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Background: Previous observational studies have indicated that an imbalance 
in gut microbiota may contribute to non-alcoholic fatty liver disease (NAFLD). 
However, given the inevitable bias and unmeasured confounders in observational 
studies, the causal relationship between gut microbiota and NAFLD cannot 
be  deduced. Therefore, we  employed a two-sample Mendelian randomization 
(TSMR) study to assess the causality between gut microbiota and NAFLD.

Methods: The gut microbiota-related genome-wide association study (GWAS) 
data of 18,340 individuals were collected from the International MiBioGen 
consortium. The GWAS summary data for NAFLD from the Anstee cohort (1,483 
cases and 17,781 controls) and the FinnGen consortium (894 cases and 217,898 
controls) were utilized in the discovery and verification phases, respectively. The 
inverse variance weighted (IVW) method was used as the principal method in our 
Mendelian randomization (MR) study, with sensitivity analyses using the MR-Egger, 
weighted median, simple mode, and weighted mode methods. The MR-Egger 
intercept test, Cochran’s Q test, and leave-one-out analysis were conducted to 
identify heterogeneity and pleiotropy. Moreover, a fixed-effect meta-analysis was 
conducted to verify the robustness of the results.

Results: The gene prediction results showed that at the genus level, four gut 
microbiota were causally associated with NAFLD in the GWAS conducted by Anstee 
et al. The relative abundance of Intestinimonas (OR: 0.694, 95%CI: 0.533–0.903, 
p = 0.006, IVW), Lachnoclostridium (OR: 0.420, 95%CI: 0.245–0.719, p = 0.002, 
IVW), and Senegalimassilia (OR: 0.596, 95%CI: 0.363–0.978, p = 0.041, IVW) was 
negatively associated with NAFLD. The relative abundance of Ruminococcus1 (OR: 
1.852, 95%CI: 1.179–2.908, p = 0.007, IVW) was positively correlated with NAFLD. 
Among them, the Lachnoclostridium genus was validated in FinnGen GWAS (OR: 
0.53, 95%CI: 0.304–0.928, p = 0.026, IVW). The Lachnoclostridium genus was also 
significantly associated with NAFLD risk in the meta-analyses (OR: 0.470, 95%CI: 
0.319–0.692, p = 0.0001, IVW). No heterogeneity or pleiotropy was observed.

Conclusion: This study provided new evidence of the relationship between the 
Lachnoclostridium genus and NAFLD, suggesting that augmentation of the relative 
abundance of the Lachnoclostridium genus through the oral administration of 
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probiotics or fecal microbiota transplantation could be an effective way to reduce 
the risk of NAFLD.
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non-alcoholic fatty liver, gut microbiota, Mendelian randomization, causal effects, 
Lachnoclostridium genus

1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a common chronic 
liver disease that affects 25% of the global population and incurs heavy 
economic costs on society (Younossi et  al., 2016; Friedman et al., 
2018). Obesity, metabolic disorders, or genetic factors contribute to 
the occurrence and development of NAFLD. Owing to the prevalence 
of obesity and diabetes, the disease burden of NAFLD is expected to 
increase by 2-fold to 3-fold by 2030 in Western countries and some 
Asian regions (Estes et al., 2018). Ishtiaq et al. demonstrated that the 
activation of peroxisome proliferator-activated receptor gamma 
(PPARγ) can exert anti-inflammatory activity by interleukin (IL)-33 
expression, reducing tumor necrosis factor-alpha (TNF-α) expression, 
promoting storage of fatty acids as triglycerides, and inhibiting ectopic 
fat accumulation, which may improve NAFLD (Ishtiaq et al., 2022). 
Moreover, the pan-PPAR agonists have shown promising clinical 
outcomes in the phase 2b trial (Francque et al., 2021). Additionally, 
pomegranate peel extract and quercetin can treat liver injury induced 
by excessive oxidative stress through their antioxidant and anti-
inflammatory activities (Murtaza et al., 2021). However, no approved 
drugs are currently available for the treatment of NAFLD. Thus, it is 
crucial to identify effective ways to prevent NAFLD and reduce its 
significant economic burden (Iruzubieta et  al., 2023; Stepanova 
et al., 2023).

Gut microbiota plays an important role in the pathophysiology of 
metabolic diseases through the gut-liver axis (Aron-Wisnewsky et al., 
2020). Animal studies have suggested a potential causal role of gut 
microbiota in NAFLD (Le Roy et al., 2013). Rashid et al. proved that 
probiotics might possess therapeutic potential in ameliorating high fat 
high sugar diet-associated alterations in metabolic profile and 
oxidative stress markers in rats, further suggesting the relationship 
between the gut microbiota and NAFLD (Rashid et  al., 2020). 
Tiphaine et  al. found that direct fecal microbiota transplantation 
(FMT) (from weight-matched obese mice with or without steatosis to 
germ-free recipients) replicated the NAFLD alterations (Le Roy et al., 
2013). Additionally, in patients with NAFLD, the phylum 
Proteobacteria is more abundant (Grabherr et al., 2019), while at the 
family level, Rikenellaceae and Ruminococcaceae are decreased and 
Enterobacteriaceae is increased (Raman et al., 2013; Zhu et al., 2013). 
The gut microbiota can also alter the metabolism of lipids, glucose, 
and bile acids through its metabolites and induce increased intestinal 
permeability and inflammation, thereby affecting the development of 
NAFLD. In summary, a growing number of studies have shown that 
alterations in gut microbiota may have a causal relationship with 
NAFLD risk. Nevertheless, existing research has limitations, including 
the gap between human and animal studies and the inherent defects 
of observational studies, rendering the real causal nature between gut 
microbiota and NAFLD unclear and in need of further elucidation.

Mendelian randomization (MR) is a novel method that employs 
genetic variants as instrumental variables (IVs) to estimate the causal 
relationship between exposure and the clinical outcome of interest 
(Boehm and Zhou, 2022; Richmond and Davey Smith, 2022). The MR 
method is analogous to a randomized controlled trial (RCT), in which 
genetic alleles are randomly allocated at conception, and is generally 
not susceptible to confounding or reverse causation (Didelez and 
Sheehan, 2007). In this study, we first performed a two-sample MR 
approach to assess the causal relationship between gut microbiota and 
NAFLD in two independent population-scale genome-wide 
association studies (GWAS) data for NAFLD. The inverse variance 
weighted (IVW) method was used as the principal method in our MR 
study, with sensitivity analyses using the MR-Egger, weighted median, 
simple mode, and weighted mode methods. Moreover, we conducted 
a meta-analysis to further demonstrate the robustness of the causal 
relationship between the Lachnoclostridium genus and NAFLD.

2 Materials and methods

2.1 Study design

To assess the causal relationship between gut microbiota and 
NAFLD, we first performed a two-sample MR (TSMR) using GWAS 
summary data for NAFLD from the Anstee cohort (discovery stage) 
and the FinnGen consortium (replication stage). To increase the power 
of the analysis, we combined two independent population-scale GWAS 
data for NAFLD to conduct a fixed-effects meta-analysis. An overview 
of the study design is shown in Figure 1. The causal estimates derived 
from MR analysis must satisfy three core assumptions: (1) relevance 
assumption: the genetic variants are strongly associated with the 
exposure; (2) independence assumption: the genetic variants are not 
associated with any confounders; (3) exclusion-restriction assumption: 
the genetic variants affect the outcome solely through the exposure.

2.2 Data sources for gut microbiota and 
NAFLD

The summary-level GWAS data of gut microbiota, obtained from 
the MiBioGen consortium, was used to screen the single nucleotide 
polymorphisms (SNPs) that were significantly associated with the gut 
microbiota. The MiBioGen consortium consists of 18,340 European 
ancestry participants from 24 cohorts with 211 taxa: 131 genera (12 
unknown genera), 35 families (3 unknown families), 20 orders, 16 
classes, and 9 phyla (Kurilshikov et al., 2021). Detailed information on 
the analyzed taxa is presented in Supplementary Table S1. The GWAS 
summary data for NAFLD from the Anstee cohort with 1,483 cases 
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and 17,781 controls were used as the discovery dataset (Anstee et al., 
2020). The validation dataset for NAFLD (finn-b-NAFLD), which 
included 894 European cases and 217,898 European controls, was 
obtained from the IEU OpenGWAS project.1

2.3 Instrumental variable selection

Due to the minimal number of loci found for gut microbiota, 
SNPs associated with gut microbiota (p < 1*10−5) were selected as 
instruments in our MR analysis. SNPs with p < 1*10−5 were regarded 
as the optimal threshold in most gut microbiota-related MR research 

1 https://gwas.mrcieu.ac.uk/

(Sanna et al., 2019; Luo et al., 2022, 2023). Additionally, an increased 
number of eligible SNPs could be used for the sensitivity analysis. To 
identify the independent SNPs assorted randomly during gestation, 
we  then conducted a clumping process (r2 < 0.001, region 
size = 10,000 kb) to assess the linkage disequilibrium (LD) by using the 
PLINK (version 1.9) (Purcell et al., 2007). The parameter values were 
set according to the previously published studies (Luo et al., 2023; Li 
et al., 2023a). After IVs were retrieved from the NAFLD GWAS data, 
we then removed the SNPs that were significantly associated with 
NAFLD (p < 5*10−8). After the harmonization process, F-statistics 
were calculated for each SNP to evaluate the strength of the IVs. The 
F-statistics of SNP < 10 indicated a potentially weak instrument. Weak 
IVs may lead to a decrease in the efficiency of statistical tests and result 
in bias, which needs to be eliminated (Brion et al., 2013). We also 
utilized the outlier test of the MR-PRESSO (version 1.0) package in R 
to eliminate outliers.

FIGURE 1

MR study design of this study.
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2.4 Mendelian randomization analysis

The inverse variance weighted (IVW) method was used as the 
main method and supplemented by four sensitivity analyses, including 
MR-Egger, weighted median, weighted mode, and simple mode, to 
evaluate the causal relationship between gut microbiota and NAFLD 
(Burgess et al., 2013). Cochran’s Q test was used to determine whether 
the SNPs were heterogeneous. The IVW random-effect mode was 
used when heterogeneity existed, as indicated by a p-value <0.05 in 
Cochran’s Q test. Conversely, if the p-value was ≥0.05 in Cochran’s Q 
test, it signified no heterogeneity (Wu et al., 2020; Li et al., 2023b). The 
MR-Egger intercept test was conducted to assess horizontal pleiotropy, 
and a p-value ≥0.05 indicated no evidence of horizontal pleiotropy. 
On the other hand, a p-value <0.05 suggested the presence of 
horizontal pleiotropy, potentially introducing bias in MR analysis 
(Jiang et al., 2023; Xie et al., 2023). In addition, leave-one-out analyses 
were applied to assess whether the variant drove the association 
between the exposure and the outcome variable. If the IVW method 
result was significant (p < 0.05) and the beta values obtained by the five 
methods were in the same direction without pleiotropy and 
heterogeneity, it could be considered a positive result (Chen et al., 
2020; Wang et al., 2023). In addition, we performed a fixed-effects 
meta-analysis to further demonstrate the robustness of the 
causal relationship.

All statistical analyses were conducted with the “TwosampleMR” 
(version 1.0), “MR-PRESSO” (version 0.5.6), and “Meta” packages 
(version 6.5-0) in R 4.1.2. The threshold for the significance of IVW, 
MR-Egger, weighted median, simple mode, and weighted mode 
methods in the MR study was p < 0.05. The threshold for the 
significance of other analyses has been specified in the 
corresponding position.

3 Results

3.1 Identification and validation of the 
causal effect of gut microbiota on NAFLD

We first screened the IVs of 196 gut microbiota separately. 
Following the IV selection protocols, 2,213 SNPs for gut microbiota 
traits with NAFLD were finally identified in this study. The 
F-statistics for the IVs significantly associated with gut microbiota 
were all larger than 10, indicating that there was no evidence of weak 
instrument bias. The details of the selected IVs are presented in 
Supplementary Table S2.

In the discovery stage by using the Anstee cohort, gene prediction 
results showed that at the genus level, four gut microbiota were 
causally associated with NAFLD. A higher genetically predicted 
Intestinimonas (OR: 0.694, 95%CI: 0.533–0.903, p = 0.006, IVW), 
Lachnoclostridium (OR: 0.420, 95%CI: 0.245–0.719, p = 0.002, IVW), 
and Senegalimassilia (OR: 0.596, 95%CI: 0.363–0.978, p = 0.041, IVW) 
were associated with a lower risk of NAFLD (Figure 2A). Contrastingly, 
Ruminococcus1 (OR: 1.852, 95%CI: 1.179–2.908, p = 0.007, IVW) was 
associated with a higher risk (Figure 2A).

In the replication stage, by using the FinnGen consortium, 
we  identified Lachnoclostridium (OR: 0.53, 95%CI: 0.304–0.928, 
p = 0.026, IVW) to be  causally related to the risk of NAFLD with 
similar direction from the above four risk factors (Figures 2B, 3). 

Additionally, because the direction of the MR-Egger method was 
inconsistent with that of the IVW method (Figure 2B), we deemed 
that the relationship between the Senegalimassilia genus and NAFLD 
requires further investigation.

3.2 Sensitivity analysis

We then tested the heterogeneity and pleiotropy of the 
Lachnoclostridium genus in the Anstee cohort and FinnGen 
consortium simultaneously. Cochran’s Q test showed that the MR 
analyses of the Lachnoclostridium genus had no heterogeneity in these 
two datasets (Table 1). The MR-Egger intercept test also showed that 
there is no pleiotropy in these two datasets (Table 1). Finally, the leave-
one-out method demonstrated that the Lachnoclostridium genus 
achieved stable results after excluding each SNP individually, 
indicating that no single SNP had an exorbitant influence on the 
overall estimations (Figure 4).

3.3 Meta-analyses based on Anstee and 
FinnGen

To further demonstrate the robustness of the causal relationship 
between the Lachnoclostridium genus and NAFLD, we combined 
GWAS datasets from the Anstee cohort and the FinnGen consortium 
(2,377 European cases and 235,679 European controls) to perform a 
meta-analysis of the IVW results. The total effect size and confidence 
intervals were calculated by using a fixed-effects model. No 
heterogeneity was observed between the two cohorts. Moreover, the 
result showed that the Lachnoclostridium genus (OR: 0.470, 95%CI: 
0.319–0.692, p = 0.0001, IVW) remained significant in the meta-
analysis (Figure 5). By combining the results of two independent 
studies, a meta-analysis can increase statistical efficacy, strengthen 
the level of evidence, and improve the accuracy and reliability of 
this study.

4 Discussion

A series of observational studies have indicated that an 
imbalance in gut microbiota may contribute to NAFLD. Nonetheless, 
the real causal relationship between the human gut microbiota and 
NAFLD remains challenging to ascertain, owing to the inherent 
defects in observational studies and human ethical issues in 
experimental studies. TSMR analysis is based on the Mendel law of 
independent inheritance of gene variations, which can evaluate the 
potential causal relationship between exposure and outcome while 
avoiding the time-consuming and costly issues associated with 
RCTs. Thus, we explored the relationship between gut microbiota 
and NAFLD risk by the TSMR method, which is a natural RCT, 
using publicly shared large-scale GWAS data. Our results provide 
new evidence of the causal relationship between the 
Lachnoclostridium genus and NAFLD.

Lachnoclostridium, a genus of Firmicutes in the family 
Lachnospiraceae, is known to produce butyrate with anti-
inflammatory properties and enhance the intestinal barrier by 
upregulating the tight junction protein (Vital et al., 2014; Mills et al., 
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2019). Endo et al. proved that butyrate-producing probiotics reduce 
non-alcoholic fatty liver disease progression in rats (Endo et al., 2013). 
In addition, previous animal experiments have shown that high-
fat-fed mice induce hepatic steatosis with a significant increase in the 

relative abundance of Lachnoclostridium (Rondina et al., 2013; Li et al., 
2018; Duan et  al., 2019; Zhou et  al., 2023). In our study, a lower 
genetically predicted Lachnoclostridium was associated with a higher 
risk of NAFLD. Thus, we speculated that the decreased fraction of 

FIGURE 2

MR results of causal relationships between the gut microbiota and NAFLD in the discovery and validation datasets. (A) MR results of causal relationships 
between the gut microbiota and NAFLD in the Anstee cohort; (B) validation of positive results in the Anstee cohort by using FinnGen Consortium data.
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Lachnoclostridium in the gastrointestinal tract might participate in the 
pathogenesis of NAFLD. However, the role of Lachnoclostridium in the 
pathophysiology of NAFLD requires further investigation.

This study has several strengths. The use of MR reduced the 
interference of confounding factors and false causality in the results. 
Our results offer a theoretical foundation for subsequent investigation 

FIGURE 3

Scatter plots of the Lachnoclostridium genus positively associated with NAFLD in the discovery and validation datasets. (A) Anstee cohort; (B) FinnGen 
Consortium.

TABLE 1 The heterogeneity and pleiotropy of the genus Lachnoclostridium in Anstee cohort and FinnGen consortium.

Datasets Gut microbiota 
(exposure)

Heterogeneity Horizontal pleiotropy

Cochran’s Q p value Egger intercept SE p value

Anstee cohort Lachnoclostridium 15.27945 0.1700578 −0.03344837 0.06853461 0.6360377

FinnGen consortium Lachnoclostridium 4.135252 0.9657921 0.03545706 0.06656826 0.6059139
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of the regulatory mechanism of Lachnoclostridium in 
NAFLD. Resolving the mechanisms of Lachnoclostridium in NAFLD 
could help to identify methods to increase the abundance of 
Lachnoclostridium in the gut microbiota, optimize existing treatment 
approaches, or avoid potential side effects. Second, the current analysis 
made full use of the two independent population-scale GWAS data for 
NAFLD, making our study reliable and robust. Third, this discovery 
promotes potential interventions or therapies, such as new oral 

administration of probiotics or FMT, for the treatment of 
NAFLD. Increasing the relative abundance of Lachnoclostridium may 
effectively regulate the imbalance of gut microbiota, reduce gut 
permeability, and alleviate inflammatory responses, thereby 
preventing the progress and deterioration of NAFLD.

Our study has some limitations. First, the dataset we  used 
included only a European population. Although using a single 
European population to investigate causal relationships can minimize 

FIGURE 4

Results of “Leave-one-out” sensitivity analysis in the discovery and validation datasets. (A) Anstee cohort; (B) FinnGen Consortium.
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population stratification bias, the results may not be generalizable to 
other populations. To address this limitation, GWAS data from 
patients with NAFLD of other races should be included in cross-racial 
MR analyses in future. Second, the original study on gut microbiota 
lacked GWAS summary statistics at the species level. Third, although 
we have confirmed a causal relationship between Lachnoclostridium 
and NAFLD, the mechanism of how Lachnoclostridium works remains 
unclear and requires further study. Fourth, owing to the use of 
different study populations, research designs, sample sizes, and 
measurement criteria in various studies, there may be inconsistencies 
in the data. Therefore, the results of the meta-analysis should 
be interpreted with caution. Fifth, there are limitations (data quality, 
sample size, genetic heterogeneity, and environmental factors) and 
biases (such as selection bias, information bias, and publication bias) 
in the use of publicly available GWAS data, which require cautious use.

5 Conclusion

Our MR study confirmed a potential causal relationship between 
the Lachnoclostridium genus and NAFLD, suggesting that augmenting 
the relative abundance of the Lachnoclostridium genus may 
be  beneficial for NAFLD. This finding has promoted innovative 
interventions and new oral administration of probiotics or FMT as a 
means to restore healthy gut microbiota, thereby reducing the risk of 
NAFLD. However, further development of new probiotics and 
evaluation of their clinical efficacy are urgently required.
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