,b; Agarbati et  al., 2023). A non-negligible 
production of glutathione (GSH) was also observed for Metschnikowia 
spp. during the growth phase (Lemos Junior et  al., 2021); during 
sequential fermentation, some strains may increase the final GSH 
content in wine up to 10 mg/L (Binati et al., 2021), potentially reducing 
oxidation risks and reducing SO2 requirements.

Mp has shown also very good biocompatibility and synergistic 
behavior concerning the acidification when used with Lt (Vaquero 
et  al., 2021; Escott et  al., 2022), together with a positive sensory 
impact. Therefore, the simultaneous use of Lt/Mp starters increases 
the acidification and the low pH promotes a higher proportion of 
molecular SO2, while producing a natural biocontrol on microbial 
populations, and improving the aroma profile.

Yeast polysaccharides and reductive 
compounds from cell walls and aging 
on lees: the use of 
Schizosaccharomyces pombe

Yeast derivatives, by-products and yeast lees during aging on lees are 
being widely used as additives to improve wine quality, by increasing 
mouthfeel and structure and by softening tannin astringency, but also to 
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stabilize and clarify wines (Morata et al., 2019c; Vejarano, 2020; Rigou 
et al., 2021). The effect of lees and yeast by-products on the aromatic 
fraction has also been studied (Comuzzo et al., 2006, 2011; Loira et al., 
2013), as well as the absorption of aroma and off-flavors by lees 
(Chassagne et al., 2005), or the application of lees as drivers of wood 
aroma has also been observed (Palomero et al., 2015).

To speed and enhance the effect of aging on lees or yeast 
derivatives, the use of non-Saccharomyces yeasts has been an 
innovative and powerful tool (Morata et  al., 2019c; Vejarano, 
2020). Some non-Saccharomyces yeasts such as 
Schizosaccharomyces pombe (Sp) or Schizosaccharomyces 
japonicus (Sj) have a special aptitude to release higher cell wall 
polysaccharide contents in a shorter time and with a positive 
impact on wine quality (Palomero et al., 2009; Domizio et al., 
2017, 2018; Loira et  al., 2018b; Portaro et  al., 2022). The 
polysaccharide release capacity of several Sj strains is even higher 
than that of Sp (Domizio et al., 2017); even if their profiles show 
similarities, some differences in terms of galactose/mannose ratio 
have been observed. Both yeast species show interesting 
properties to be used in aging on lees and in the preparation of 
yeast derivatives. Polysaccharides of Sj have also produced a 
positive effect on the control of protein haze in wines (Millarini 
et al., 2020). The use of these biotechnological products derived 
from Sc or new species such as Sp or Sj is an interesting tool to 
improve wine volume and tannin integration in unbalanced 
grapes from warm areas.

The use of yeast derivatives rich in nitrogen reducing compounds 
and glutathione (GSH) is another key application of these additives 
that is especially relevant for reducing the use of SO2 as antioxidant 
(Rodríguez-Bencomo et al., 2014; Comuzzo et al., 2015; Bahut et al., 
2019; Pons-Mercadé et al., 2021; Nioi et al., 2022). Currently, all the 
yeast derivatives marketed for winemaking use are from Saccharomyces 
spp. However, besides Sj and Sp (discussed above), other 
non-Saccharomyces strains might be  exploited for this purpose. 
Different Hanseniaspora yeasts for instance, showed a relevant 
production of polysaccharides, thiol molecules and GSH during 
growth and after autolysis, in some cases even higher than certain 
Saccharomyces strains (Voce et al., 2022). The possibility to use yeast 
derivatives from non-Saccharomyces yeasts in winemaking is currently 
under discussion (step 3 out of 7) at the International Organization of 
Vine and Wine (OIV).1

Control of malolactic fermentation 
with fumaric acid

Recently, fumaric acid (FA) has been approved by the OIV to 
control MLF at a maximum dose of 600 mg/L (OIV, 2021), thanks to 
the inhibition of lactic acid bacteria (LAB), consequently preserving 
the malic acidity of wines (Cofran and Meyer, 1970; Tchelistcheff et al., 
1971; Pilone et al., 1974). The control of LAB protects wines and helps 
to reduce SO2 levels. Additionally, FA at the allowed dose of 0.6 g/L can 
lower the pH of 0.05–0.1 units, also depending on the buffering power 
of the wine (Morata et al., 2023). FA is a stronger acidifier than tartaric 

1 https://www.oiv.int/public/medias/1573/oiv-oeno-496-2013-en.pdf

acid (Gancel et  al., 2022) and currently this additive is under 
evaluation by OIV also for wine acidification at 2–3 g/L. At the allowed 
dose, FA has a stronger inhibitory effect, even controlling and stopping 
an ongoing MLF with 60% malic acid degradation (Morata et al., 
2020a). The inhibitory effect against other bacteria has also been 
published (Barnes and Karatzas, 2020), with an intense effect against 
acetic acid bacteria. Therefore, FA is a powerful tool to preserve and 
increase acidity in wines from warm areas. Its use can 
be complementary to malic acid-producing Sc yeasts or to Lt.

Emerging non-thermal technologies 
to improve the implantation of 
non-Saccharomyces yeasts and to 
control oxidative enzymes

The main drawback of most non-Saccharomyces yeasts is the 
lower fermentative power and the weaker competitiveness 
compared to Sc, which makes it necessary to use them in sequential 
or mixed fermentations, and to facilitate their implantation by 
must processing. Non-thermal technologies are very interesting to 
facilitate the implantation of non-Saccharomyces yeasts because of 
their high antimicrobial effectiveness and the mild effect on the 
sensory quality of grape and must (Morata et al., 2017). Among 
them, two techniques are particularly interesting for their efficacy 
and protective effect on sensory quality: Ultra High Pressure 
Homogenization (UHPH) and Pulsed Light (PL) (Table 2). Several 
recent reviews summarize the main features of UHPH (Zamora 
and Guamis, 2015; Patrignani and Lanciotti, 2016; Comuzzo and 
Calligaris, 2019; Morata and Guamis, 2020) and PL (Gómez-López 
et al., 2007; Oms-Oliu et al., 2010; Santamera et al., 2020; Vargas-
Ramella et al., 2021).

UHPH involves a continuous pumping of liquid food (grape 
juice or wine) at pressure higher than 200 MPa (commonly 
300 MPa) followed by a depressurization at atmospheric pressure 
through a special highly resistant valve (Zamora and Guamis, 
2015; Morata and Guamis, 2020). In the valve, the fluid is 
subjected to extreme impact and shear stresses producing 
nanofragmentation of colloidal structures and microorganisms, 
down to a size of 300–500 nm (Morata and Guamis, 2020). This 
breakdown has a very powerful antimicrobial effect. It allows 
even the spores inactivation (depending on the in-valve 
temperature), but with a very gentle impact on sensory quality, 
thanks to the preservation of sensitive molecules such as terpenes 
(Bañuelos et al., 2020) and anthocyanins (Vaquero et al., 2022) 
and without formation of thermal markers such as 
hydroxymethylfurfural (Bañuelos et  al., 2020). UHPH also 
inactivates oxidative enzymes (PPOs) and preserves the 
antioxidant activity (Loira et al., 2018a; Bañuelos et al., 2020). 
The highly effective elimination of wild microorganisms allows 
successful inoculations, even with non-Saccharomyces with low 
fermentative yield, and, therefore, permits a good expression of 
their metabolic profile, achieving good acidification and positive 
sensory impact.

PL entails the application of a high intensity broad spectrum 
light (200–2,500 nm) rich in UV (200–280 nm) by short duration 
light flashes (1 μs-0.1 s), typically using xenon lamps (Gómez-
López et al., 2007; Santamera et al., 2020; Vargas-Ramella et al., 
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2021). The main drawback is the penetration depth which is less 
than 1 mm, but it can be applied on the surface of the grape after 
destemming to successfully eliminate wild yeasts (Escott et al., 
2017). It therefore facilitates the implantation of unconventional 
yeast starters producing a high sensory impact on wine profile 
(Escott et  al., 2021). In addition, PL is a gentle non-thermal 
technology (ΔT < 4°C) with protective effect on phenols and 
antioxidant capacity and low effects on color and anthocyanin 
degradation (Escott et al., 2017; Chakraborty et al., 2020; Bhagat 
and Chakraborty, 2022).

Conclusion

The association of emerging biotechnologies such as the use 
of non-Saccharomyces yeasts in sequential or mixed fermentations 
and non-thermal technologies to control wild microorganisms 
and the activity of oxidative enzymes in grapes or must may be a 
powerful strategy to improve wine quality in warm areas. This 
can improve the quality of wines from neutral varieties or 
facilitate the expression of under-ripe grapes. The stability and 
time persistence of these wines is also improved by the microbial 
control through emerging non-thermal technologies, the 

bioprotection and acidification produced by some of the 
non-Saccharomyces species discussed above, allowing the 
reduction of SO2 levels. This can also be  supported by using 
antimicrobial additives such as fumaric acid and by the 
antioxidant properties of yeast derivatives. A new enology for a 
new climate scenario.
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TABLE 2 Main features of UHPH and PL in wines.

Technique Ultra High-Pressure 
Homogenization (UHPH)

Reference Pulsed Light
(PL)

Reference

Features

Control of vegetative 

cells

Highly effective > 6 log reductions Loira et al. (2018a) Highly effective Santamera et al. (2020)

and Vargas-Ramella et al. (2021)

Elimination of spores Yes, depending on in-valve 

temperature

Zamora and Guamis (2015)

and Morata and Guamis (2020)

Yes, the color of the spore can 

influence the sensitivity

Gómez-López et al. (2007)

Inactivation 

mechanisms

Impact and shear efforts Zamora and Guamis (2015)

and Morata and Guamis (2020)

UV 254 nm, photochemical 

effect.

Thermolysis

Gómez-López et al. (2007)

Santamera et al. (2020)

and Vargas-Ramella et al. (2021)

Continuous processing Yes. For liquids: grape must and 

wine

Morata and Guamis (2020) Yes. For solids: grapes. Surface 

irradiation.

For liquids: treatment depth 

must be <1 mm

Gómez-López et al. (2007)

and Santamera et al. (2020)

Temperature increase 70–80°C in valve 0.2 s. Quickly 

reduced after expansion.

Morata and Guamis (2020)

and Bañuelos et al. (2020)

3–4°C Santamera et al. (2020)

Inactivation of oxidative 

enzymes (PPOs)

Yes, by enzyme denaturalization or 

unfoldment

Bañuelos et al. (2020) Yes, by photothermal effect Gómez-López et al. (2007)

and Bhagat and Chakraborty 

(2022)

Antioxidant activity Preserved Loira et al. (2018a)

and Bañuelos et al. (2020)

Preserved, small reduction 

6–15%

Chakraborty et al. (2020)

and Bhagat and Chakraborty 

(2022)

Control of browning Positive Bañuelos et al. (2020) Slightly by overheating and 

oxidation

Gómez-López et al. (2007)

Effect on anthocyanins Not affected Vaquero et al. (2022) Scarcely affected some 

photodegradative oxidation

Escott et al. (2017), Chakraborty 

et al. (2020), and Bhagat and 

Chakraborty (2022)

Effect on terpenes Not affected Bañuelos et al. (2020) Decrease the content in wines Pérez-López et al. (2020)
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