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Vancomycin-resistant Enterococci (VREs) have increasingly become a major 
nosocomial pathogen worldwide, earning high-priority category from the World 
Health Organization (WHO) due to their antibiotic resistance. Among VREs, 
vancomycin-resistant Enterococcus faecium (VREfm) is particularly concerning, 
frequently isolated and resistant to many antibiotics used in hospital-acquired 
infections. This study investigated VREfm isolates from rural tertiary hospitals 
in Northeastern Thailand based both antibiotic susceptibility testing and 
whole-genome sequencing. All isolates showed resistance to vancomycin, 
ampicillin, erythromycin, tetracycline, ciprofloxacin, norfloxacin, and rifampin. 
Nitrofurantoin and tigecycline resistance were also observed in nearly all isolates. 
Conversely, all isolates remained susceptible to chloramphenicol, daptomycin, 
and linezolid. Genomic characterization revealed that all VREfm isolates 
belonged to clonal complex 17 (CC17), primarily consisting of sequence type 
(ST) 80, followed by ST17, ST761, and ST117. Additionally, all isolates harbored 
numerous antimicrobial-resistant genes, including vanA, tet(L), tet(M), aac(6′)-
li, ant(6)-Ia, aph(3′)-III, aac(6′)-aph(2″), aph(2″)-la, ant(9)-la, erm(B), msr(C), 
erm(T), erm(A), fosB, dfrG, and cfr(B). Notably, all isolates contained virulence 
genes, for collagen adhesin (acm) and cell wall adhesin (efafm), while hylEfm 
(glycosyl hydrolase) was detected in VREfm ST80. This study provided important 
information for understanding the genomic features of VREfm isolated from 
urine.
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1 Introduction

Enterococci are a Gram-positive bacterium, facultatively anaerobic, 
and widely distributed in nature and in the digestive tracts of humans 
and animals. They are the second leading cause of healthcare-
associated infection and an important pathogen of urethral infection, 
soft tissue infection, sepsis, and meningitis (Sun et al., 2019). Among 
these Enterococci, Enterococcus faecalis and Enterococcus faecium are 
clinically the most important, especially E. faecium, which is 
nosocomial pathogen responsible for about 95% of human 
enterococcal infection and a leading cause of hospital-acquired and 
multidrug-resistant infection (Ahmed and Baptiste, 2018).

Urinary tract infection (UTI) is the most common nosocomial 
infection caused by this organism (Fallah et al., 2017), and it is of 
concern due to the limited availability of antimicrobial therapeutic 
options (Gozalan et  al., 2015; Benamrouche et  al., 2021). The 
emergence of multidrug-resistant (MDR) E. faecium, particularly 
VREfm, is an important health concern that has led to high morbidity 
and mortality in hospitalized patients (Li et al., 2022). Furthermore, 
VREfm CC17 can spread within hospitals as well as between regions 
or countries (Akpaka et al., 2017; Gao et al., 2018).

In addition, the WHO has included VREfm in a high-priority list 
of 12 resistant-bacteria that pose the greatest threat to human health 
(Tacconelli et al., 2018). In Asia, the prevalence of VREfm accounts 
for 22.4% of reported cases and is higher than in European countries 
but lower than in the USA (Shrestha et  al., 2021). According to 
Thailand’s National Antimicrobial Resistance Surveillance Center, the 
prevalence of E. faecium increased from 0.7 to 6.9% between 2012 and 
2020 (National Antimicrobial Resistance Surveillance Thailand, 2022). 
Treatment options for invasive VREfm infections are very limited, 
resulting in high mortality (Linden, 2002). Vancomycin resistance 
determinants due to the vanA and vanB genes are frequently reported 
globally in VRE, including in E. faecium clinical isolates. In Thailand, 
there have been few studies of the molecular epidemiological 
characteristics of clinical isolates with respect to the prevalence of 
genotypes, virulence factors, and the antimicrobial resistance profile 
of VREfm. Therefore, we aimed to characterize the phenotypic and 
genotypic resistance profile of 16 VREfm strains isolated from urine 
samples obtained from tertiary hospitals in northeast Thailand.

2 Materials and methods

2.1 Bacterial identification

In total, 16 non-duplicate urinary VREfm stains were collected 
through 2016–2020 from three 500–800-bed tertiary hospitals in 
Thailand. A total of 1,507 urine samples were collected including 
hospital A (n = 462), hospital B (n = 378), and hospital C (n = 667). 
Each isolate of VREfm were cultured on sheep blood agar (HiMedia 
Laboratories Pvt. Ltd., Nashik, India), followed by incubation for 24 h 
at 37°C. The colonies with typical enterococcal morphological 
characteristics were first identified based on Gram staining and 
standard biochemical tests, including arabinose utilization, growth in 
6.5% NaCl, bile esculin degradation, and pyrrolidonyl 
β-naphthylamide (PYR) degradation (Saenhom et  al., 2022). All 
isolates were confirmed by species-specific multiplex polymerase 
chain reaction (PCR), enterococcal superoxide dismutase (sodA) gene 

is the identification marker according to previously described by 
Jackson et al. (2004). Each isolate was stored in a freezer at −80°C.

2.2 Multiplex polymerase chain reaction

DNA was extracted from the presumptive VREfm isolates using 
a heat-lysis method (Liu et  al., 2002). A few colonies of each 
bacterium were resuspended in 20 μL of lysis buffer and heated at 
95°C for 20 min. Then, 180 μL sterile deionized (DI) water was 
added into the lysis buffer and DNA solution and stored at 
−20°C. The species-specific and the presence of the vancomycin 
resistance genes vanA, vanB, and vanC were determined based on 
our multiplex PCR method, using primers described elsewhere 
(Pérez-Hernández et  al., 2002; Jackson et  al., 2004). The total 
reaction was carried out in a 25 μL of mixture, composed of 12.5 μL 
of 2X JumpStart™ REDTaq® ReadyMix™ Reaction Mix (Sigma-
Aldrich Co. LLC, MO, United States), 0.5 μM of each forward and 
reverse primer solution, 2 μl of DNA sample, and DI water to 
complete the final volume. The procedure consisted of an initial 
denaturation at 95°C for 4 min, followed by 30 cycles of denaturation 
(95°C, 30 s), annealing (55°C, 1 min) and extension (72°C, 1 min), 
with a final extension step (72°C, 7 min). The amplified DNA was 
separated using submarine gel electrophoresis, stained with 
ethidium bromide, and visualized under UV transillumination 
(SynGene; Cambridge, UK). DNA molecular weight marker [DNA 
Ladder (Thermo Scientific; Vilnius, Lithuania)] was used as the 
standard. Enterococcus faecium ATCC 19434 was used as the positive 
control strain.

2.3 Antimicrobial susceptibility testing

The susceptibility testing for these VREfm isolates was 
determined for ampicillin (AM, 10 μg), vancomycin (VA, 30 μg), 
erythromycin (E, 15 μg), tetracycline (TE, 30 μg), ciprofloxacin (CIP, 
5 μg), norfloxacin (NX, 10 μg), fosfomycin (FOS, 200 μg), 
nitrofurantoin (FM, 300 μg), chloramphenicol (C, 30 μg), and 
rifampin (RA, 5 μg) using the disk diffusion method on Mueller-
Hinton agar (bioMerieux; France). Daptomycin, teicoplanin, and 
linezolid were applied using an E-test (Liofilchem S.r.l.; Italy). The 
results were interpreted according to the Clinical and Laboratory 
Standards Institute (CLSI) guidelines (CLSI, 2022). The broth 
microdilution method was used to test the minimum inhibitory 
concentration (MIC) of tigecycline, according to European 
Committee on Antimicrobial Susceptibility Testing (EUCAST, 
2021). E. faecium ATCC 29212 and Staphylococcus aureus 
ATCC25923 were used as quality controls.

2.4 Whole-genomes sequencing and 
bioinformatic analysis

Bacterial DNA was extracted using a ZymoBIOMIC DNA 
miniprep Kit (Zymo Research; CA, United States) according to the 
manufacture’s procedure. The DNA concentration and purity were 
investigated using a Nanopore 2000 spectrophotometer (Thermo 
Scientific, DE, United  States). Restriction enzymes were used to 
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digest genomic DNA. The digested DNA was ligated to an adaptor 
and the size distribution of the final PCR-amplified library fragments 
was investigated. DNA libraries were prepared using the MGIEasy 
FS DNA Library Prep Set (MGI Tech Co., Ltd., SZ, China). The 
libraries were quantified using a Qubit 2.0 Fluorometer (Invitrogen, 
CA, United  States) and sequenced using an MGISEQ-2000RS 
platform (MGI Tech Co., Ltd., SZ, China) with a 150 bp paired-end. 
A raw data quality check was conducted using FastQC (version 
0.11.9).1 The Unicycler v0.5.0 software was used to de novo assemble 
a total of raw readings from each sample (Lang et al., 2021). The ST 
was identified using the MLST 2.0 program (Larsen et al., 2012). 
Antibiotic resistance genes were identified based on the 
Comprehensive Antibiotic Resistance Database (Alcock et al., 2023) 
and the ResFinder4.1 software (Bortolaia et  al., 2020). Plasmid 
replicon and virulence genes were analyzed using the 
PlasmidFinder2.1 (Carattoli and Hasman, 2020), and 
VirulenceFinder2.0 (Malberg Tetzschner et  al., 2020) programs. 
Comprehensive genomic analysis was undertaken using the 
BacWGSTdb server,2 which identified the closest isolates bases on 
small (1–100) single nucleotide polymorphism (SNP) with 16 
E. faecium strains in our study, currently deposited in the GenBank 
database (Feng et al., 2021). We found 23 whole-genome sequences 
closely related to our E. faecium strains were downloaded from the 
GenBank database to produce reconstructed phylogenetic trees 
based on the web server Reference Sequence Alignment-based 
Phylogeny (REALPHY) builder3 (Bertels et al., 2014). A goeBURST 
analysis for sequence types was performed using the PHYLOViZ 2.0 
program (Francisco et  al., 2012). The phylogenetic tree was 
visualized using the Interactive Tree of Life (iTOL)4 (Letunic and 
Bork, 2021).

Pangenome analysis were performed using Roary software (Page 
et al., 2015). The software clustered the genomes based on the genes 
each strain carried. Base on the distribution of each gene among the 
strains, the genes were divided into core genes and accessory genes. 
Core genes were defined as those carried by 99% or more of the 
strains. With the GFF files from Prokka annotation, the software 
produced a multi-FASTA alignment of core genes using MAFFT with 
--mafft” option and a presence/absence matrix for the genes. The 
genes were grouped into “core,” “shell,” and cloud categories for the 
analysis, corresponding to their presence in 99%, 10–99%, and less 
than 10% of genomes analyzed, respectively. A graphic representation 
of pangenome results was prepared using the roary_plots.py script 
provide on the Roary website.

2.5 Data availability statement

The assembled genomic sequences were deposited in the 
NCBI Genbank Database under the Bioproject accession 
number PRJNA1002621.

1 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

2 http://bacdb.cn/BacWGSTdb/

3 http://realphy.unibas.ch

4 http://itol.embl.de

3 Results and discussion

The 13 VREfm stains were collected from hospital A, two stains 
form hospital B, and one isolate from hospital C. Antimicrobial 
susceptibility among the VREfm isolates is shown in Table  1. All 
isolates carried the vanA gene and they were classified as MDR 
bacteria, with resistance to 100% of vancomycin, ampicillin, 
erythromycin, tetracycline, ciprofloxacin, and rifampin. Almost all 
VREfm were resistant to nitrofurantoin (93.75%) and tigecycline 
(81.25%). Additionally, all VREfm isolates were completely susceptible 
to chloramphenicol, daptomycin, and linezolid, suggesting that these 
three antibiotics could be alternative choices for treatment. Other 
studies reported that all VREs were resistant to ampicillin but 
susceptible to linezolid (Gozalan et al., 2015; Yang et al., 2015; Rao 
et al., 2021). Linezolid is the only antibiotic having US Food and Drug 
Administration approval for the treatment of VRE bacteremia (Miller 
et  al., 2020). Linezolid or oxazolidinones resistance presents a 
significant concern. In a study conducted by Miller and colleague, they 
identified two transmissible genes, cfr and optrA, associated with 
oxazolidinone resistance in VREs (Miller et al., 2020). In our current 
study, optrA genes were not detected, however, cfr(B) was found in 
four VREfm isolates (25%), specifically strains C1380, C1382, and 
C2633 (belonging to ST17) as well as AMR0099 ST761.

Cfr, known for conferring chloramphenicol-florfenicol resistance, 
encode the S-adenosylmethionine (SAM) enzyme responsible for 
methylates the adenine nucleotide at position 2503 of the 23S 
rRNA. This modification results in resistance not only to 
oxazolidanones but also to phenicols, pleuromutilins, lincosamides, 
and streptogramin A (Miller et al., 2020). It’s noteworthy that all 16 
VREfms in our study displayed complete susceptible to 
chloramphenicol and linezolid. Although previous studies, such as 
those by Liu and colleague and Deshpande and colleague, have 
reported the presence and expression of cfr in VRE, its precise role in 
conferring resistance to VRE or enterococci isolates remains unclear 
(Liu et al., 2014; Deshpande et al., 2015). Further study is necessary to 
better understand the level of resistance conferred by cfr(B) 
in Enterococci.

Tigecycline; a new generation tetracycline offers resistance to the 
tetracycline class, as a potential option for the treatment of intra-
abdominal infections or as a part of combination therapy in 
bacteremia and infective endocarditis by VRE. Resistance to the 
tetracycline class is common in Enterococci and VRE, mediated 
through drug efflux via efflux pumps typically carried on plasmids 
[tet(K), tet(L)] or through target protection at the ribosome mediated 
by tet(M), tet(O), and tet(S) (Miller et al., 2020). We detected tet(L) in 
81.25% (13/16) and tet(M) in 75% (12/16) in the current study. The 
presence of both the tet(L) efflux pump and the tet(M) protection 
factor was associated with resistance in clinical isolates of E. faecium 
(Miller et al., 2020).

The VREfm isolates in the current study also carried a gene for 
resistance to aminoglycoside, specifically aac(6′)-li (100%, 16/16), 
ant(6)-Ia (93.75%, 15/16), aph(3′)-III (100%, 15/16), aac(6′)-aph(2″) 
(81.25% 13/16, aph(2″)-la and ant(9)-la (6.25%, 1/16)), the macrolide 
resistance gene, specifically erm(B) and msr(C) (100%, 16/16), erm(T) 
(62.5%, 10/16), and erm(A) (6.25%, 1/16), the fosfomycin resistance 
gene, specifically (fosB, 6.25%, 1/16), the trimethoprim resistance 
gene, specifically dfrG (18.75%, 3/16), and the clindamycin resistance 
gene, specifically lnu(B) (12.5%, 2/16). Genes involved in vancomycin 
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resistance, namely the vanA gene cluster (vanR, vanS, vanH, vanX, 
vanY, and vanZ) were present in all VREfms.

The whole genome of the 16 VREfm stains varied from 2.88 to 
3.5 Mb. In total, 4 different MLSTs were identified in these 16 VREfm 
including 7 isolates belonging to ST80, five isolates belonging to 
ST17, three isolates belonging to ST761, and one isolate belonging 
to ST117. The goeBURST analysis displayed a clonal complex of 
VREfm, as shown in Figure 1. ST17 was related to ST117, whereas 
ST80 was closely related to ST761. A phylogenetic tree was 
constructed using four STs, as shown in Figure 2. All VREfm ST 
isolates in this study belonged to CC17, which is a major group of 
genetic lineages of E. faecium that are distributed worldwide and 
associated with hospital outbreaks (Akpaka et al., 2017). CC17 was 
divided into clade A, associated with hospital-associated HA 
E. faecium, while clade B was community associated (Gorrie et al., 
2019). Clade A has been divided into clade A1 (human clinical 
strains) and clade A2 (animal derived strains), with the E. faecium 
strains belonging to clade A1 lineage being characterized as resistant 
to ampicillin and quinolone (Zhou et  al., 2020). Similarly, the 
VREfm isolates in the current study were resistant to ampicillin and 
quinolone, indicating a human-origin lineage. VREfm belonging to 
ST17 and ST80 have been reported worldwide, including in 
Germany (Neumann et  al., 2020), France (Sassi et  al., 2019), 
Australia (Lee et al., 2020), Libya (Ahmed et al., 2020), and Thailand, 
having been isolated from placental tissue, urine, blood, and rectal 
swabs (Wongnak et al., 2021; Pongchaikul et al., 2023). In Asia, ST17 
and ST80 have been reported in China (Sun et  al., 2019), India 
(Bakthavatchalam et  al., 2022), and Taiwan (Kuo et  al., 2018), 

whereas an outbreak of VREfm ST761 has been reported in France 
(Kamus et al., 2022), while ST117 has been identified in Denmark 
(Pinholt et  al., 2019), Greece (Papagiannitsis et  al., 2017), and 
Germany (Xanthopoulou et al., 2020). However, the current study is 
the first to report VREfm ST761 and ST117 in Thailand.

Two virulence factors were found in all VREfm samples, namely 
acm (collagen adhesin) that contributes to biofilm formation (Gao 
et al., 2018) and efaAfm (cell wall adhesin) (Eaton and Gasson, 2001), 
while hylEfm (glycosyl hydrolase), which affects intestinal colonization 
and invasive diseases (Panesso et al., 2011), was present in two VREfm 
isolates of ST80, Additionally, 11 types of plasmid replicons were 
identified in the analyzed genomes, with rep17 and repUS15 in all 
VREfm isolates, followed by rep2 (93.75%, 15/16), rep11a (87.5%, 
14/16), repUS43 (81.25%, 13/16), repUS12 (62.5%, 10/16), rep18b 
(43.75%,7/16), repUS7 (31.25%, 5/16), rep14a (25% 4/16), rep1 
(12.5%, 2/16), and rep18a (6.25%, 1/16). A limitation of short read 
sequencing is that it cannot be  used to reconstruct individual 
plasmids, while they often contain repetitive elements, such as IS, 
which cannot be over spanned by short reads.

The pan-genome of VREfm were inferred with Roary, which 
produced a total of 4,693 genes sequence clusters. The “core genome,” 
consisting of genes present in all strains was represented by 1,959 
genes, accounting for 41.74% of all genes. The remaining 2,734, 
non-core gens were divided into 1,664 (35.46%) “shell genes” and 
1,070 (22.80%) “cloud genes” (see Figure 3A). A heatmap was drawn 
to visualize the presence or absence of all 4,693 genes. Figure 3B 
shows a comparison of the phylogenetic tree and a matrix generated 
both with and without the core and accessory genes of all VREfm.

TABLE 1 Antimicrobial susceptibility profiles of 16 VERfm strains.

ID Accession 
No.

ST Source Disk diffusion assay MIC

AM E TE CIP NX FM C RA FOS VA DAP TEC LZD TGC

C1380 JAVRBD000000000 17 Hospital A R R R R R R S R I R SDD S S R

C1382 JAVRBC000000000 17 Hospital A R R R R R R S R S R SDD S S S

AMR0098 JAVRAS000000000 17 Hospital A R R R R R R S R R R SDD I S R

C2633 JAVRAO000000000 17 Hospital B R R R R R R S R I R SDD S S R

C2634 JAVRAN000000000 17 Hospital B R R R R R R S R S R SDD I S R

C1117 JAVRBE000000000 80 Hospital A R R R R R R S R S R SDD S S R

C1852 JAVRBB000000000 80 Hospital A R R R R R R S R S R SDD S S R

C1858 JAVRAZ000000000 80 Hospital A R R R R R R S R S R SDD I S R

C1877 JAVRAW000000000 80 Hospital A R R R R R R S R S R SDD I S R

C2225 JAVRAU000000000 80 Hospital A R R R R R R S R S R SDD I S S

AMR0096 JAVRAT000000000 80 Hospital A R R R R R R S R R R SDD I S S

C2355 JAVRAP000000000 80 Hospital C R R R R R R S R I R SDD R S R

AMR114 JAVRAQ000000000 117 Hospital A R R R R R R S R I R SDD I S R

C1876 JAVRAX000000000 761 Hospital A R R R R R R S R R R SDD I S R

C1981 JAVRAV000000000 761 Hospital A R R R R R R S R I R SDD I S R

AMR0099 JAVRAR000000000 761 Hospital A R R R R R R S R I R SDD I S R

*ST, sequence type.
**AM, Ampicillin; E, Erythromycin; TE, Tetracyclin; CIP, Ciprofloxacin; NX, Norfloxacin; FM, Nitrofurantoin; C, Chloramphenicol; RA, Rifampin; FOS, Fosfomycin; VA, Vancomycin; DAP, 
Daptomycin; TEC, Teicoplanin; LZD, Linezolid; TGC, Tigecycline.
***R, resistance; I, intermediate; S, susceptible; SDD, susceptible-dose dependent.
****MIC breakpoints (μg/mL) according to CLSI (2022) for Daptomycin, ≤ 4 = SDD, ≥8 = R, Teicoplanin, ≤ 8 = S, =16 = I, ≥32 = R, Linezolid, ≤ 2 = S, =4 = I, ≥8 = R.
*****MIC breakpoints for tigecycline according to EUCAST (2021) were 0.25 mg/L.
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FIGURE 1

Minimum spanning tree of sequence types (ST) of E. faecium, constructed with goeBURST. The 16 VREfm strains belonging to four STs (ST17, ST80, 
ST117, and ST761) are denoted as red circles.

FIGURE 2

Dendrogram representing the phylogenetic analysis of the VREfm strains generate by Realphy and visualized with interactive tree of life tool. The whole 
genome sequence of VREfm in our studies is shown in red color. Sequence type (STs) and antibiotic-resistant genes are shown in each isolate. The 
filled symbols (gray box) reveal the presentation of the genes, whereas unfilled symbols reveal their absence.
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FIGURE 3

Genetic relatedness analysis of VREfm strains. Visualization of pangenome analysis by Roary software of 17 VREfm strains. (A) A pie chart showing the 
proportion of protein-coding genes in the core, soft-core, shell, and cloud of the pangenome. (B) Gene presence/absence matrix showing the 
distribution of genes in each genome. The phylogenetic tree is based on all of the core gene sequences of the 17 VREfm genomes. Each row 
corresponds to a branch of the tree. Each column represents an orthologous gene family. Dark blue bar indicates the presence of a gene, and the 
white bar indicate the absence of a gene.

4 Conclusion

This study revealed that all urinary VREfm isolates belonged to 
CC17. They showed resistance to many antibiotics that harbored 
numerous antimicrobial-resistant genes, including vanA, tet(L), 
tet(M), aac(6′)-li, ant(6)-Ia, aph(3′)-III, aac(6′)-aph(2″), aph(2″)-la, 
ant(9)-la, erm(B), msr(C), erm(T), erm(A), fosB, dfrG, and cfr(B). 
However, all isolates remained susceptible to chloramphenicol, 
daptomycin, and linezolid. This highlights the urgent need of rigorous 
enforcement of infection control measures, in-depth epidemiological 
analysis by molecular tools for monitoring this evolving threat.
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