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Synergistic effects of earthworms 
and cow manure under reduced 
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The substitution of chemical fertilizers with organic fertilizers is a viable strategy 
to enhance crop yield and soil quality. In this study, the aim was to investigate 
the changes in soil microorganisms, soil chemical properties, and growth of 
Chinese flowering cabbage under different fertilization treatments involving 
earthworms and cow manure. Compared with the control (100% chemical 
fertilizer), CE (30% reduction in chemical fertilizer + earthworms) and CFE (30% 
reduction in chemical fertilizer + cow dung + earthworms) treatments at soil pH 
8.14 and 8.07, respectively, and CFC (30% reduction in chemical fertilizer + cow 
manure) and CFE treatments increased soil organic matter (SOM), total nitrogen 
(TN), available nitrogen (AN), and available potassium (AK) contents. Earthworms 
and cow manure promoted the abundance of Bacillus and reduced that of the 
pathogens Plectosphaerella and Gibberella. The mantle test revealed that pH was 
not correlated with the microbial community. Random forest analysis verified 
that AN, SOM, and TN were important factors that jointly influenced bacterial 
and fungal diversity. Overall, the synergistic effect of earthworms and cow 
manure increased soil fertility and microbial diversity, thereby promoting the 
growth and development of Chinese flowering cabbage. This study enhanced 
the understanding of how bioregulation affects the growth and soil quality of 
Chinese flowering cabbage, and thus provided a guidance for the optimization 
of fertilization strategies to maximize the yield and quality of Chinese flowering 
cabbage while reducing environmental risks.
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1. Introduction

Increasing application of fertilizers has resulted in adverse 
consequences on soil and water quality, biodiversity, climate, and 
human health. These effects are more pronounced than the 
corresponding increases in crop yields (Kour et al., 2020). In many 
intensive farming regions, the farmers struggle to accurately 
determine fertilizer requirements for crops and prioritize high yields. 
This often results in excessive use of fertilizers that exceeds the actual 
needs of the crops (Zhu et  al., 2019). This problem is primarily 
attributed to inadequate fertilizer management, leading to reduced 
fertilizer efficiency and environmental contamination. Agricultural 
systems face the formidable challenge of meeting the mounting food 
demand while minimizing the harmful environmental impacts 
associated with intensive use of fertilizers, particularly nitrogen (N) 
fertilizers (Steffen et  al., 2015). Excessive N fertilizer application 
adversely affects soil physicochemical properties and disrupts 
microbial communities, causing imbalance in the soil ecosystem (Wu 
et al., 2020). Overuse of fertilizers reduces soil microbial biomass by 
reducing microbial abundance and diversity. Additionally, excessive 
fertilization weakens the stability of microbial community and 
diminishes the interactions among microbial taxa (Zhang et  al., 
2013). These findings highlight the negative impacts of excessive 
fertilization on sustainable soil productivity and microbial ecology; 
for example, long-term excessive application of synthetic N fertilizers 
is associated with the degradation of soil microbial communities. In 
a study, long-term application of inorganic fertilizers augmented total 
soil organic carbon levels and significantly increased maize yields 
(Belay et al., 2002). However, the excessive use of chemical fertilizers 
leads to nitrate accumulation in vegetable products, thereby 
compromising food safety. In recent years, organic fertilizers have 
garnered considerable attention as a sustainable alternative to 
mitigate N losses and restore soil fertility. Combining organic 
fertilizers with low dose of chemical fertilizer can help in alleviating 
the adverse effects of overuse of chemical fertilizers. Numerous 
studies have demonstrated that the partial substitution of chemical 
fertilizers with organic fertilizers is a promising strategy for 
enhancing soil fertility and crop yield. For example, replacement of 
chemical fertilizers with organic counterparts augments the 
effectiveness of soil N and phosphorus, ultimately increasing cabbage 
yield (Xiao et al., 2022). Application of compost along with organic 
fertilizers can enhance soil fertility, increase fungal abundance and 
diversity, and promote the abundance of favorable microbial taxa 
(Kamaa et al., 2011; Jiao et al., 2021).

Decline in the yield and quality of Chinese flowering cabbage, 
resulting from frequent succession and uncontrolled fertilizer 
application, can be  attributed to reduced soil porosity and water 
content and microbial community imbalance caused by excessive 
fertilization. Earthworms, as crucial organisms in soil ecosystem, play 
a pivotal role in soil structure formation, nutrient cycling, and 
organic matter decomposition (Siebert et al., 2019). Their activity 
enhances soil porosity, water infiltration, and nutrient availability. 
Furthermore, earthworms facilitate the transportation and blending 
of organic material in soil, promoting the interaction between organic 
fertilizers and soil microbial communities (Wang et al., 2021). Studies 
have demonstrated that the activity of earthworms alters the 
abundance and proportions of bacteria, fungi, and actinomycetes, 
thereby altering the microbial community structure (Medina-Sauza 

et al., 2019). In addition, earthworm activity can influence soil pH 
and the availability of trace elements, thereby improving microbial 
activity and community structure. This, in turn, increases the 
abundance of beneficial soil microorganisms, enhances bacterial 
community diversity, and promotes microbially mediated organic 
matter cycling (Cai et al., 2020). Soil microbial communities serve as 
essential drivers of nutrient cycling and soil fertility and play a 
fundamental role in organic matter decomposition, N fixation, and 
nutrient conversion (Blouin et al., 2013). Therefore, understanding 
the impact of earthworms on soil quality and their interactions with 
organic fertilizers is crucial for implementing sustainable soil 
management practices.

Previous studies have primarily focused on the replacement of 
chemical fertilizers with organic fertilizers to reduce chemical 
fertilizer inputs and obtain high crop yield (Liu et al., 2015). In this 
study, the aim was to assess the interactions among soil chemical 
properties, microbial community structure, and yield and quality of 
Chinese flowering cabbage under various fertilizer treatments 
including chemical fertilizer, earthworms, and cow manure. The 
study aimed to assess whether the addition of earthworms, through 
bioregulation, can enhance the microbial characteristics of soil that 
is perennially successively cropped, ultimately improving the quality 
and yield of Chinese flowering cabbage. In this study, our primary 
goals included investigating the influence of various physicochemical 
and biological factors on the quality and yield of Chinese flowering 
cabbage under equal nitrogen inputs, examining the effects of 
earthworms and cow manure on the soil microbial community and 
their underlying mechanisms, and evaluating whether earthworms 
and cow manure demonstrate a synergistic effect in enhancing the 
yield and quality of Chinese flowering cabbage under reduced 
chemical fertilization.

2. Materials and methods

2.1. Site description and fertilization

The experiment was performed in the No. 2 glass greenhouse of 
the training base of Ningxia University, Yinchuan, Ningxia (38° 5032″ 
N, 106° 1322″ E). The test soil was the soil under continuous cropping 
for 9 years at the Lijun Town, Yongning County, Yinchuan, Ningxia. 
The physical and chemical properties of the soil were: soil pH = 8.21, 
total nitrogen (TN) = 0.22 g kg−1, available nitrogen (AN) = 1.43 mg 
kg−1, and soil organic matter (SOM) = 6.81 g kg−1. The experiment was 
performed in potting boxes measuring 0.41 m in length, 0.27 m in 
width, and 0.19 m in height. Each box contained 8 kg soil with 
18 cm-deep layer. The experiment involved four treatments (Table 1).

Each treatment was performed with six replicates. The fertilizers 
consisted of urea (N 46%) for N, calcium superphosphate (P2O5 12%) 
for phosphorus, and potassium sulfate (K2O 50%) for potash. 
Chemical fertilizers (urea: 0.28 t/ha, calcium superphosphate: 0.13 t/
ha, and potassium sulfate: 0.12 t/ha) were applied according to 
conventional fertilization methods. In the CFC and CFE treatments, 
the same nitrogen application rate was applied as in the CK treatment. 
The total nitrogen (TN) content of the cow manure was determined, 
and it was applied at the rate of 386 g/pot. The basic properties of cow 
manure were: water content 58%, organic carbon 163.35 g kg−1, and 
TN content 1.12 g kg−1. Cow manure and calcium superphosphate 
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were used as a basal fertilizer, with 40% of urea and potassium sulfate 
applied as a basal fertilizer and remaining 60% as a follow-up fertilizer. 
Prior to the experiment, earthworms (Eisenia foetida) exhibiting high 
activity and relatively uniform size were carefully chosen. Earthworms 
were introduced before planting at a density of 60 g m−2, comprising 
approximately 23 red-seeded Aesop earthworms (each weighing 
0.15 g). Except for the CE treatment, all treatments received the same 
amount of N. Chinese flowering cabbage was planted on July 10, 2022, 
by direct sowing at 6–7 kg/ha−2, Chinese flowering cabbage were 
interplanted after the first true leaf, harvested on August 26, 2022, and 
soil samples were sampled and collected.

2.2. Analysis of soil properties

After harvesting, plants, visible worms and insects, and stones 
were removed from the samples by multipoint sampling. Further, the 
samples were sieved through a 2 mm sieve. The soil samples were 
mixed, divided into multiple portions of 3–5 g each, quick-frozen in 
liquid nitrogen, and stored at −80°C for the determination of soil 
microorganisms. A portion of the soil was set aside for the 
determination of soil physicochemical indexes. Soil pH was 
determined using the potentiometric method (water:soil = 2.5:1) 
using a pH meter (FiveEasy Plus pH/mV, Mettler-Toledo (Schweiz) 
GmbH, Switzerland). Available nitrogen (AN) and TN were 
determined using the alkaline diffusion method and Kjeldahl 
digestion method, respectively. Soil available potassium (AK) and 
available phosphorus (AP) were extracted with CH3COONH4 
solution (soil: CH3COONH4 solution = 1:10) and HCl-NH4F 
solution (soil: HCL-NH4F solution = 1:10), respectively. Soil AK was 
measured using a 6400A flame photometer (INESA, Shanghai, 
China), and soil AP was analyzed using a photometer at 660 nm. The 
soil organic matter (SOM) content was determined using oil 
bath method.

2.3. Soil DNA extraction and 
high-throughput sequencing

DNA was extracted using the E.Z.N.A. DNA Kit (Omega Bio-Tek, 
Norcross, GA, USA). The quality of the extracted DNA was verified 
using 1% agarose gel electrophoresis. DNA concentration and purity 
were assessed using NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific). The target primer pairs were (5′-ACTCCTACG 
GGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCT 
AAT-3′) for 16S rRNA gene in bacteria, and ITS1F (5′-CTTGG 
TCATTTAGAGGAAGTAA-3′) and ITS2R (5′-GCTGCGTTCTTCAT 
CGATGC-3′) in fungi (Zhang et al., 2020). The PCR products were 

separated using 2% agarose gel electrophoresis, purified with the 
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, 
CA, USA), and quantified using the QuantiFluor™-ST system 
(Promega, USA). Finally, bacterial and fungal amplicons were 
sequenced in pairs on an Illumina HiSeq sequencer. Duplicate reads 
were removed according to the UCHIME reference dataset, and the 
reads were sorted and clustered to operational taxonomic units 
(OTUs) using the USEARCH11-uparse algorithm with a default 97% 
similarity. A total of 674,096,280,450,803 bases of optimized sequences 
were obtained, with an average sequence length of 416 bp. All obtained 
raw sequence datasets have been uploaded to the NCBI Sequence 
Read Archive (SAR) with the accession number PRJNA1019528 
(Supplementary Table S1).

2.4. Analysis of the quality and yield of 
Chinese flowering cabbage

In the harvested Chinese flowering cabbage, cabbage yield by 
measuring the fresh and dry weights of above- and below ground 
portions of cabbage. Nitrate levels were determined using the salicylic 
acid–sulfuric acid method. Vitamin C (VC) content was determined 
using 2,6-dichloroindol staining (Arya et al., 2000). The concentration 
of soluble sugars was determined using the anthrone sulfate method 
(Wang C. et al., 2020). The soluble protein content was determined 
using the Kormas Brilliant Blue method (Sedmak and Grossberg, 
1977). To determine the nitrite levels, the vegetables samples were 
mixed with 0.4% p-aminobenzenesulphonic acid and 0.2% 
naphthylenediamine hydrochloride solution, followed by proper 
fixation, thorough shaking, and measurement of absorbance 
at 538 nm.

2.5. Statistical and bioinformatics analysis

Yield and quality of Chinese flowering cabbage were analyzed 
using one-way ANOVA in SPSS18.0 software. Estimated fungal and 
bacterial richness using Chao 1 indices, and the diversity index was 
estimated by the Shannon index. PCoA based on Bray–Curtis 
distance was conducted to examine the differences in microbial 
community composition among samples. Principal coordinate 
analysis (PCoA) was performed using R software (version 4.2.2). A 
permutation multivariate analysis of variance (PMANOVA) was 
performed to assess the effects of different fertilization treatments on 
soil microbial community structure. Species differences were 
analyzed using the Kruskal–Wallis rank sum test (Kruskal–Wallis h 
test). Circos mapping was conducted using Circos-0.67-67 software 
(Yan et  al., 2020). Soil physicochemical factors and correlations 

TABLE 1 Fertilizer formulation for different treatment regimens.

Treatments Fertilizer design

CK 100% chemical fertilizer (urea, calcium superphosphate, and potassium sulfate: 3.13, 1.45, and 1.38 g/pot, respectively)

CE 30% less chemical fertilizer (urea, calcium superphosphate, and potassium sulfate: 2.19, 1.02, and 0.97 g/pot, respectively) + earthworms

CFC 30% less chemical fertilizer (urea, calcium superphosphate, and potassium sulfate: 2.19, 1.02, and 0.97 g/pot, respectively) + well-rotted cow manure

CFE 30% less chemical fertilizer (urea, calcium superphosphate, and potassium sulfate: 2.19, 1.02, and 0.97 g/pot, respectively) + well-rotted cow manure + 

earthworms

https://doi.org/10.3389/fmicb.2023.1285464
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Gao et al. 10.3389/fmicb.2023.1285464

Frontiers in Microbiology 04 frontiersin.org

between growth of Chinese flowering cabbage and soil microbial 
communities were assessed using mantle test in the Linket package 
of R software. In addition, to identify the main environmental factors 
affecting microbial diversity, random forest analysis was performed 
(Breiman, 2001), in which the relative importance of soil pH, SOM, 
TN, AN, AP, and AK was ranked. The random forest analysis was 
performed in the R statistical computing environment with the 
random forest package.

3. Results

3.1. Effect of different fertilizer treatments 
on chemical properties of soil

Inclusion of earthworms (CE) led to a reduction in soil pH, and the 
reduction in pH was significant when it was combined with cow manure 
(CFE) (p < 0.01). In contrast, partial replacement of fertilizer with cow 
manure (CFC) significantly increased soil pH (p < 0.05). The CE 
treatment decreased but both CFC and CFE treatments considerably 
increased SOM (Figure 1). The CFE treatment significantly changed soil 
AK compared with the other treatments. AP content in the CE and CFC 
treatments was different from that in the CFE treatment; however, AP 
content in the CK and CFE treatments was similar.

3.2. Yield and quality of Chinese flowering 
cabbage under different fertilizer treatments

The CFE treatment exhibited a significant increase in the yield of 
Chinese flowering cabbage, with above and below ground fresh weight 
of Chinese flowering cabbage exhibiting increase by 31.77 and 20.23%, 
respectively, compared with the CK treatment (Figure  2A). 
Furthermore, the CFE treatment showed significant differences in 
cabbage fresh weight compared to the CE and CFC treatment. In 
terms of aboveground dry weight, the CFE treatment resulted in 
23.01% increase compared with the CK treatment, while CE and CFC 
treatment had no significant effect compared to CK (Figure  2B). 
Regarding the quality of Chinese flowering cabbage, the CFE 
treatment significantly enhanced soluble protein, soluble sugar, 
vitamin C, nitrate, and nitrite contents compared with the CK 
treatment (Figure 3). Similar trends were observed in the Chinese 
flowering cabbage stems, except for nitrite and nitrate.

3.3. Effect of different fertilizer treatments 
on the soil microbial community structure

The CFC and CFE treatments exhibited significant increases in 
both bacterial and fungal Chao 1 and Shannon indexes. However, no 

FIGURE 1

Soil physicochemical properties under different fertilizer treatments. CK: 100% chemical fertilizer; CE: 30% reduced chemical fertilizer + earthworms; 
CFC: 30% reduced chemical fertilizer + cow manure; CFE: 30% reduced chemical fertilizer + cow manure + earthworms. SOM: soil organic matter; 
TN: total nitrogen; AN: available nitrogen; AP: available phosphorus; AK: available potassium.
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significant differences were observed in bacterial Chao 1 and Shannon 
indexes between the CE and CK treatments. The CE treatment 
increased fungal Chao 1 index. The bacterial Chao 1 index followed 
the order CFC < CFE < CE < CK, whereas the Shannon index followed 
the order CFC < CFE < CK < CE (Figure 4).

3.4. Composition of soil microbial 
communities

Differences in soil bacterial diversity between the CFC and CFE 
treatments were not significant, whereas significant differences in 
bacterial diversity were observed between the CE, CFC, and CFE 
treatments compared with the CK treatment. Principal component 1 
and principal component 2 accounted for 60.42 and 17.61% of the 
variance, respectively (Figure 5A). The treatments exhibited significant 

variations in fungal community composition, where principal 
component 1 and principal component 2 explained 59.07 and 17.42% 
of the variance, respectively (Figure 5B).

The top-4 bacterial phyla identified in the four treatment groups 
were Proteobacteria, Actinobacteriota, Chloroflexi, and Firmicutes, 
representing 24.80, 19.71, 17.74, and 13.11% of the total sequences, 
respectively (Figure  6A). Moreover, Kruskal–Wallis h test 
demonstrated that the relative abundance of the Firmicutes clade was 
significantly higher in the CE, CFC, and CFE treatments compared 
with the CK treatment (Figure 6B; p < 0.05). Additionally, the relative 
abundance of the Firmicutes clade was higher under the CE and CFE 
treatments compared with the CFC treatment. Further analysis at the 
genus level revealed that the dominant genera were Bacillus, norank_f_
JG30-KF-CM45, norank_f_norank_o_Actinomarinales, norank_f_
norank_o_Vicinamibacterales, and Romboutsia (Figure 6C). The CFE 
treatment significantly increased the abundance of Bacillus.

FIGURE 2

Chinese flowering cabbage yield under different treatments. Fresh weight of above- and belowground parts of Chinese flowering cabbage (A). Dry 
weight of above- and belowground parts of Chinese flowering cabbage (B). CK: 100% chemical fertilizer; CE: 30% reduced chemical fertilizer + 
earthworms; CFC: 30% reduced chemical fertilizer + cow manure; CFE: 30% reduced chemical fertilizer + cow manure + earthworms.

FIGURE 3

Chinese flowering cabbage quality under different treatments. CK: 100% chemical fertilizer; CE: 30% reduced chemical fertilizer + earthworms; CFC: 
30% reduced chemical fertilizer + cow manure; CFE: 30% reduced chemical fertilizer + cow manure + earthworms.
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FIGURE 4

Fertilizer treatments on bacterial and fungal Chao 1 indices (A,C), Shannon index (B,D). CK: 100% chemical fertilizer; CE: 30% reduced chemical 
fertilizer + earthworms; CFC: 30% reduced chemical fertilizer + cow manure; CFE: 30% reduced chemical fertilizer + cow manure + earthworms.

FIGURE 5

PCoA results of (A) bacterial (pseudo-F:8.21, p  =  0.001, PERMANOVAR) and (B) fungal (pseudo-F:13.07, p  =  0.001, PERMANOVAR) communities found 
with different fertilization types. CK: 100% chemical fertilizer; CE: 30% reduced chemical fertilizer + earthworms; CFC: 30% reduced chemical fertilizer 
+ cow manure; CFE: 30% reduced chemical fertilizer + cow manure + earthworms.
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In terms of soil fungal community composition, the dominant fungal 
phylum was Ascomycota, comprising 62.86% of the total sequences. It 
was followed by Rozellomycota, unclassified_k_Fungi, Olpidiomycota, 
and Mortierellomycota (Figure  7A). The relative abundance of 
Ascomycota was higher under the CK treatment compared with the CE, 
CFC, and CFE treatments. Conversely, the relative abundance of 
Rozellomycota and unclassified_k_Fungi was higher under the CE and 
CFC treatments compared with the CFE treatment. Kruskal–Wallis h test 
indicated a significantly higher relative abundance of Rozellomycota 
under the CE, CFC, and CFE treatments compared with the CK treatment 
(Figure 7B; p < 0.05). At the genus level, the dominant fungal genera were 
unclassified_p_Rozellomycota, Plectosphaerella, unclassified_k_Fungi, 
unclassified_f_Chaetomiaceae, unclassified_c_Sordariomycetes, and 
Gibberella (Figure 7C).

3.5. Interactions between soil 
physicochemistry, growth of Chinese 
flowering cabbage, and soil microbial 
communities

The relationship among soil bacterial and fungal communities, 
Chinese flowering cabbage growth, and soil physicochemical 
properties was analyzed using mantel test. The results revealed that the 
yield of Chinese flowering cabbage and soluble protein, nitrite, nitrate, 
VC, TN, AN, SOM, AP, and AK contents were significantly correlated 
with bacterial communities. TN, AN, SOM, AK, yield, and all qualities 
of Chinese flowering cabbage were highly significantly correlated with 
the fungal community but pH and AP did not (Figure 8). These results 
were verified using random forest analysis. Random forest analysis 
revealed the soil bacterial community diversity was affected by AN, 
followed by SOM, AK, TN, pH, and AP (Figure 9A), whereas the 
fungal community diversity was affected by SOM, followed by AK, 
AN, TN, pH, and AP (Figure 9B).

4. Discussion

The type of fertilizer significantly influenced both soil conditions 
and the growth of Chinese flowering cabbage. At equal N application 
levels, the CFC and CFE treatments exhibited higher yield than the CK 
treatment. This was mainly because the reduction in the amount of 
chemical fertilizer was based on the nutrient uptake characteristics of 
Chinese flowering cabbage and soil fertility, and nutrient requirements 
were balanced by increasing crop nutrients (van Wesenbeeck et  al., 
2021). An adequate supply of TN is essential as it provides the necessary 
N required by plants for promoting chlorophyll synthesis and 
photosynthesis (Zhao et al., 2003; Liu et al., 2017). Consequently, this 
leads to the development of greener leaves and higher photosynthetic 
efficiency, which ultimately promotes plant growth and nutrient 
accumulation and improves the quality of Chinese flowering cabbage.

The quality of Chinese flowering cabbage was significantly 
improved under the combined application of earthworms and cow 
manure (CFE). Cow manure provided abundant nutrients and 
provided additional nutritional support for plant growth. This, in 
turn, enhanced nutrient uptake and photosynthesis (Bansal and 
Kapoor, 2000; Arancon et al., 2008; Guo et al., 2016). Additionally, 
earthworms contributed to creating a more suitable growth 
environment for the plant by improving soil structure, aeration, and 
water retention capacity (Hallam and Hodson, 2020). The results 
indicated that the CE treatment could not exhibit the desired 
improvements in the yield and quality of Chinese flowering cabbage. 
This can be attributed to the severe soil compaction, resulting in 
reduced earthworm survival, as well as lower soil porosity and water 
content. The application of cow manure improved soil structure by 
increasing organic carbon, water-soluble starch, and carbon and N 
contents (Kacprzak et  al., 2023). In addition, the inclusion of 
earthworms significantly reduced soil pH. This is consistent with 
previous studies reporting that earthworms regulate soil pH through 
N excretion and calcium secretion from their glands. Additionally, 

FIGURE 6

Relative abundance of bacterial taxa at the phylum level (A). The relative abundances of bacteria was tested by the Kruskal–Wallis H-test (B). 
Composition of bacterial community at the genus level (C). The data were visualized by circos. CK: 100% chemical fertilizer; CE: 30% reduced chemical 
fertilizer + earthworms; CFC: 30% reduced chemical fertilizer + cow manure; CFE: 30% reduced chemical fertilizer + cow manure + earthworms.
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FIGURE 7

Relative abundance of fungal taxa at the phylum level (A). The relative abundances of bacteria was tested by the Kruskal–Wallis H-test (B). Composition 
of fungal community at the genus level (C). The data were visualized by circos. CK: 100% chemical fertilizer; CE: 30% reduced chemical fertilizer + 
earthworms; CFC: 30% reduced chemical fertilizer + cow manure; CFE: 30% reduced chemical fertilizer + cow manure + earthworms.

FIGURE 8

Chinese flowering cabbage growth, soil physicochemical and soil microbial interactions. CK: 100% chemical fertilizer; CE: 30% reduced chemical 
fertilizer + earthworms; CFC: 30% reduced chemical fertilizer + cow manure; CFE: 30% reduced chemical fertilizer + cow manure + earthworms.
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the organic acids excreted by earthworms and secreted by their 
epidermis contribute to the reduction in soil pH (Wang G. et al., 
2020). Continuous cropping of Chinese flowering cabbage increases 
soil pH. Therefore, inclusion of earthworms acts as a buffer, 
maintaining soil pH (Brautigan et  al., 2014). Earthworms play a 
crucial role in promoting soil aggregation through their burrowing 
and casting activities (Lavelle et al., 2020). In this study, the CFE 
treatment increased SOM and soil TN, AN, and AK. The stability of 
soil aggregates is essential for SOM dynamics and soil fertility and 
reflects the influence of soil biota and soil carbon and N dynamics 
(Bhattacharyya et al., 2022). This influence is partly attributed to the 
contribution of soil biota and microorganisms to carbon and nutrient 
transformation at the soil aggregate scale (Vogel et al., 2022).

Soil bacterial and fungal diversity and community structure are 
closely related to nutrient cycling, soil quality, and productivity. 
Different fertilizer treatments significantly affected the alpha diversity 
and community structure of soil bacteria and fungi. CFC and CFE 
treatments increased bacterial and fungal diversity, likely due to the 
positive effects of earthworms and cow manure on the bacterial and 
fungal activities. This is consistent with previous studies. The different 
fertilizer treatments in this study significantly enhanced soil nutrient 
content, and the vast majority of Ascomycetes, Actinobacteria, and 
Bacteroidota (which were previously reported to be  eutrophic 
bacteria) became the dominant species. This is consistent with a 
previous study reporting that the spatial distribution of the bacteria 
was mainly driven by nutrients (Jankowski et al., 2014). Furthermore, 
the abundance of Firmicutes increased after inoculation with 
earthworms. Previous studies have indicated that Firmicutes, as a fast-
growing phylum, thrives in environments rich in carbon substrates. 
The continuous digging and casting activities of earthworms 
contribute to carbon mineralization, which explains the observed 
increase in the abundance of Firmicutes after the inclusion of 
earthworms (Singh et al., 2016; He et al., 2020).

The Chao 1 and Shannon indexes were lower, and the abundance 
of Bacillus was higher in the CFE treatment than in the CFC treatment 
(Liu et al., 2021). The higher abundance of the Bacillus in the CFE 
treatment than in the other treatments can be attributed to the fact that 
this genus is mostly aerobic or partially anaerobic photosynthetic 
bacteria, and earthworms can form loose and porous vermicompost 
due to their own feeding and movement of the earthworm haptosphere 
(Przemieniecki et al., 2021). Norank_f_JG30-KF-CM45 was negatively 
correlated with TOC. This suggested that inoculation with earthworms 

can increase the decomposition rate of organic matter and improve the 
quality of organic fertilizer (Jiang et al., 2020). Norank_f_norank_o_
Actinomarinales had the lowest abundance in the CK treatment. 
Actinomyces spp. promoted organic matter conversion, and the 
abundance of Actinomyces spp. increased after inoculation with 
earthworms and cow manure, which participated in soil nutrient 
cycling and improved soil fertility (Janvier et al., 2007). This confirmed 
that earthworms can enhance the beneficial effects of organic fertilizers 
on the abundance, activity, and community structure of soil 
microorganisms (Huang et al., 2014).

Among fungi, Ascomycota was the most abundant 
mycorrhizal fungal phylum in the CK treatment, with a decrease 
in abundance after inoculation with earthworms or addition of 
organic fertilizer. This is consistent with previous studies 
suggesting that the relative abundance of soil fungal phyla varies 
depending on cropping patterns (Wang et  al., 2019). The 
significant abundance of Ascomycota may reflect the unique 
distribution pattern of fungi in agricultural soils, particularly 
where plant diversity is particularly low. The CFE treatments 
increased the abundance of Basidiomycota (Figure  7). A 
competitive relationship may exist between the ascomycetes and 
the Stramenopiles resulting in a decrease in the abundance of 
Ascomycota (Ye et al., 2020). Compared with the CK treatment, 
all other treatments significantly increased the abundance of 
Rozellomycota and unclassified_p_Rozellomycota. Interestingly, 
Rozellomycota is frequently detected in animal gut (Li et  al., 
2020). This suggested that earthworms or organic fertilizers may 
have a more pronounced positive effect on Rozellomycota 
compared with chemical fertilizers. At the fungal genus level, the 
CFE and CFC treatments reduced the abundance of 
Plectosphaerella and Gibberella, taxa that are known to be  the 
major pathogens responsible for root and stem rot in many plant 
species (Farh et  al., 2018). Inoculation with earthworms 
significantly increased the abundance of unclassified_k_Fungi 
and unclassified_f_Chaetomiaceae, which have cellulose-
degrading capacity, and altered the community structure of soil 
fungi, which play a role in soil ecological cycle system (Song 
et  al., 2020). Previous studies have associated Gibberella with 
severe decay of leaves, peduncles, and flowers in potted hyacinths 
and with cob rot disease (Erysipelas cob rot) in maize (Tomioka 
et al., 2008; Tian et al., 2021). The CFE treatment reduced the 
abundance of Gibberella. Various studies have reported that 

FIGURE 9

Main factors influencing microbial diversity under different treatments. This figure shows the stochastic forest importance (the percentage of increase 
in the mean variance error [MSE]) of soil chemical properties on the microbial diversity of bacteria (A) and fungi (B).
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alterations in soil microbial communities are closely related to 
the inhibition of soilborne pathogenic fungi (Wang et al., 2017). 
Therefore, inoculation of earthworms and cow manure can 
inhibit the enrichment of these pathogenic fungi, thereby 
reducing the incidence of root rot and other diseases.

Soil microbial diversity and communities can significantly 
influence soil quality and the sustainability of soil ecosystems. 
Previous studies have reported that soil pH is an important factor in 
microbial community structure. However, in this study, this effect did 
not appear to be significant. Soil pH was not significantly correlated 
with bacterial and fungal communities and was negatively correlated 
with the yield and quality of Chinese flowering cabbage. This may 
be attributed to the fact that soil pH is alkaline because of the perennial 
continuous cropping of Chinese flowering cabbage; however, the 
optimum growth environment for bacteria is lower neutral, which 
resulted in no significant correlation between pH and bacterial 
community (Fernández-Calviño et al., 2011). Fungi are only slightly 
affected by soil pH as they have a strong ability to adapt to acidity 
(Nevarez et  al., 2009; Rousk et  al., 2010). Random forest analysis 
indicated that AN, SOM, AK, and TN were the main factors affecting 
bacterial and fungal diversities and indicated a significant positive 
correlation with the quality and yield of Chinese flowering cabbage. 
These physicochemical factors could partially explain the nutrient 
cycling and utilization by microorganisms in the ecosystem (Zhao 
et al., 2019). Numerous studies have indicated that more than 50% of 
the N required by crops is obtained from soil, whereas the remainder 
is derived from in-season fertilizer applications. In soil, soil organic N 
constitutes approximately 90% of the TN content (Xu et al., 2016). 
This is consistent with previous studies consistently demonstrating 
that the application of organic fertilizer significantly enhances soil 
organic N and SOM content, thereby promoting plant growth (Zhou 
et  al., 2013). Abundant nutrients such as organic N and organic 
potassium in SOM provide a sustained and balanced supply of 
nutrients to crops (Han et al., 2021). These nutrients are gradually 
released into inorganic forms through microbial decomposition and 
mineralization, effectively meeting the nutrient requirements for crop 
growth and quality development (Tahat et al., 2020). Overall, different 
fertilization treatments altered the microbial diversity and community 
in the soil by regulating the soil properties, and the combined effect of 
earthworms and cow manure promoted the growth of Chinese 
flowering cabbage and optimized the soil structure.

5. Conclusion

This study revealed that the synergistic effect of earthworms and 
cow manure under reduced application of chemical fertilizer 
decreased soil pH; increased soil organic matter, total nitrogen, 
available nitrogen, and available potassium; and effectively improved 
soil chemical properties. This study indicated that the synergistic effect 
of earthworms and cow manure promoted the growth of Chinese 
flowering cabbage and increased microbial diversity and altered 
community structure. Earthworms and cow manure promoted the 
abundance of Bacillus and decreased the abundance of Plectosphaerella 
and Gibberella. This study provided a scientific basis for the 
establishment of environmentally friendly fertilization techniques to 
effectively promote sustainable agricultural development.
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