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Common bunt of wheat caused by Tilletia caries is an important disease worldwide. 
The T. caries TC1_MSG genome was sequenced using the Illumina HiSeq 2500 and 
Nanopore ONT platforms. The Nanopore library was prepared using the ligation 
sequencing kit SQK-LSK110 to generate approximately 24  GB for sequencing. 
The assembly size of 38.18  Mb was generated with a GC content of 56.10%. The 
whole genome shotgun project was deposited at DDBJ/ENA/GenBank under the 
accession number JALUTQ000000000. Forty-six contigs were obtained with N50 
of 1,798,756  bp. In total, 10,698 genes were predicted in the assembled genome. 
Out of 10,698 genes, 10,255 genes were predicted significantly in the genome. 
The repeat sequences made up approximately 1.57% of the genome. Molecular 
function, cellular components, and biological processes for predicted genes 
were mapped into the genome. In addition, repeat elements in the genome were 
assessed. In all, 0.89% of retroelements were observed, followed by long terminal 
repeat elements (0.86%) in the genome. In simple sequence repeat (SSR) analysis, 
8,582 SSRs were found in the genome assembly. The trinucleotide SSR type (3,703) 
was the most abundant. Few putative secretory signal peptides and pathogenicity-
related genes were predicted. The genomic information of T. caries will be valuable 
in understanding the pathogenesis mechanism as well as developing new methods 
for the management of the common bunt disease of wheat.
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1. Introduction

Wheat is an important staple crop around the world. Tilletia caries, which causes common 
bunt disease and belongs to the class basidiomycetes order ustilaginales, is a significant seed-
borne wheat disease (Goates, 1996). It occurs in all wheat-growing areas worldwide 
(Albughobeish and Jorf, 2015). The cereal-infecting Tilletia fungi species known as bunt fungi 
produce teliospores in the ovary of the host plant (Wilcoxon and Saari, 1996; Carris et al., 2006). 
In India, wheat has an acreage of 31.61 million ha with an average production of 106.84 million 
metric tons per year, yielding an average of 3.38 metric tons per ha. Common bunt disease, also 
known as hill bunt or stinking bunt, commonly occurs in Asia, Australia, North and South 
America, and Europe. T. caries, T. laevis, and T. controversa are designated as three distinct 
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species based on their morphological and physiological characteristics 
(Goates, 1996).

The spores of T. caries were found to have similarity to T. laevis 
and T. controversa; specifically, T. controversa is considered a 
quarantined fungal pathogen (Peterson et al., 2009). Tilletia species, 
namely, T. caries, T. controversa, T. laevis, and T. indica, are described 
as infecting wheat and triticale. In India, it occurs in hilly regions, 
predominantly in Himachal Pradesh (Chamba and Kullu districts), 
Uttarakhand, and Jammu & Kashmir (Rana et al., 2016). The disease 
severity ranged from 10 to 15% in the hilly region of India. In organic 
farming, common and dwarf bunt diseases are an increasing threat to 
wheat cultivation (Matanguihan et al., 2011). These diseases reduce 
yields and grain quality with a foul, fishy smell, making it unfit for 
consumption (Pant et al., 2000; Borgen, 2004; Kochanova et al., 2004). 
In Romania, 70–80% disease incidence with yield losses of up to 40% 
has been noticed when untreated wheat seeds were sown.

A typical symptom of common bunt is that wheat kernels turn into 
millions of teliospores generated by the fungi; the grains are then 
referred to as “bunt balls” (Mourad et al., 2018). The symptoms appear 
after ear emergence, when sporulation begins in the young ovary, but 
infected plants are often slightly stunted. Flag leaves show yellow 
streaks, and the plants become stunted, with stubby, dark gray-green 
ears and slightly gaping glumes. After initial infection, the entire kernel 
is converted into a light to dark brown spherical sorus (bunt ball) 
containing a dark brown to black mass of teliospores covered by a thin 
and papery modified periderm. Heavily infested wheat fields give off 
a rotting fish-like smell. The disease was encountered in Indian 
conditions and resulted in a 25–50% yield reduction in specific fields 
(Holton, 1967). Tilletia species can infect up to 70% of spikes at very 
low temperatures. Usually, it is the low temperatures (5–15°C) and the 
soil moisture that support spore germination and do not require light. 
The spores are released from infected spikes and settle on healthy seeds 
and the soil surface. These teliospores survive in seed and soil and 
serve as a source of inoculum to initiate the disease. A few detection 
methods have been developed to identify the different Tilletia species 
based on internal transcription spacers (ITSs) and DNA fragments 
(Kochanova et al., 2004; Eibel et al., 2005; Carris et al., 2006; Gurjar 
et al., 2017; Gupta et al., 2022). New pathogenic races of common bunt 
have been detected (Goates, 2012; Albughobeish and Jorf, 2015). The 
virulence analysis was performed using bunt isolates in India 
(Aggarwal and Sood, 2006). A few resistant sources are available 
against T. caries (Mamluk, 1998). The disease can be managed using 
fungicide applications (Manninen et al., 1998; Monkiedje and Spiteller, 
2002). In fungal genomics, the genome of T. caries has been sequenced, 
but the size of the assembly reported was 29.9 Mb (Nguyen et  al., 
2019). We have also sequenced the genome of T. indica with a size of 
33.70 Mb (Gurjar et al., 2019). Genome sequencing of fungal plant 
pathogens plays an important role in identifying effectors, evolution, 
lifestyle, and pathogenicity-related genes (Plissonneau et al., 2017). The 
comparative genome analysis revealed the pathogen variants and host 
specificity factors. The comparative genome analysis revealed the 
pathogen variants and host specificity factors.

Therefore, we stated that the genome assembly (38.18 Mb) of T. caries 
was improved and better in quality in comparison to public domain 
genomes. The genes were predicted based on the model fungus genome 
of Ustilago maydis. For the first time, we have also identified simple 
sequence repeats (SSRs), or repeat elements, in the genome of T. caries. 
A comparative genome analysis of Tilletia species showed the unique and 

common genes in the assemblies. The putative secretory proteins having 
a role in virulence and pathogenesis genes were identified in the assembly 
of T. caries. The genomic information of T. caries will be  useful in 
understanding the pathogenesis mechanism and resistance as well as 
developing new methods for treating common bunt disease.

2. Materials and methods

2.1. Isolation of Tilletia caries and DNA 
extraction

The wheat samples showing common bunt symptoms were 
collected from Ranichauri, Uttarakhand, India, during the year 2019. 
Infected wheat grains (Figure 1A) were taken to the Fungal Molecular 
Biology Laboratory, Division of Plant Pathology, ICAR-IARI, Pusa, 
New Delhi, India. Grains were surface sterilized with 70% ethanol. A 
pure mycelial culture of the T. caries fungus was established from 
teliospores of T. caries (Figures 1B,C). Bunted grains were vortexed in 
a sterile, capped vial containing sterile distilled water. The tubes were 
centrifuged at 12,000 rpm for 4 min to pellet down the teliospores, and 
the supernatant was discarded. The teliospore pellet was treated with 
1% NaOCl for 2 min. Again, the tubes were centrifuged, the supernatant 
discarded, and the pellet was washed two times with sterile distilled 
water. Finally, the pellet was resuspended in 10 mL of sterile distilled 
water and kept overnight at 40°C. A volume of 0.4 mL of teliospore 
suspension was plated on water-agar Petri plates (1.5%). Petri plates 
were kept at 12 ± 2°C in an incubator for 20 days with exposure to 
alternate light and dark periods of 12 h. After 20 days, Petri plates were 
checked microscopically for the germination of teliospores. A single 
germinating teliospore was transferred to potato-dextrose agar media 
containing test tubes and incubated at 12 ± 2°C. After 10–15 days, 
mycelial growth appeared in the test tubes. For DNA isolation, fungal 
culture was grown in 100 mL potato dextrose broth media in a shaker 
incubator at 12 ± 2°C for 20 days to obtain the mycelial mass. The 
mycelial mat was harvested and immediately stored in a deep freezer 
(−80°C). Furthermore, high-quality DNA was isolated using a 
NucleoSpin® Tissue Kit following the manufacturer’s instructions. The 
quality and integrity of DNA were checked on 0.8% agarose gel, pulse 
field gel electrophoresis, and NanoDrop (Thermo Fisher Scientific).

2.2. Genome sequencing and assembly

The genome of T. caries TC1_MSG was sequenced using the Illumina 
HiSeq 2500 and ONT PromethION Flow Cell (R9.4.1) platforms. The 
paired-end DNA libraries of an average of 496 bp inserts were prepared 
using the NEB Next Ultra DNA Library Prep Kit and sequenced using 
2 × 150 bp chemistry to produce approximately 50 GB of data for the 
sequencing. The PromethION Flow Cell (R9.4.1) library was prepared 
using the ligation sequencing kit SQK-LSK110 to produce approximately 
24 GB for the sequencing. The reads were obtained from both the Illumina 
Hiseq 2500 and PromethION Flow Cell platforms. The Illumina reads 
were filtered using AdapterRemoval v2 version 2.3.11 with an average 
quality score of less than 30 (Schubert et al., 2016). De novo assembly was 

1 https://github.com/mikkelschubert/adapterremoval
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performed with the ONT data using Flye assembler version 2.9,2 and the 
resulting assembly was polished with Illumina data using the POLCA 
version 3.4.13 polishing tool. The assembly statistics were generated using 
QUAST version 4.64 (Gurevich et al., 2013). The levels of conserved genes 
generated in the sequenced genome using BUSCO version 4.1.45 (Simao 
et al., 2015).

2.3. Repeat elements, masking, and SSR

The repeat sequences from the assembled genome of T. caries were 
identified using RepeatMasker V.4.0.6.6 The repeat masking assessed 
the location of all repeated elements throughout the genome sequence. 
The RepeatMasker is a program that screens DNA sequences for 
interspersed repeats and low-complexity DNA sequences. In addition, 
the MIcroSatellite identification tool (MISA)7 was performed to 
identify the SSR in the assembled genome of T. caries.

2.4. Gene prediction, annotation, and 
comparative genome analysis

The AUGUSTUS program was used to predict genes in the eukaryote 
genome and was the most accurate ab initio gene prediction. The genes 
were predicted in the assembled contigs of T. caries using Augustus V.3.3.3 
with default parameters (Stanke et al., 2008)8 based on Ustilago maydis 
(smut of maize) (Kamper et al., 2006) as a model organism. The predicted 
genes were compared with the UniProt database using the BLASTx 
program with an E-value cutoff at 10-3. The best BLASTX hit based on 
query coverage, identity, similarity score, and description of each gene was 
filtered out using the in-house pipeline. The number of predicted genes 
with a significant BLASTX match (E-value ≤1e-3 and similarity 
score ≥ 40%) with the UniProt were identified. The gene ontology (GO), 
molecular function (MF), cellular component (CC), and biological 
process (BP) for predicted genes were mapped in the assembled genome 

2 https://github.com/fenderglass/Flye/

3 https://github.com/alekseyzimin/masurca

4 http://bioinf.spbau.ru/quast

5 http://busco.ezlab.org/

6 https://github.com/rmhubley/RepeatMasker

7 http://pgrc.ipk-gatersleben.de/misa/download/misa.pl

8 https://github.com/Gaius-Augustus/Augustus

using the in-house pipeline. The sequenced genome of T. caries TC1_
MSG was matched with other Tilletia species, viz., Tilletia caries AZH3, 
Tilletia controversa OA2, T. indica DAOMC236416, Tilletia laevis 
DAOMC238040, and Tilletia walkeri AOMC238049, through the 
OrthoVenn software (Wang et al., 2015).

2.5. Secretome prediction and analysis of 
pathogenicity-related genes

A total of 10,255 predicted proteins from the T. caries genome 
assembly were analyzed in SignalP v5.09 as well as TargetP v2.010 for 
prediction of the secretory signal peptides. The SignalP v5.0 server 
increased signal peptide predictions using deep neural networks 
(Almagro et al., 2019a). The TargetP v2.0 server envisages the presence of 
N-terminal sequences, signal peptide, mitochondrial transit peptide 
(mTP), chloroplast transit peptide (cTP), or thylakoid luminal transit 
peptide (lTP) (Almagro et al., 2019b). Only putative proteins containing 
signal peptides, which were predicted by both approaches, were annotated 
as secretomes. The carbohydrate metabolism active enzymes (CAZymes) 
were assessed using the dbCAN (dbCAN HMMs 5.0) (Yin et al., 2012) 
based on the CAZy database. Using the pathogen-host interaction 
database (PHI-base) database (Winnenburg et al., 2006), the putative 
pathogenicity-related genes were predicted using the Blast analysis with 
an E value of ≤1e-06.

3. Results

3.1. Genome sequencing, assembly, and 
annotation of Tilletia caries

An isolate of Tilletia caries TC1_MSG causing common bunt of 
wheat was used for whole genome sequencing. The fungus was 
confirmed using the ITS primers, and the sequence was deposited in 
the NCBI database (MN871436). The genome of T. caries was 
sequenced using both the Illumina HiSeq  2,500 and ONT 
PromethION Flow Cell (R9.4.1) platforms. The paired-end DNA 
libraries of an average of 496 bp inserts were sequenced for the shorter 

9 https://services.healthtech.dtu.dk/service.php?SignalP-5.0

10 https://services.healthtech.dtu.dk/service.php?TargetP-2.0

FIGURE 1

(A) Common bunt infected wheat grains (B) teliospores of T. caries (C) mycelial growth of T. caries.
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FIGURE 2

Biological process category of gene ontology in the sequenced genome of T. caries.

sequences (2 × 150 bp) and the PromethION Flow Cell (R9.4.1) for the 
longer sequence generation. The assembly was generated with the 
ONT data using the Flye assembler and further polished with the 
Illumina data using the POLCA polishing tool. The assembly size of 
38.18 Mb was generated with a GC content of 56.10% (Table 1).

In all, 46 contigs were obtained in the genome with an N50 of 
1,798,756 bp. Higher coverage of 1,269× and 317× was achieved on 
paired-end and ONT reads, respectively. The average coverage of the 
genome was 109×. The gene prediction in the assembled genome was 
performed using AUGUSTUS v3.3.3 with default parameters based on 
Ustilago maydis. The 10,698 genes were predicted in the genome 
(Supplementary Table S1). Out of 10,698 genes, the significant BLASTX 
matches (E-value ≤1e-3 and similarity score ≥ 40%) were 10,255 genes.

The GO was used to map the BP, CC, and MF of genes in the 
genome. Notably, 2,388 protein-coding genes were grouped into three 
categories, namely, BP (960 genes), CC (401 genes), and MF (1,027 
genes) (Supplementary Table S2). Maximum GO terms were assigned to 

DNA integration (548), DNA recombination (230), transposition (171), 
DNA repair (103), and translation (93) in BP function (Figure 2). GO 
terms in CCs were grouped into membrane integral components (1268), 
nucleus (385), cytoplasm (211), endoplasmic reticulum membrane (80), 
and ribosome (79) (Figure 3). In MF, maximum GO terms were grouped 
into ATP binding (727), RNA binding (564), followed by zinc ion binding 
(502), DNA binding (406), and metal ion binding (404) (Figure 4).

3.2. Identification of the repeat elements 
and SSRs

To find out the repeat elements in the assembled genome, we used 
RepeatMasker v4.0.6. Among the repeat elements, the maximum 
number of retroelements (895, 0.89%) with an occupied length of 
339,809 bp was identified, followed by 788 LTRs (long terminal 
repeats), elements having a length of 328,735 bp, Gypsy/DIRS1 (424), 
Ty1/Copia (316), and DNA transposons (283), which were observed 
in the genome (Table  2). The LINEs types were abundant in 
retroelements. The gypsy was abundant in LTRs, a type of repeat 
element, followed by Copia. In addition, 55 small RNAs were 
predicted to have a length of 84,971 bp.

SSRs play an active role in genome evolution. To examine the 
evolution, 8,582 SSRs were identified in the genome (Figure 5). 
In addition, the maximum abundance of SSRs was trinucleotide 
with 3,703 in the genome, followed by mononucleotide (1,949) 
(Supplementary Table S3).

3.3. Comparative genome analysis with 
other Tilletia species

Tilletia caries TC1_MSG genome was matched with other 
Tilletia species, viz., Tilletia caries AZH3, Tilletia controversa 

TABLE 1 Genomic characteristics of Tilletia caries assembly.

Characteristics Tilletia caries

Size (Mb) 38.18

Genome coverage (Illumina) 1,269×

Genome coverage (ONT) 317×

Average genome coverage 109×

Contigs 46

Largest contig 2,689,501

GC (%) 56.10

N50 1,798,756

Protein-coding genes 10,698

Significant protein coding genes 10,255
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OA2, Tilletia indica DAOMC236416, Tilletia laevis 
DAOMC238040, and Tilletia walkeri AOMC238049, to identify 
the shared and unique orthologous proteins. It revealed that 
5,480 protein families of T. caries were orthologs in five Tilletia 
species, while 86 protein families were unique to T. caries 
(Figure 6).

3.4. Secretome prediction and analysis of 
Tilletia caries assembled genome

The secreted effector proteins play a major role in infection 
by plant pathogenic fungi. Using a computational pipeline, 
the secretory proteins were examined in the genome. In all, 

FIGURE 3

Cellular component category of gene ontology in the sequenced genome of T. caries.

FIGURE 4

Molecular functions category of gene ontology in the sequenced genome of T. caries.
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FIGURE 5

Simple sequence repeats with mono, di, tri, tetra, penta, and hexanucleotide in the assembled genome of T. caries.

10,255 predicted proteins from the T. caries genome assembly 
were analyzed in SignalP v5.0, as well as TargetP v2.0 for 
prediction of the secretory signal peptides. Notably, 777 proteins 
of SignalP and 880 of TargetP proteins were predicted with 
secretory signals (Supplementary Table S4). The carbohydrate-
active enzymes play an important role in the growth and 
aggressiveness of the pathogens. The carbohydrate-active 
enzymes (CAZymes) analysis revealed that 47 glycosyl hydrolase 
(GH) families, 24 carbohydrate esterase (CE) families, 11 

auxiliary activity (AA) families, 6 glycosyl transferase 
families, and 2 polysaccharide lyase (PL) families were predicted 
(Figure 7). The GH and CE families were highly predominant 
(Supplementary Table S5).

3.5. Pathogenesis-related genes in Tilletia 
caries

Using the PHI database, 10,255 genes were annotated. 
Based on the similarity of proteins (Figure  8), 4,922.4 (48%) 
genes were related to reduced virulence, 3,281.6 (32%) were 
related to unaffected pathogenicity, 922.95 (9%) were related 
to loss of pathogenicity, 820.4 (8%) were related to lethal, 
and 307.65 (3%) genes were related to increased virulence 
(Supplementary Table S6).

4. Discussion

Globally, wheat is an important cereal food crop. The common 
bunt of wheat is a re-emerging disease in India, causing huge losses. It 
is distributed worldwide and can be  found almost everywhere in 
wheat-cultivating countries. Tilletia species are quarantined wheat 
pathogens that affect trade (OEPP/EPPO, 2016). The management of 
bunt diseases is challenging and complex in nature due to complex 
biology and modes of infection (Gurjar et al., 2021). In the genomic 
era, genomic data are significant for studying the biology of such 
pathogens, but to date, no complete genome sequence of T. caries is 
available. In the Indian context, the genome of T. caries isolate has not 
been sequenced to date. The understanding of genomic regions and 
gene-related virulence is still inadequate, and obtaining such 
information is crucial for the identification and characterization of 
virulence factors (Shakouka et al., 2022). The present study attempted 
to improve the genome assembly and quality of T. caries by comparing 

TABLE 2 Repeat elements in the assembled genome of T. caries.

Repeat 
elements

Number of 
elements

Length 
occupied

Percent of 
sequences

Retroelements 895 339,809 bp 0.89

Penelope 43 4,706 bp 0.01

LINEs 107 11,074 bp 0.03

CRE/SLACS 7 606 bp 0.00

LTR elements 788 328,735 bp 0.86

Ty1/Copia 316 140,302 bp 0.37

Gypsy/DIRS1 424 176,498 bp 0.46

DNA transposons 283 43,263 bp 0.11

hobo-Activator 2 108 bp 0.00

Tc1-IS630-Pogo 121 22,447 bp 0.06

Tourist/Harbinger 52 8,668 bp 0.02

Unclassified 84 22,202 bp 0.06

Total interspersed repeats 405,274 bp 1.06

Small RNA 55 84,971 bp 0.22

Satellites 9 242 bp 0.00

Simple repeats 970 105,235 bp 0.28

Low complexity 27 4,437 bp 0.01
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genome with that of Tilletia species and identifying virulence factors 
causing the common bunt disease of wheat.

In the present investigation, the genome of T. caries was sequenced 
using short (Illumina) and long reads (ONT). The genome assembly 
was performed with the ONT and the Illumina data using the POLCA 
polishing tool. Based on the hybrid approach, a high-quality genome 
assembly of T. caries was generated. The genome assembly size was 

38.18 Mb with 46 contigs. Higher genome sequencing coverage was 
achieved compared to other genomes available in the public domain. 
This genome assembly was larger in size, better quality, and more 
accurate than other available assemblies of T. caries, ranging from 
27.14 to 35.80 Mb (Nguyen et  al., 2019; Sedaghatjoo et  al., 2022). 
Previously, six T. caries genomes were available in the GenBank and 
NCBI, but these genomes were small in size (USA, Canada) and had 
a high number of scaffolds (3,606–8,169). Using karyotype analysis, 
the genome sizes of T. caries were estimated in the range of 28–39 Mb 
(Russell and Mills, 1993). To date, no complete genome of T. caries 
existed in a public database.

In the present study, the gene prediction was performed based on 
Ustilago maydis (Schirawski et al., 2010). In total, 10,698 genes were 
predicted as protein-coding genes. In eukaryotic genomes, repetitive 
elements are widespread. Transposition is one of the causes of genomic 
plasticity and plays an important role in pathogenicity and adaptive 
evolution (Casacuberta and Gonzalez, 2013; Castanera et al., 2016; 
Razali et al., 2019). In this present study, 895 retroelements (0.89%) 
with a length of 339,809 bp were assessed in the assembled genome. 
Gypsy, followed by Copia, was the most abundant LTR 
retrotransposons. Publicly available 625 fungal genomes revealed that 
transposable elements (TEs) have a potential role in genome evolution 
and correlation with fungal lifestyle (Muszewska et al., 2019).

In earlier studies, Gypsys were the most common repeat element, 
which was reported in T. indica and T. horrida (Wang et al., 2018; 
Gurjar et al., 2019; Mishra et al., 2019). In fungi, the Gypsy group is 

FIGURE 6

Venn diagram showing the distribution pattern of shared and unique orthologous protein families viz. Tilletia caries TC1MSG, Tilletia caries AZH3, 
Tilletia controversa OA2, T. indica DAOMC236416, Tilletia laevis DAOMC238040, and Tilletia walkeri AOMC238049 using OrthoVenn.

FIGURE 7

Carbohydrate-active enzymes (CAZymes): 47 glycosyl hydrolase 
(GH) families, 24 of carbohydrate esterase (CE) families, 11 of 
auxiliary activity (AA) families, 6 of glycosyl transferase and 2 of 
polysaccharide lyase (PL) families.
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the most common type of TE (Gorinsek et al., 2004). A total of 1.1% 
of TEs were in Ustilago maydis (Kamper et al., 2006). In earlier studies, 
TEs may increase the size of fungal genomes (Gurjar et al., 2019). 
Additionally, 8,582 SSRs were classified throughout the entire genome. 
The trinucleotide SSRs (3,703) were the most abundant (43.14%).

In addition, a comparative genome investigation with T. caries 
TC1_MSG, T. caries AZH3, T. controversa OA2, T. indica 
DAOMC236416, T. laevis DAOMC238040, and T. walkeri 
AOMC238049 revealed that 5,480 protein families of T. caries were 
orthologs in five Tilletia species, and 86 proteins were found to 
be unique in T. caries. Earlier reports revealed that 72 unique proteins 
belong to T. caries (Nguyen et al., 2019). The best method to identify 
virulence factors and genetic variations was comparative genome-
wide analysis (Kamper et  al., 2006; Gurjar et  al., 2020; Wang 
et al., 2022).

The fungal secretome is the main factor that enables infection 
and pathogenesis (Krijger et al., 2014; McCotter et al., 2016; Verma 
et al., 2016). In all, 10,255 proteins predicted from genome assembly 
were analyzed in SignalP v5.0 as well as in TargetP v2.0. Notably, 777 
proteins of SignalP and 880 proteins of TargetP were predicted to 
have secretory signals. Genomics and bioinformatics-based analyses 
of small-secreted proteins provided more phylogenetic and 
evolutionary interpretations (Feldman et al., 2020). In this study, 
based on CAZymes analysis, 47 GH families, 24 CE families, 11 AA 
families, 6 glycosyl transferase families, and 2 PL families were 
present. The CAZymes are playing an important role in the evolution 
of fungal carbohydrate-active enzymes and adaptation (Hage and 
Rosso, 2021). In addition, it is degrading plant biomass and GHs, and 
CE enzymes were facilitated to cell-wall degradation (Cantarel et al., 
2009; Ospina-Giraldo et al., 2010; Zhao et al., 2013). Upon genome-
sequencing approaches, the CAZymes were also reported in 
T. horrida and T. indica (Wang et al., 2018; Singh et al., 2019). Using 
the PHI database, 10,255 genes and proteins were categorized. The 
maximum number of genes related to reduced virulence (48%) was 

followed by those related to unaffected pathogenicity (32%). 
Pathogenicity and variation in different environmental conditions 
are more frequently complex in genes (Sheppard et al., 2018; Lee and 
Andam, 2019).

5. Conclusion

Improved quality of genome of T. caries using Illumina and the 
ONT PromethION and structural and functional annotations were 
presented. Comparative genomics and the identification of 
pathogenicity-related genes were successfully performed, which 
revealed some core conserved genes among Tilletia species and 
some specific genes in T. caries. In structural genomics, high 
numbers of repeat elements and SSRs were identified in the 
genome. Secretory proteins and pathogenicity-related genes were 
predicted, which were highly significant findings. Furthermore, 
these putative virulence genes need to be  characterized and 
validated through functional genomics in order to develop 
management strategies for common bunt of wheat and other 
smut pathogens.
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