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5-Methyluridine (m5U) is one of the most common post-transcriptional RNA

modifications, which is involved in a variety of important biological processes

and disease development. The precise identification of the m5U sites allows for

a better understanding of the biological processes of RNA and contributes to

the discovery of new RNA functional and therapeutic targets. Here, we present

m5U-GEPred, a prediction framework, to combine sequence characteristics

and graph embedding-based information for m5U identification. The graph

embedding approach was introduced to extract the global information of training

data that complemented the local information represented by conventional

sequence features, thereby enhancing the prediction performance of m5U

identification. m5U-GEPred outperformed the state-of-the-art m5U predictors

built on two independent species, with an average AUROC of 0.984 and 0.985

tested on human and yeast transcriptomes, respectively. To further validate the

performance of our newly proposed framework, the experimentally validated

m5U sites identified from Oxford Nanopore Technology (ONT) were collected as

independent testing data, and in this project, m5U-GEPred achieved reasonable

prediction performance with ACC of 91.84%. We hope that m5U-GEPred should

make a useful computational alternative for m5U identification.
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Introduction

To date, over 170 types of RNAmodifications have been identified, occurring on various

RNA molecules and influencing nearly every stage of RNA’s lifecycle. Scientific research has

revealed that these chemical modifications play pivotal roles in numerous critical biological

processes (Ontiveros et al., 2019), such as embryonic development (Zhong et al., 2008),

cancer development (Zhang et al., 2016a,b), gene-expression regulation (Carlile et al., 2014),

and stress response (Wang et al., 2017). Studies have consistently highlighted the significant

role of RNAmodification in the field of microbiology, encompassing a wide range of aspects,

such as the host’s m6A-marked transcriptome response to the presence of microbiota in mice

(Wang et al., 2019), the maintenance of homeostasis between hosts and microbes through
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modification statuses (Zhuo et al., 2022), and the modulation of

host–cell interactions driven by RNA modification (Kostyusheva

et al., 2021).

Among over 170 types of chemical markers, RNA 5-

methyluridine (m5U) is one of the most prevalent and plays a

significant role in RNA stability, transcription, and translation.

For instance, m5U contributes positively to the stability of RNA

structures, enhancing their function by modifying base stacking

and shaping secondary structures (Agris et al., 2007). Moreover,

research studies have demonstrated that m5U modification may

be associated with virus replication, antiviral immunity, and the

development of certain diseases (Väre et al., 2017). Therefore,

accurate identification of m5U holds profound implications for

comprehending fundamental biological processes and functions

across different species.

Wet-lab experimental approaches combined with high-

throughput sequencing techniques have offered experimentally

validated m5U sites in multiple species (Xuan et al., 2018;

Carter et al., 2019). However, wet-lab approaches can be a costly

and time-consuming process; thus, an increasing number of

computational efforts have been made, targeting different aspects

of biological problems, including phosphorylation prediction

(Zhang G. et al., 2023), protein structure prediction (Jumper et al.,

2021), drug discovery (Chen et al., 2023), and microbiome studies

(Goodswen et al., 2021; Jiang et al., 2022; Yuan et al., 2023). For

epitranscriptomic field, a number of bioinformatics databases

(Boccaletto et al., 2018; Luo et al., 2021; Song et al., 2021, 2023; Bao

et al., 2023; Liang et al., 2023) and in silico prediction frameworks

(Qiu et al., 2017; Zhai et al., 2018; Chen et al., 2019; Körtel et al.,

2021; Xiong et al., 2021; Liang et al., 2022; Song et al., 2022; Yao

et al., 2023) have been widely applied. For example, SRAMP was

the first sequence-based framework for m6A prediction (Zhou

et al., 2016), which was also capable of predicting the binding sites

of YTHDF1 and YTHDF2. In addition to SRAMP, m6A-Reader

(Zhen et al., 2020) was developed specifically to unveil the target

specificity and regulatory function of six m6A reader proteins

(YTHDF1-3, YTHDC1-2, and EIF3A), from which users can

identify the putative m6A sites involving specific m6A enzymes. In

terms of m5U RNA modification, Jiang et al. (2020) proposed the

first sequence-based human m5U prediction framework m5UPred,

followed by iRNA-m5U targeting yeast transcriptome (Feng and

Chen, 2022). The prediction performance of human m5U has been

further improved by m5U-SVM (Ao et al., 2023) and m5U-autoBio

(Yu et al., 2023). In addition, RNADSN was developed by learning

the common features between tRNA m5U and mRNA m5U (Li

et al., 2022). These studies together have greatly facilitated the in

silico identification of m5U modification. However, the predictive

performance of most computational models is limited by methods

that rely on primary sequence-based feature encoding, which does

not account for nucleotide frequencies in the training dataset

(Hebsgaard et al., 1996), so it is difficult to obtain more complete

information from the entire dataset.

To complement sequence-derived features with a more

comprehensive understanding of sample information, here, we

present m5U-GEPred, the first m5U prediction framework that

combines sequence-derived features and graph embeddings to

identify putative m5U modification site. Specifically, m5U-GEPred

applies a feature extraction strategy of graph embedding techniques

for m5U identification, which uses neighborhood-based node

embedding technology to obtain feature representations containing

information related to other samples through unsupervised

learning. With more refined feature extraction, m5U-GEPred

outperformed the state-of-the-art m5U predictors built on

human and yeast transcriptome, with an average AUROC of

0.984 and 0.985, respectively. In addition, we further collected

the human m5U modification sites deriving from Oxford

Nanopore Technology (ONT) as independent testing datasets,

and the proposed m5U-GEPred achieved a reasonable prediction

performance with ACC of 91.84%. The overall framework of m5U-

GEPred is presented in Figure 1.

Materials and methods

Benchmark datasets

To build the prediction framework, we obtained the human

and yeast m5U modification sites from previously published

m5UPred (Jiang et al., 2020) and iRNA-m5U (Feng and Chen,

2022), respectively. The experimentally validated human m5U sites

separated by techniques (miCLIP-seq/FICC-seq) and cell lines

(HEK293/HAP1) were extracted for cross-techniques and cross-

cell-type validations. Specifically, we used m5U sites identified in

miCLIP-seq for model development and tested on FICC-seq and

vice versa. A total of 3,696 m5U sites were obtained fromm5UPred

to extract the global information of m5U data under full transcript

mode. In addition to human datasets, the training and testing

yeast m5U sites were derived from iRNA-m5U, from which 744

positive/negative sites were collected. The positive and negative

data were all 41 nt sequences with m5Us or unmodified Us in

the center.

To further test the performance of our newly proposed

framework, the experimentally validated m5U sites identified

from Oxford Nanopore Technology (ONT) were collected from

DirectRMDB (Zhang Y. et al., 2023) and used as independent

testing data. Detailed m5U datasets used in this study are presented

in Supplementary material.

Model architecture

Inspired by previous studies targeting sequence extraction

and graph embedding learning (Zheng et al., 2018; Wang et al.,

2021b; Hu et al., 2023), the newly proposed m5U-GEPred can be

divided into two main phases (see Figure 1). In phase one, feature

extraction involved extracting the sequence-derived information

and learning graph embeddings. Seven sequence-based encoding

methods were used to convert RNA sequences into numerical

vectors. Next, by combining the entire dataset and sequence-

derived features, a fast linear neighborhood similarity method

constructs a global information network, where samples represent

network nodes and edges signify the similarity relationships

between the samples. Three unsupervised neighborhood-based

node embedding methods, namely, SocDim, Node2Vec, and
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FIGURE 1

Overall framework of m5U-GEPred. m5U-GEPred was developed by merging sequence-derived information and graph embeddings for accurate

m5U identification, which used neighborhood-based node embedding through unsupervised learning to extract feature representation containing

information from other samples.

GraRep, are utilized to learn the characteristics of each node within

the global information network, ensuring that graph embedding

features of RNA sequences contain relevant information from other

samples. Finally, these two types of features are integrated through

a feature fusion strategy.

Phase two focused on model building. The data were

divided into training and testing datasets, maintaining an

8:2 ratio. The training set was used to train the XGBoost

model, while the test set was employed to assess the

performance of the predictor. In addition, the cross-technique

and cross-cell-type validation were further employed for

performance evaluation, where the predictor was trained

by m5U sites obtained from one technique/cell type and

tested on another one. In this project, all the scripts used

to build m5U-GEPred are freely accessible, as shown in

Supplementary material.

Sequence-based information

Sequence composition and frequency
The nucleotide pair spectrum (NPS) encoding method captures

the RNA-seq environment at a specific position by counting the

frequency of occurrence of all k-spacer nucleotide pairs in the RNA-

seq (Zhou et al., 2016). The k-spaced nucleotide pair is L1{N}L2.
Taking sequence “AXXTXG” as an example, “AT” represents a

nucleotide pair with a 2 spacing, and “TG” represents a nucleotide

pair with a 1 spacing. The windowW is the distance from L2 to L1.

There are N arbitrary nucleotide pairs between L1 and L2, so the

frequency can be calculated as follows:

Frequency (L1{N}L2) =
C(L1{N}L2)
W − d − 1

where C (L1 {N} L2) is the count of L1 {N} L2 inside a flanking

window, and d is the space between two nucleotides ranging from

0 to dmax. The encoding method converts a gene sequence into a

vector DNPS with a dimension of 4 × 4 ×
(

dmax + 1
)

= 48. The

optimized dmax was 2 for prediction modes.

The composition, transition, and distribution (CTD) method

(Tong and Liu, 2019) is employed to represent global transcribed

sequence descriptors. CTD features encompass nucleotide

composition, nucleotide transition, and nucleotide distribution,

with the latter two serving as RNA secondary structure features

essential for classifying coding RNAs. Nucleotide composition

(first index C) refers to the percentage composition of each

nucleotide present in a transcribed RNA sequence. Nucleotide

transitions (second index T) denote the percentage frequency of

four nucleotide transitions occurring between adjacent positions.

Finally, nucleotide distribution (third index D) illustrates the

five relative positions of each nucleotide along the transcribed

RNA sequence, specifically at 0% (first), 25%, 50%, 75%,

and 100% (last). Both nucleotide transition and nucleotide

distribution characteristics play crucial roles in the classification of

coding RNAs.
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The Bi-profile Bayes feature extraction method describes a

Bayesian decision function (Shao et al., 2009). Given an RNA-

seq sample S = {s1, s2, s3, · · · , sn}, S can be divided into two

categories, namely, f+ and f−, where f+ and f− represent the

nucleotide sequence data of knownmodified sites (positive dataset)

and unmodified sites (negative dataset). For each position in the

positive and negative datasets, the probability of occurrence of each

base (A, C, G, and U) is calculated. According to Bayes’ rule, the

posterior probability of S for these two categories can be given

as follows:

P
(

f+ | S
)

= P(S| f+)P( f+)
P(S)

P
(

f− | S
)

= P(S| f−)P( f−)
P(S)

Assuming that the prior distribution of category is uniform,

namely, P
(

f+
)

= P
(

f−
)

, the formula is as follows:

f (S) = sgn(−→w • −→p )

where −→w =
(

w1
+,w2

+, · · · ,wn
+,w1

−, · · · ,wn
−) is weigh vector,

and
−→
p =

(

p1
+, p2+, · · · , pn+, p1−, · · · , pn−

)

is the posterior

probability vector. With respect to training sample, S, f (S) = 1

corresponds to class f+ and f (S) = −1 corresponds to class f−. In

this study, p1
+, p2+, · · · , pn+ represents the posterior probability

of each nucleotide at each position in f+ (positive feature space)

and p1
−, · · · , pn− represents the posterior probability of each

nucleotide at each position in f− (negative feature space), which we

call Bi-profile.

Physical and chemical properties
Electron–ion interaction pseudo-potential (EIIP) encoding

method (Nair and Sreenadhan, 2006) converts the nucleotides

A, G, C, and U in the RNA sequence into their corresponding

electron–ion interaction pseudo-potentials by using a simple “EIIP

indicator sequence” potential value. Specifically, the EIIP values

of nucleotides are as follows: A (adenosine) 0.1260, C (cytosine)

0.1340, G (guanine) 0.0806, and U (uracil) 0.1335. In this method,

each nucleotide is assigned a real number associated with its

corresponding EIIP value.

Local structure information
Pseudo-k-component nucleotide assemblies (PseKNC) are

inspired by the PseAAC approach in computational proteomics

to represent RNA sequence samples by incorporating global or

long-range sequence order effects (Guo et al., 2014).

Converting a gene sequence into vector

D =
[

d1 d2 · · · d4k d4k+1 · · · d4k+λ

]T

where

du =











fu
∑uk

i=1 fi+w
∑λ

j=1 θj

(

1 ≤ u ≤ 4k
)

wθw−4k
∑4k

i=1 fi+w
∑λ

j=1 θj

(

4k ≤ u ≤ 4k + λ
).

In the above equation, du
(

u= 1, 2, . . . ,4k
)

is the frequency

of k-tuple nucleotide composition (i.e., the combination of k

consecutive nucleotides). w is the weight factor. λ is the number of

RNA sequence-associated cascades. θjand 2
(

RiRi+1,Ri+jRi+j+1

)

are given as follows:

θj=
1

L−j−1

L−j−1
∑

i=1

2
(

RiRi+1,Ri+jRi+j+1

)

(j= 1, 2, . . . ,λ; λ<L)

2
(

RiRi+1,Ri+jRi+j+1

)

=
1

µ

µ
∑

v=1

[

Pv (RiRi+1)−Pv
(

Ri+jRi+j+1

)]2

where µ is the number of selected local RNA structural features.

For a given dinucleotide RiRi+1 at position i, we assign a numerical

value Pv (RiRi+1) for the v-th local RNA structural property [where

(v = 1, 2, . . . ,µ)]. Pν

(

Ri+jRi+j+1

)

represents the corresponding

value for the dinucleotide Ri+jRi+j+1 at position i + j. We

consider six local RNA structural properties. The detailed values

used for the six physical structural properties were extracted

from a previous study (Guo et al., 2014) and are presented in

Supplementary Table S1.

Translational =











Rise

Slide

Shift

Angular =











Twist

Roll

Tilt

.

Periodicity features
The nucleotide chemical properties and nucleotide distribution

(NCP-ND) feature coding approach combines the chemical

properties of nucleotides and their distribution (Bari et al., 2013).

Nucleotide distribution is used to measure the density dj of a

specific nucleotideHj at position j and can be derived as follows:

dj =
1
∣

∣Hj

∣

∣

n
∑

j=1

f
(

Hj

)

where

f
(

p
)

=

{

1 if Hj = p ∈ {A,T,C,G}
0 otherwise

n is an RNA sequence of length, j = 1, 2, 3, . . .n . DNCP−ND is an

n× 4 dimensional vector.

In the nucleotide chemical property coding scheme, each

nucleotide in the RNA sequence exhibits a different function

according to its unique chemical structure, thus defining the three

coordinate values of the coding scheme.

xj =

{

1 if Hj ∈ {A,G}
0 if Hj ∈ {C,T}

yj =

{

1 if Hj ∈ {A,G}
0 if Hj ∈ {C,T}

zj =

{

1 if Hj ∈ {A,G}
0 if Hj ∈ {C,T}

Nucleotide pair features in sequence
NPPS is a feature representation algorithm based on the

position specificity of multi-interval nucleotide pairs (Xing et al.,

2017). The frequencies of occurrences of different nucleic acid
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types are stored at different positions of negative datasets in arrays

F−s , F
−
d :

F−s =













t−
s(1,1)

t−
s(1,2)

· · · t−
s(1,C)

t−
s(2,1)

t−
s(2,2)

· · · t−
s(2,C)

...
...

. . .
...

t−
s(R,1)

t−
s(R,2)

· · · t−
s(R,C)













F−d =













T+
d(1,1)

T+
d(1,2)

. . . T−
d(1,C2)

T+
d(2,1)

T+
2,2 . . . T−

d(2,C2)
...

...
. . .

...

T+
d(R2 ,1)

T+
16,2 . . . T−

d(R2 ,C2)













F+s and F+d are calculated similarly in the positive dataset.

Suppose the k-th nucleotide is “U” and the (k+ξ )-th nucleotide is

“G”, p−k can be calculated using the conditional probability formula

and the frequency matrix as follows:

p−
k
=
P(U∩G)
P(G)

=
T−
d(UG,k)

t−
s(G,k+ξ )

The dimension of the vectorDNPPSis C
2,as pk=p+k -p

−
k .

Graph embedding

To obtain the graph embedding features for each RNA

sequence, we build a network encompassing the entire dataset.

Within this network, each RNA sequence is considered a node, and

the connections between RNA sequences are represented by edges,

which typically connect two similar sample nodes. The fast linear

neighbor similarity approach (FLNSA) is an efficient method for

extracting “sample–sample” similarity (Zhang et al., 2018).

The sequence-derived features, which we extracted above, are

converted into n-dimensional feature vectors x1, x2, · · · , xm, and
each row represents a sample vector and converts the vector into

an m∗n matrix:

min
W

1

2
‖X−(C⊙W)X‖2F+

µ

2

m
∑

i=1

‖(C⊙W)e‖2F

s.t. (C⊙W)e=e,W≥ 0

C represents an indicator matrix, where C
(

i, j
)

= 1, if xj is a

neighbor of xi, and C(i,j) = 0 otherwise, with C (i,i)= 0. The set

of neighbors for xi, denoted as N (xi), is determined based on the

Euclidean distance between xi and other data points.

Generally, a portion of xi’s neighbors is selected based on

distance, and the ratio of neighbor points to all data points is

referred to as the neighborhood ratio, denoted as K. The Frobenius

norm is represented by ‖ · ‖F . The column vector e, with

all elements equal to 1, is denoted as (1, 1, . . . , 1)T, while ⊙
signifies the Hadamard product. The tradeoff parameter, µ, is set

to 3. W is an m×m weight matrix, where the i-th row of W

indicates the reconstruction contributions of other data points to

the data pointxi.

Wij can be re-calculated as follows:

Wij=







Wij
(

XXT+λeT
)

ij

((C⊙W)XXT+µ(C⊙W)eeT)ij
xj∈N (xi)

0 xj /∈N (xi)

Let λ=µe.

Wij=







Wij
(

XXT+µeeT
)

ij

((C⊙W)XXT+µ(C⊙W)eeT)ij
xj∈N (xi)

0 xj /∈N (xi)

Finally, an undirected and unweighted graph is constructed

with w as the adjacency matrix.

SocDim
When multiple relationships are associated with the same

network, the SocDim method (Tang and Liu, 2009) can extract

the social dimensions of different affiliations of participants hidden

in the network and convert them into features for discriminative

learning. The methodmeasures the effective amount of community

structure in a complex network by measuring the degree of offset

(modularity) between interactive platforms and platforms in the

network, which involves community detection, a fundamental task

in social network analysis.

The modular is defined as follows:

Q =
1

2m

∑

ij

[

Aij −
didj

2m

]

δ
(

si, sj
)

Modularity can be reformulated as follows:

Q =
1

2m
Tr
(

STBS
)

When Q > 0, it means that soft clustering captures a certain

degree of community structure. The modularity matrix is defined

as follows:

Bx = Ax−
(

dTx
)

2m
d

where A is the interaction matrix, m is the number of nodes, and d

is the column vector of nodes. SocDim can extract dimensions (B)

on the top of the module matrix of the network.

Node2Vec
Node2Vec is a graph embedding algorithm designed to learn

continuous feature representations of nodes within networks

(Grover and Leskovec, 2016). This algorithm aims to learn the

mapping of nodes to a low-dimensional feature space, maximizing

the preservation of neighborhood information within the network.

It employs a biased randomwalk procedure for efficient exploration

of diverse communities, enabling the acquisition of richer

representations. Node2Vec formulates the learning of feature

vectors in the network as a maximum likelihood optimization

problem, which is addressed through the Skip-gram architecture.

The objective function is the logarithmic probability of the
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FIGURE 2

Two sampling strategies of Node2Vec: BFS and DFS. Node2Vec employs two sampling strategies: breadth-first sampling (BFS) and depth-first

sampling (DFS), both of which aim to capture di�erent aspects of the network structure. For example, in a neighborhood of size 3, BFS will sample

three nodes N1, N2, and N3, while DFS will sample three nodes N4, N5, and N6.

network neighborhood Ns (u) by maximizing the observed node u

as follows:

max
f

∑

u∈V
logPr

(

Ns(u) | f (u)
)

Node2Vec employs two sampling strategies (Figure 2): breadth-

first sampling (BFS) and depth-first sampling (DFS), which are

based on the network community (nodes directly adjacent to the

starting node) and the structural role of the node (the distance from

the source node gradually increasing nodes) principle. For example,

in a neighborhood of size 3, BFS will sample three nodes N1, N2,

and N3, while DFS will sample three nodes N4, N5, and N6.

GraRep
GraRep is an algorithm that captures relevant global structural

information of a graph by learning the latent representation of

vertices on a weighted graph (Cao et al., 2015). The algorithm

manipulates different global transformation matrices and extracts

various k-step relationship information between vertices with

different k values directly from the graph. First, the k-step

probability matrix Ak is calculated using the inverse matrix of

the degree matrix D and the adjacency matrix S. Then, the k-

step logarithmic probability matrix Xkis calculated and adjusted

appropriately, and the positive-logarithmic probability matrix

Xk is factorized by SVD to construct the representation vector

Wk rows, thereby obtaining the k-step representation of each

vertex. Finally, all k-step representations are concatenated into a

global representation.

Furthermore, GraRep designs an accurate on-graph

loss function by incorporating non-linear combinations of

different local relational information and extending it to support

weighted graphs.

Yk
i,j = Wk

i · C
k
j = log

(

Ak
i,j

∑

t A
k
t,j

)

− log (β)

Model construction and performance
evaluation

XGBoost is an advanced gradient-boosting algorithm that

has consistently displayed outstanding performance (Chen

and Guestrin, 2016). Compared with other state-of-the-art

gradient boosting techniques, such as CatBoost (Dorogush

et al., 2018; Prokhorenkova et al., 2018) and LightGBM (Ke

et al., 2017), XGBoost offers the following advantages: (1)

It employs a regularized learning framework that prevents

overfitting and enhances model generalization; (2) XGBoost

utilizes an efficient and parallelized tree construction algorithm

to accelerate the training process; (3) it supports the handling

of sparse data and missing values, making it suitable for various

real-world applications; (4) XGBoost has an extensive range

of hyperparameters for tuning, allowing for flexibility and

customization to fit specific tasks and datasets. By leveraging these

advantages, XGBoost has consistently proven to be a powerful and

versatile tool for a wide array of machine learning problems.

For performance evaluation, we applied the following

evaluation metrics. In general, the receiver operating characteristic

(ROC) curve (sensitivity against 1-specificity) and the area under

the ROC curve (AUROC) were used as the primary performance

evaluation metrics. In addition, we also calculated sensitivity (Sn),

specificity (Sp), Matthews correlation coefficient (MCC), and

overall accuracy (ACC) as additional indicators for evaluating

the reliability of the model. A five-fold cross-validation was

applied on training datasets, while the testing datasets were

used for independent testing. Only the m5U sites that were not

included as part of the training data were selected for independent

testing purposes.

Sn =
TP

TP + FN

Sp =
TN

TN + FN
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MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

ACC =
TP + TN

TP + TN + FP + FN

Among them, TP represents true positive, while

TN represents true negative; FP stands for the number

of false positive, and FN stands for the number of

false negative.

Results

Performance evaluation in the human
transcriptome

The prediction performance of m5U-GEPred in

human transcriptome was first evaluated by independent

testing datasets and compared with previously published

models. For a fair comparison, m5UPred and m5U-

autoBio were selected as baseline models based on the

same datasets employed. As shown in Table 1, the proposed

m5U-GEPred achieved reasonable improvements in

prediction performances.

Performance evaluation by
cross-technique and cross-cell-type
validation

Following m5UPred, we, then, divided the experimentally

validated m5U sites according to their profiling techniques

(miCLIP and FICC-seq) and cell lines (HEK293 and HAP1).

For five-fold cross-validation (see Table 2), our newly

proposed m5U-GEPred achieved an average AUROC of

0.964 and 0.968 under cross-technique and cross-cell-type

validation, respectively, marking reasonable improvements

in accuracy compared with the baseline model m5UPred

(0.956 and 0.955). In terms of independent testing, m5U-

GEPred (0.952 and 0.967) outperformed m5UPred (0.882 and

0.899) with increasing improvements. We also compared the

performance of m5U-GEPred with the recently published

model m5U-autoBio. When tested on an independent dataset,

the performance of m5U-GEPred also outperformed m5U-

autoBio (0.883 and 0.921), suggesting the reliability of our newly

proposed approach.

Independent testing by m5U sites
generated from nanopore direct RNA
sequencing

To further test the performance of our newly proposed

framework, the m5U sites identified by Oxford Nanopore

Technology (ONT) were collected as independent testing data.

A total of 98 ONT-derived m5U sites were extracted from

DirectRMDB, and m5U-GEPred successfully identified 90 of them

with an ACC of 91.84%.

Performance evaluation of m5U-GEPred in
yeast transcriptome

In addition to human datasets, the proposed framework

was also evaluated by yeast datasets. As shown in Table 3, the

performance of m5U-GEPred systemically outperformed iRNA-

m5U, which was, to the best of our knowledge, the only available

m5U predictor in yeast transcriptome. For a fair comparison, the

training and testing datasets used to build yeast predictor were

exactly the same as iRNA-m5U.

In addition, we conducted cross-species validation

using human and yeast m5U datasets. As shown in

Supplementary Table S2, the results indicated that m5U

modification may exhibit distinct patterns in yeast and human

transcriptomes, respectively, suggesting the need to develop

species-specific models for m5U identification. These findings are

consistent with a previous study iRNA-m5U (Feng and Chen,

2022), which only correctly identified 22.45% of human m5U sites

using yeast training datasets.

Functional characterization of the
predicted m5U modification sites using
m5U-GEPred

To try to further interpret the prediction results related to

biological aspects, we performed a transcriptome-wide prediction

of putative m5U sites using the newly proposed model. Specifically,

we randomly selected 10,000 Us from various types of RNAs

of human transcripts and predicted their m5U probabilities.

Using 0.5 as a cutoff, 224 putative m5U modification sites

were identified. First, we tried to interpret the prediction

results by plotting the overall distribution of the putative m5U

modification sites using MetaTX (Wang et al., 2021a). The results

suggested that putative m5U sites were enriched in the 5
′
UTR

(Supplementary Figure S1A). We further performed the gene

ontology enrichment analysis of their hosting genes, and as shown

in Supplementary Figure S1B, the top 10 biological processes

enriched with the predicted m5U sites. It may be worth noting

that the reason for selecting 0.5 as a general cutoff threshold is

that machine learning classifiers usually obtain the lowest empirical

rate at a value of 0.5. We further examined the predicted m5U

sites using different cutoff thresholds (Supplementary Table S3).

Additionally, the above results were observed by screening a

small portion of the transcriptome (10,000 sites), and these

results (∼2% of positive results) only suggest a high m5U

probability at the sequence level (learned from the sequences of

positive samples), which should be combined with customized

cutoff thresholds (Supplementary Table S3) andwet-lab approaches

for final determination. In conclusion, a computational model

combined with functional analysis can be a valuable alternative for

target identification and result interpretation.
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TABLE 1 Prediction performance using independent testing dataset.

Mode Model Sn (%) Sp (%) ACC (%) MCC AUROC

Full transcript m5U-GEPred 93.56 93.90 93.73 0.875 0.984

m5UPred 87.90 88.80 88.35 0.767 0.956

m5U-autoBio 93.79 – 92.91 0.858 0.977

TABLE 2 Cross-technique and cross-cell-type validation on full transcript mode.

Testing method Model Evaluation metric Cross-technique validation Cross-cell-type validation

miCLIP-Seq FICC-Seq Average HEK293 HAP1 Average

Cross validation m5UPred Sn 86.70 89.80 88.25 86.26 89.67 87.96

Sp 86.83 91.37 89.10 87.19 90.48 88.84

ACC 86.76 90.58 88.67 86.72 80.15 83.44

MCC 0.735 0.812 0.773 0.735 0.901 0.818

AUROC 0.946 0.966 0.956 0.942 0.969 0.955

m5U-GEPred Sn 67.47 79.93 73.70 72.44 90.22 81.33

Sp 99.01 98.98 98.99 99.26 91.01 95.14

ACC 96.14 96.42 96.28 96.79 90.62 93.71

MCC 0.747 0.840 0.794 0.795 0.812 0.804

AUROC 0.961 0.967 0.964 0.966 0.970 0.968

Independent dataset m5UPred Sn 75.36 56.48 65.92 82.79 57.77 70.28

Sp 89.23 90.10 89.67 89.62 90.21 89.92

ACC 82.29 73.29 77.79 86.20 73.99 80.10

MCC 0.652 0.495 0.574 0.726 0.507 0.617

AUROC 0.910 0.853 0.882 0.941 0.857 0.899

m5U-GEPred Sn 79.49 89.69 84.59 82.79 64.38 73.59

Sp 93.26 92.38 92.82 92.16 93.14 92.65

ACC 86.26 90.83 88.55 74.82 78.71 76.77

MCC 0.735 0.821 0.778 0.752 0.601 0.677

AUROC 0.944 0.963 0.952 0.944 0.990 0.967

Conclusion

The accurate identification of 5-methyluridine (m5U)

modification sites within RNAs holds profound biological

significance. In this study, a novel computational approach

m5U-GEPred was proposed for m5U identification across

two independent species. m5U-GEPred combined sequence

characteristics and graph embedding-based information,

extracting the global information of training data that

complemented the local information represented by conventional

sequence features. In addition, it may be worth noting that

the m5U sites detected by experimental approaches may

directly relate to reads mapped to expressed genes. This

limited the detecting power of modified residues located on

low expressed genes under specific conditions. The proposed

framework m5U-GEPred accepts sequence information

solely as input, which could serve as a useful alternative

for m5U identification. In addition, the results showed

that our newly proposed framework achieved reasonable

improvements in prediction performance, compared with

the state-of-the-art models developed in human and yeast

transcriptome, respectively.

Nevertheless, the proposed m5U-GEPred was developed

by combining sequence-based features and graph embedding

information, which achieved enhanced prediction performance.

The enhanced results suggest that the experimentally identified

m5U modification sites may have a strong sequence pattern, but

the reverse may not necessarily be true (the sequence may be

just one of the key features for determining m5U). Consequently,

machine learning models provide suggestion for the potentially

modified residues based on their learned features, which would

significantly narrow down the range of target interests (but still a

wider range than final experimental identification) for further wet-

lab experiments. Consequently, the m5U prediction framework

and its applications can be further expanded by incorporating the

latest sequencing data and binding regions of m5U-related enzymes
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TABLE 3 Prediction performance of yeast m5U dataset.

Source Method Dataset Sn Sp Acc MCC AUROC

tRNA Transcriptome iRNA-m5U tRNA_Dataset 93.88 100 98.82 0.96 0.969

Dataset 1 93.88 100 96.94 0.94 –

Dataset 2 93.88 100 96.94 0.94 –

Dataset 3 93.88 100 96.94 0.94 –

Dataset 4 93.88 100 96.94 0.94 –

Dataset 5 93.88 100 96.94 0.94 –

Dataset 6 91.84 100 95.92 0.92 –

Dataset 7 95.92 97.96 96.94 0.94 –

Dataset 8 93.88 97.96 95.92 0.92 –

Dataset 9 93.88 100 96.94 0.94 –

Dataset 10 93.88 100 96.94 0.94 –

m5U-GEPred tRNA_Dataset 94.00 100 98.82 0.96 0.985

Dataset 1 95.33 100 97.62 0.95 0.997

Dataset 2 95.33 100 97.62 0.95 0.993

Dataset 3 96.00 100 97.96 0.96 0.997

Dataset 4 96.00 98.67 97.28 0.95 0.997

Dataset 5 97.33 100 98.64 0.97 0.995

Dataset 6 94.67 99.33 96.94 0.94 0.992

Dataset 7 96.67 100 98.30 0.97 0.997

Dataset 8 94.67 98.00 96.26 0.93 0.997

Dataset 9 96.00 100 97.96 0.96 0.995

Dataset 10 96.67 100 98.30 0.97 0.999

to enable accurate m5U identification under different biological

contexts, such as target-specific m5U prediction.
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