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Quinolone resistance presents a growing global health threat. We employed

word-based GWAS to explore genomic data, aiming to enhance our

understanding of this phenomenon. Unlike traditional variant-based GWAS

analyses, this approach simultaneously captures multiple genomic factors,

including single and interacting resistance mutations and genes. Analyzing a

dataset of 92 genomic E. coli samples from a wastewater treatment plant in

Dresden, we identified 54 DNA unitigs significantly associated with quinolone

resistance. Remarkably, our analysis not only validated known mutations in gyrA

and parC genes and the results of our variant-based GWAS but also revealed new

(mutated) genes such as mdfA, the AcrEF-TolC multidrug e	ux system, ptrB, and

hisI, implicated in antibiotic resistance. Furthermore, our study identified joint

mutations in 14 genes including the known gyrA gene, providing insights into

potential synergistic e�ects contributing to quinolone resistance. These findings

showcase the exceptional capabilities of word-based GWAS in unraveling the

intricate genomic foundations of quinolone resistance.

KEYWORDS

genome-wide association studies (GWAS), microbial GWAS, word-based GWAS, unitig-

GWAS, E. coli, quinolone, antibiotic resistance

1 Introduction

1.1 Conventional genome-wide association studies may
not fully explore the potential of genomic data

While conventional GWAS methods have provided valuable insights, they may not fully

explore the intricate genomic landscape underlying microbial phenotypes (Power et al.,

2017), particularly in terms of variant interactions. These methods predominantly focus on

individual single nucleotide polymorphisms (SNPs), potentially overlooking the significant

influence of variant interactions and gene presence/absence on microbial phenotypic traits,

including antibiotic resistance. To enhance our understanding and further complement

conventional GWAS, embracing alternative strategies capable of simultaneously capturing

the effects of genes and variants, whether they act individually or interactively, is crucial.

1.2 K-mers have the potential to broaden the horizons of
conventional GWAS

K-mers, substrings of length k within biological sequences like DNA, RNA, or proteins,

have the potential to broaden the horizons of conventional GWAS. By incorporating them
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into genome analysis, we can expand beyond the scope of

conventional GWAS, which typically centers on single nucleotide

polymorphisms (SNPs) or genes as the unit of study. Unlike these

traditional approaches, k-mers offer the advantage of capturing

the combined effects of both SNPs and genes simultaneously,

providing a more comprehensive view of the genomic landscape

underlying diseases and traits. Moreover, k-mers enable the capture

of cumulative effects from multiple genomic variants in a single

analysis, including rare and structural variants. K-mer-based

GWAS stands out prominently in studying microbial genomes, as

exemplified by Sheppard et al.’s work on Campylobacter isolates

using 30-bp DNA sequences (Sheppard et al., 2013; Power et al.,

2017).

1.3 K-mer-based GWAS pose challenges
that can be mitigated by adopting unitigs

While k-mer-based GWAS excels in identifying genomic

variants undetectable by variant-based GWAS, interpreting

results proves challenging due to mapping difficulties and high

redundancy. Unitigs, as unique non-redundant genome sequences,

mitigate these challenges (Chaguza et al., 2020, 2022a). Longer

than the common k-mer size, unitigs cover more extensive

genomic regions, providing additional context for identified

genomic variants. Mapping unitigs back to the original genome

is also simplified compared to k-mers, as each unitig represents

a unique non-redundant region. Previous studies support the

efficacy of unitig-based GWAS approaches, offering specific

genomic information and facilitating functional annotation

of associated loci across various bacterial genomes, including

Mycobacterium (Jaillard et al., 2018; Hang et al., 2019; Yano

et al., 2021), Staphylococcus (Jaillard et al., 2018; Chaguza et al.,

2022b; Raineri et al., 2022), and E. coli (Denamur et al., 2022;

Van Wonterghem et al., 2022).

1.4 Unitig-based GWAS can study
quinolone resistance

Unitig-based GWAS can be applied to any phenotype,

including quinolone resistance. Quinolones are a broad-spectrum

family of antibiotics used to treat both gram-negative and

gram-positive bacterial infections (Emmerson and Jones, 2003).

Quinolone resistance is a significant concern as it can lead to

urinary tract and intraabdominal infections. Therefore, a better

understanding of quinolone resistance mechanisms is necessary to

develop effective approaches to overcome this issue.

1.5 Quinolone resistance mainly results
from chromosomal mutations in gyrA and
parC

Quinolones primarily target bacterial DNA topoisomerase

II and topoisomerase IV. These enzymes are crucial for DNA

replication, transcription, and recombination, as well as for helping

to under- and over-wind DNA (Naeem et al., 2016). Quinolones

aim to inhibit DNA synthesis and cell growth by targeting these

enzymes and inhibiting their activity. Topoisomerase II consists

of GyrA and GyrB subunits, while topoisomerase IV comprises

ParC and two ParE subunits. GyrA is homologous to ParC, and

GyrB is homologous to ParE (Hooper and Jacoby, 2015). While

known point mutations in these genes play a significant role, other

biomarkers can also impact quinolone resistance.

1.6 Known and new biomarkers from our
previous variant-based GWAS serve as a
baseline for this study

In our previous variant-based GWAS study of quinolone

resistance (Malekian et al., 2021), we confirmed known mutations

in gyrA and parC, and we also identified new mutations, mainly

in valS and bdcA genes. Using these findings as our baseline, we

explore the efficacy of unitig-based GWAS to discover additional

single and joint resistance mutations for quinolone resistance using

the same dataset.

1.7 Approach overview

This study comprehensively analyzes 92 Escherichia coli (E.

coli) genomes from a wastewater treatment plant in Dresden,

Germany, and their corresponding quinolone resistance data. The

approach includes extracting unitigs from the genomic data of

the samples, applying quality control measures, and investigating

their association with quinolone resistance labels for levofloxacin,

norfloxacin, ciprofloxacin, and nalidixic acid. Subsequently, the

unitigs are mapped back to a reference genome to determine the

genes and mutations they encompass. Finally, the identified genes

and mutations are investigated for their potential role in conferring

resistance. An overview of our study is shown in Figure 1.

2 Methods

2.1 Sequence data and resistance
phenotype

The dataset comprised 92 E. coli genomes from a municipal

wastewater treatment plant in Dresden, Germany, and their

antibiotic resistance values (i.e., the diameters of inhibition zones

in the agar disk diffusion method) against 20 widely prescribed

antibiotics, including four quinolones (levofloxacin, norfloxacin,

ciprofloxacin, and nalidixic acid). The genomic data can be

accessed directly from NCBI’s assembly database under the

project identifier PRJNA380388 (https://www.ncbi.nlm.nih.gov/

bioproject/PRJNA380388/). Antibiotic resistance data is available

within the Biosample field of the same dataset. For further details,

(see Mahfouz et al., 2018).
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FIGURE 1

Overview of our study. The genotype and phenotype of wastewater E. coli samples were associated using a word-based GWAS analysis. Here, the

genotype refers to the unitigs (genome words), and the phenotype refers to the samples’ quinolone resistance value (the diameters of inhibition zones

in the agar disk di�usion method). The analysis resulted in a list of significant unitigs that may contain single or joint candidate resistance mutations.

2.2 Identifying unitigs

To identify unitigs, we used the unitig-counter v1.1.0 software

tool (Lees et al., 2020). The input for the unitig-counter was

the genomic assembly of all our isolates in the FASTA format.

The algorithm of this tool involves constructing a compressed de

Bruijn graph from all the input genome sequences and identifying

contiguous sequences of nucleotides, known as unitigs, from the

resulting graph.

2.3 Association analysis

We used the fixed-effect generalized linear model (SEER)

of the Pyseer tool v1.3.9 (Lees et al., 2018) to associate the

presence/absence of unitigs with continuous antibiotic resistance

values, similar to the approach used in our previous variant-

based GWAS (Malekian et al., 2021). Population structure was

controlled by adding covariates to the linear regression model.

We utilized multidimensional scaling (MDS) on distances from

the phylogenetic tree constructed from the VCF file using VCF-kit

v0.1.6 (Cook and Andersen, 2017). Selected components from the

MDS model, the number of components at the knee of a scree plot,

served as covariates to control for population structure. Significant

unitigs were retained after applying the Bonferroni correction. To

calculate the Bonferroni-corrected threshold, we used the Pyseer

tool, which divides the standard significance level of 0.05 by the

number of distinct unitig patterns, resulting in a p-value threshold

of 8.06× 10−8.

2.4 Unitig annotation

Wemapped significant unitigs to our reference genome (E. coli

K-12 MG1665, accession NC_000913.3) using BWA v0.7.17-r1188

(Li, 2013) and performed variant calling with Samtools v1.7 and

Bcftools v1.8 (Danecek et al., 2021). The variants were annotated

using SnpEff v5.1 (Cingolani et al., 2012). For variant-free unitigs

associated with antibiotic susceptibility instead of resistance, we

searched for resistance mutations in the complementing isolate set.

The complementing isolate set comprises unitigs covering the same

genomic regions and associated with antibiotic resistance (p-value

< 0.05). Our final set of resistance mutations included mutations

in both the mutated unitigs and the complementing isolate set of

unmutated unitigs.

2.5 Functional analysis of annotated unitigs

We investigated the function of genes and variants mapped

to our significant unitigs using the UniProt knowledgebase
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(The UniProt Consortium, 2023) and the EcoCyc E. coli database

(Keseler et al., 2010).

2.6 Network analysis of new genes

To investigate connections among new (mutated) genes not

captured in our previous variant-based GWAS, we employed

STRING-db (Szklarczyk et al., 2015). Default settings were utilized,

which incorporate multiple sources of evidence such as text mining,

experimental data, databases, co-expression, neighborhood, gene

fusion, and co-occurrence. The edge thickness setting was adjusted

to indicate the strength of data support.

2.7 Antibiotic resistance analysis of unitigs

To assess the association between the genes containing

significant unitigs and antibiotic resistance, we employed the

CARD database (McArthur et al., 2013) and relevant literature.

3 Results and discussion

This study examined correlations between unitigs and

antibiotic resistance labels for four quinolones. The first objective

was to validate the coverage of the positive controls, which

consisted of known mutations in gyrA and parC, by the unitigs.

The word-based GWAS was also expected to confirm previously

identified mutations from the variant-based GWAS, particularly

the mutations in the bdcA and valS genes. Moreover, the study

aimed to explore the possibility of discovering new mutations or

genes that the variant-based GWAS had not detected. Finally,

but most importantly, the investigation aimed to uncover joint

mutations that could potentially interact with each other.

3.1 A total of 54 highly-quality significant
unitigs were identified

We extracted a total of 1,491,067 unitigs from our

genomes. Initially, we excluded unitigs that appeared in over

99% of the dataset, resulting in a reduction to 1,209,817

unitigs, representing a 19% decrease. We then associated the

presence/absence of these unitigs with resistance values for

the four quinolones: levofloxacin, norfloxacin, ciprofloxacin,

and nalidixic acid. Applying a Bonferroni-corrected threshold

(p-value: 8.06 × 10−08), we identified 100 highly significant

unitigs: 33 for levofloxacin, 65 for norfloxacin, 17 for ciprofloxacin,

and 1 for nalidixic acid. Some unitigs were significant for

more than one antibiotic, resulting in a total count that differs

from 100.

To understand the biological significance of the unitigs,

we mapped them to the reference genome (E. coli K-12

substr. MG1655) to determine the associated genes and

variants. Among the 100 highly significant unitigs, 54

possessed clear and high-quality annotations, constituting

our final set of significant unitigs: 18 for levofloxacin, 36 for

norfloxacin, 12 for ciprofloxacin, and 1 for nalidixic acid (see

Supplementary material).

The 54 significant unitigs captured both some of the previously

identified mutations and novel mutations in unexplored genes.

Additionally, we observed joint mutations within unitigs, and their

combinations exhibited significant correlations with quinolone

resistance. A summary of our findings is presented in Table 1,

indicating the potential utility of word-based GWAS in identifying

genomic mutations that may be associated with antibiotic

resistance. We will elaborate on each of our new findings in

the following.

3.2 Significant unitigs captured known
mutations

By mapping our genomes to the reference, E. coli K-12

substr. MG1655, we successfully identified significant unitigs

harboring known biomarkers of quinolone resistance. Notably,

these unitigs encompassed mutations in key genes such as gyrA

and parC. For levofloxacin resistance, we observed mutations

including parC S80I and gyrA S83L. Similarly, for norfloxacin

resistance, we found parC S80I, parE L416F, gyrA S83L, and

gyrA D87N. In the case of ciprofloxacin resistance, the identified

known mutations were parC S80I, gyrA S83L, and gyrA D87N.

Additionally, gyrA S83L was associated with resistance to nalidixic

acid. Detailed information about these unitigs, including p-

values, effect sizes, frequencies, and more, can be found in

Supplementary material.

Additionally, our top significant unitigs were located within

the quinolone resistance-determining regions (QRDRs) of GyrA.

The QRDRs are amino acids between 67 and 106, which are

conserved regions involved in DNA binding and are well-known

to cause quinolone resistance when mutations occur (Varughese

et al., 2018). The QRDR is near tyrosine 122, which binds

to DNA during DNA double-strand breaks or DNA single-

strand rejoins. Non-synonymous mutations (gyrA S83L, gyrA

D87N) and synonymous mutations (gyrA R91R, gyrA V85V)

were observed in this region. Among the unitigs in this region,

those without any mutations were correlated with antibiotic

susceptibility, while those with mutations were correlated with

antibiotic resistance.

3.3 Significant unitigs captured some of
the mutations previously identified in our
variant-based GWAS study

Our previous variant-based GWAS analysis (Malekian et al.,

2021) discovered significant correlations between specific variants

in the valS and bdcA genes, which are involved in translation

and biofilm formation, respectively, and quinolone resistance.

Building upon this finding, our subsequent GWAS analysis at

the unitig level unveiled additional insights. Specifically, we
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TABLE 1 Summary results of word-based GWAS for quinolone resistance.

Description Levofloxacin Norfloxacin Ciprofloxacin Nalidixic acid

Known mutations parC S80I

gyrA S83L

parC S80I

parE L416F

gyrA S83L

gyrA D87N

parC S80I

gyrA S83L

gyrA D87N

gyrA S83L

Mutations identified

by variant-based GWAS

valS R733 bdcA G135S

valS R733

New (mutated) genes cheA

flhB

cheZ

stfR

yecF

gnd

nrdD

yicl

yicH

acrF

yhdV

acrE

gspA

ymfL

lldP

sgbU

yiaM

yiaN

aldB

mutM

dut

ptrB

mdfA

hisI

stfR

ymfL

Genes with

joint mutations

cheA

cheZ

stfR

valS

gnd

gyrA

nrdD

valS

yicH

ymfL

lldP

yiaN

yiaM

aldB

dut

gyrA

stfR

Using word-based GWAS, we identified known mutations as well as some of the mutations previously discovered through our variant-based GWAS. Additionally, we found new mutations in

previously unexplored genes. We also observed joint mutations within unitigs, and their combinations were significantly correlated with quinolone resistance.

found that two unitigs within the valS gene were strongly

associated with resistance to both levofloxacin and norfloxacin,

while one unitig within the bdcA gene exhibited a significant

correlation with norfloxacin susceptibility. These results further

reinforce the importance of these genomic regions in developing

quinolone resistance.

Within the unitigs associated with the valS gene, one unitig

contained two synonymous mutations, namely valS R733R and

valS A730A. Notably, the variant valS R733R had also been

identified in our previous variant-based GWAS analysis. In

contrast, the other unitig related to valS did not exhibit any

variants, and thus, it displayed a correlation with antibiotic

susceptibility rather than resistance. Similarly, the unitig linked

to the bdcA gene did not include any variants and was

associated with antibiotic susceptibility. It is intriguing to

observe that this unitig encompassed the region harboring the

G135S variant previously identified in bdcA among resistant

isolates. These findings highlight the potential of word-based

GWAS in identifying potential antibiotic resistance targets,

expanding our understanding of the genomic landscape of

quinolone resistance. For more comprehensive information on

the significant unitigs in the bdcA and valS genes, including p-

values, effect sizes, frequencies, and other details, please refer to

Supplementary material.

3.4 Significant unitigs captured new
mutations

Additionally, the word-based GWAS revealed mutations in

new genes linked to quinolone resistance. The list of these new

(mutated) genes can be found in Table 1. For more in-depth

information regarding the unitigs containing these mutations,

including p-values, effect sizes, frequencies, and other relevant

details (see Supplementary material).

Some of these new (mutated) genes, such as mdfA, the AcrEF-

TolC multidrug efflux system, ptrB, and hisI have been previously

associated with antibiotic or quinolone resistance in the literature.

The mdfA gene encodes a multidrug efflux pump that, when

upregulated, is strongly linked to resistance to several antibiotics,

including quinolones (Yasufuku et al., 2011; Gu et al., 2021; Li and

Ge, 2023). In this study, we found a region within the mdfA gene

that displayed a strong association with norfloxacin susceptibility.

This region was mostly unmutated in susceptible samples but

mutated in resistant samples, with a synonymous variant, A42A.

The AcrEF-TolC multidrug efflux system is a homolog of

the well-known AcrAB-TolC multidrug efflux system and is

composed of three genes, acrF, acrE, and tolC. Prior research

has demonstrated that overexpression of the acrF and acrE genes
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TABLE 2 The (potential) role of new (mutated) genes in antibiotic resistance (AR).

Gene(s) (Potential) role in AR Description

mdfA Multidrug efflux Overexpression of the gene confers broad-spectrum antibiotic resistance, including resistance to

fluoroquinolones, by actively pumping out antibiotics (Edgar and Bibi, 1997; Alcock et al., 2020).

acrE, acrF, yhdV Multidrug efflux The acrF and acrE genes are part of the AcrEF-TolC multidrug efflux system, and its overexpression is

associated with multidrug resistance (Okusu et al., 1996; Alcock et al., 2020). The yhdV gene is in the same

operon as acrF gene.

ptrB Bacterial tolerance Mutation in this gene enhances bacterial tolerance to stresses like ciprofloxacin by reducing pyocin

production (Sun et al., 2014). Pyocins are bacteriocins, proteins bacteria produce to combat similar bacteria.

aldB Bacterial persistence The gene knockdown decreased E. coli persistence under some conditions (Kawai et al., 2018). Persistence

refers to the ability of bacteria to survive lethal doses of antibiotics without genetic mutations.

yicI, yicH Fitness to stress These genes can improve the overall fitness of bacteria under stress conditions, but their role in antibiotic

resistance is not explored yet (Répérant et al., 2011).

cheA, cheZ, flhB Biofilm formation Part of the flhAB cheZYBR tap tarc cheWA motBA flhCD gene cluster, which is involved in chemotaxis and

biofilm formation (Tirumalai et al., 2019).

ymfL, stfR Biofilm formation The ymfL gene is within the prophage element e14, while the stfR gene is within the prophage element rac.

Both e14 and rac phage remnants affect biofilm formation, as removing them from E. coli K-12 impairs

biofilm production (Mehta et al., 2004; Fortier and Sekulovic, 2013).

yecF Biofilm formation Mutation in the sdiA gene, which belongs to the same operon as yecF, helps form thicker biofilm and higher

motility than the wild type and complemented strains (Culler et al., 2018).

hisI Biofilm formation The upregulation of this gene, involved in amino-acid and metabolite transport, along with other genes,

likely contributes to antibiotic resistance in E. coli biofilms (Ranjith et al., 2017).

nrdD Biofilm formation This gene, which is essential for DNA synthesis and repair, was upregulated after prolonged exposure to

biocides that caused biofilm development and inhibited motility (Merchel Piovesan Pereira et al., 2020).

gpsA Biofilm formation The gene’s role in antibiotic resistance remains unclear but has been studied in biofilm formation. Mutants

lacking this gene showed a significant negative impact on biofilm formation (Qin et al., 2019).

yiaM, yiaN Biofilm formation These genes belong to the yiaMNO gene cluster. Deleting the yiaMNO genes in E. coli led to significant

alterations in its growth pattern, ability to survive in high-salt conditions, and the formation of biofilms

(Plantinga et al., 2005).

We found a potential link to AR for 19 new (mutated) genes out of 25, presented here.

results in antibiotic resistance, including fluoroquinolones (Ma

et al., 1993; Okusu et al., 1996; Lau and Zgurskaya, 2005). Our study

found one unitig in the acrE gene and one unitig in the acrF gene

strongly associated with norfloxacin susceptibility.

Overexpression of the hisI and ptrB genes has been shown

to increase ciprofloxacin resistance in Escherichia coli (Ranjith

et al., 2017) and Pseudomonas aeruginosa (Sun et al., 2014),

respectively. This study found a non-synonymous mutation, L46I,

and a synonymous mutation, T52T, in the hisI gene correlated

with ciprofloxacin resistance. However, for the ptrB gene, we found

a non-synonymous mutation, V629I, was linked to norfloxacin

resistance, which is in the relative vicinity of the predicted active

sites at positions 617 and 652; refer to UniProt ID P24555.

Furthermore, while the direct association of the remaining new

(mutated) genes with antibiotic resistance was not explored in

the literature, we identified evidence indicating potential links for

19 out of the 25 new (mutated) genes (refer to Table 2). As the

table shows, these genes are actively involved in crucial functions

such as multidrug efflux, bacterial tolerance, bacterial persistence,

fitness to stress, and biofilm formation. Thus, they present plausible

candidates that could potentially be linked to antibiotic resistance.

Moreover, the involvement of new (mutated) genes in antibiotic

resistance through interactions with other genes is plausible, as

demonstrated in Figure 2. The interaction network in this figure

shows the potential collaborative relationships among these genes.

For instance, genes like gnd, dut, andmutM, which lacked evidence

of a direct link to antibiotic resistance, might still confer resistance

when cooperating with the hisI and nrdD genes, possibly aiding

in biofilm formation. Similarly, the sgbU gene could contribute to

antibiotic resistance in partnership with the yiaM and yiaN genes,

potentially through biofilm formation mechanisms.

3.5 Significant unitigs captured joint
mutations

Significant unitigs captured joint mutations that could interact

with each other to drive quinolone resistance. Unlike conventional

variant-based GWAS, which only considers individual mutations,

word-based GWAS analyzes larger genome portions, enabling

the detection of mutation interactions. The word-based GWAS

identified highly significant unitigs for quinolone resistance that

contain multiple variants, suggesting that the interaction between

these mutations contributes to the development of antibiotic

resistance. Some of these variants were found in well-known

targets of quinolone resistance, such as gyrA and parC, while

others were located in new genes, including galF, cheA, yiaM, and

cheZ. Notably, these variations were in crucial positions, such as

the quinolone-resistance determining regions for gyrA (Varughese

et al., 2018), the substrate binding site neighborhood for gnd

(UniProt ID P00350), or an essential catalytic domain for the

cheA (UniProt ID P07363), yiaM (UniProt ID P37674), and cheZ
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FIGURE 2

Network analysis of new (mutated) genes discovered by word-based GWAS, using STRING database (Szklarczyk et al., 2015). The edge thickness

indicates the strength of data support. The network analysis shows evidence of interactions between four groups of genes: (1) the gnd, hisI, nrdD,

dut, and mutM genes, (2) the cheA and cheZ genes, (3) sgbU, yiaN, and yiaM, and (4) the acrE, yhdV, acrF, and mdfA genes. However, there is no

evidence of interactions among other genes.

(UniProt ID P0A9H9) genes. For a full list of genes that contain

joint mutations, refer to Table 1. For further details on unitigs that

contain such mutations, such as p-value, effect size, frequency, etc.,

(see Supplementary material).

3.6 General discussion

3.6.1 Word-based GWAS using unitigs yielded
significant quinolone resistance findings

The word-based GWAS using unitigs was highly effective

for analyzing quinolone resistance. Comparing it to k-mer level

analyses (results not provided here), we found unitig analysis

superior in terms of interoperability and significant findings. We

identified 54 unitigs containing regions covering known mutations

in gyrA and parC genes, as well as previously identified mutations

using our variant-based GWAS in bdcA and valS.

Additionally, we discovered new variants in previously

unexplored genes, some of which have been linked to antibiotic

resistance. However, further investigation is required to confirm

these associations. Notably, these new genes were missed by both

our previous variant-based GWAS (Malekian et al., 2021) and the

positive selection (Malekian et al., 2022) analysis of E. coli for

antibiotic resistance. Therefore, our unitig-based GWAS allowed

for a comprehensive analysis of quinolone resistance, showcasing

the value of this approach in identifying genomic factors associated

with antibiotic resistance.

3.6.2 Word-based and variant-based GWAS do
not fully overlap in their detection of single
mutations

Word-based GWAS and variant-based GWAS did not identify

exactly the same list of single mutations. The reason behind

this relies on the way that unitigs are built. In the context of

variant-based GWAS, cases consist of isolates harboring particular

mutations, while controls encompass isolates devoid of these

mutations. Conversely, in word-based GWAS, the landscape is

more complex, encompassing unitigs that contain a specific single

mutation, unitigs devoid of the mutation, and unitigs with the

specific mutation alongside other mutations. Consequently, when

focusing on the detection of single mutations, the results from

variant-based GWAS are considered more reliable.

3.6.3 A significant portion of the identified
resistance mutations are synonymous

The list of significant resistant mutations contain many

synonymous mutations. Unlike non-synonymous mutations that

directly impact the protein product, structure, and function,

synonymous mutations exert their influence indirectly by affecting
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processes such as splicing, RNA stability, RNA folding, translation,

and cotranslational protein folding (Sharma et al., 2019). As a

result, these synonymous mutations play an indirect yet vital role

in shaping the phenotype of interest.

3.6.4 Word-based GWAS suggests specific
mutations and their interactions drive quinolone
resistance

Our study emphasizes the significance of mutations and

their interactions over individual resistance gene presence in

quinolone resistance. However, the factors influencing resistance

may vary depending on the antibiotic under study. We detected

joint variants in the known target gyrA and new genes (galF,

cheA, yiaM, and cheZ), all situated in critical regions. These

mutations occupy essential positions, such as quinolone-resistance

determining regions for gyrA, substrate binding site neighborhood

for gnd, and catalytic domains for cheA, yiaM, and cheZ.

3.6.5 While word-based GWAS demonstrates
computational power, biological experimental
validation remains essential to confirm findings

We conducted our analysis on an E. coli dataset of 92

samples from a wastewater treatment plant, which might initially

appear modest in size. However, the dataset’s capability to

affirm the presence of positive controls, notably the gyrA

and parC genes, instilled confidence in its reliability for

conducting thorough statistical analyses and evaluating the

efficacy of the word-based GWAS approach. This robust dataset,

anchored in unbiased sequencing and antibiotic resistance

measurement methods (Mahfouz et al., 2018), underscores

the comprehensiveness of our study. Word-based GWAS in

bacterial studies can unveil genomic sequence patterns associated

with bacterial phenotypes beyond single-nucleotide variations,

providing efficient phenotype predictions and valuable functional

insights. However, experimental validation is necessary to affirm

the biological findings.

4 Conclusion

This study utilized a word-based GWAS to overcome the

limitations of conventional variant-based GWAS analyses for

genomic data. By examining genome words in 92 wastewater

E. coli genomes, the study identified 54 significant words

strongly associated with quinolone resistance. Positive controls,

including known mutations in gyrA and parC, were validated,

along with previously identified mutations in bdcA and valS

from variant-based GWAS. Additionally, novel (mutated) genes

such as mdfA, the acrEF-TolC multidrug efflux system, ptrB,

and hisI were discovered, which are known to contribute to

antibiotic resistance. Notably, the study revealed potentially

interacting mutations in 14 genes, one of them being the well-

known quinolone target gyrA. These mutations are located

in critical sites, including quinolone-resistance determining

regions in gyrA, the neighborhood of the substrate binding

site in gnd, and the catalytic domains of cheA, yiaM, and

cheZ. This finding suggests that quinolone resistance may

not only result from individual mutations identified by

variant-based GWAS but also from potential interactions

between mutations.
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