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Background: Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental 
disorder. Major interplays between the gastrointestinal (GI) tract and the central 
nervous system (CNS) seem to be driven by gut microbiota (GM). Herein, we provide 
a GM functional characterization, based on GM metabolomics, mapping of bacterial 
biochemical pathways, and anamnestic, clinical, and nutritional patient metadata.

Methods: Fecal samples collected from children with ASD and neurotypical 
children were analyzed by gas-chromatography mass spectrometry coupled 
with solid phase microextraction (GC–MS/SPME) to determine volatile organic 
compounds (VOCs) associated with the metataxonomic approach by 16S 
rRNA gene sequencing. Multivariate and univariate statistical analyses assessed 
differential VOC profiles and relationships with ASD anamnestic and clinical 
features for biomarker discovery. Multiple web-based and machine learning 
(ML) models identified metabolic predictors of disease and network analyses 
correlated GM ecological and metabolic patterns.

Results: The GM core volatilome for all ASD patients was characterized by a high 
concentration of 1-pentanol, 1-butanol, phenyl ethyl alcohol; benzeneacetaldehyde, 
octadecanal, tetradecanal; methyl isobutyl ketone, 2-hexanone, acetone; acetic, 
propanoic, 3-methyl-butanoic and 2-methyl-propanoic acids; indole and skatole; 
and o-cymene. Patients were stratified based on age, GI symptoms, and ASD 
severity symptoms. Disease risk prediction allowed us to associate butanoic acid with 
subjects older than 5 years, indole with the absence of GI symptoms and low disease 
severity, propanoic acid with the ASD risk group, and p-cymene with ASD symptoms, 
all based on the predictive CBCL-EXT scale. The HistGradientBoostingClassifier 
model classified ASD patients vs. CTRLs by an accuracy of 89%, based on methyl 
isobutyl ketone, benzeneacetaldehyde, phenyl ethyl alcohol, ethanol, butanoic acid, 
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octadecane, acetic acid, skatole, and tetradecanal features. LogisticRegression models 
corroborated methyl isobutyl ketone, benzeneacetaldehyde, phenyl ethyl alcohol, 
skatole, and acetic acid as ASD predictors.

Conclusion: Our results will aid the development of advanced clinical decision support 
systems (CDSSs), assisted by ML models, for advanced ASD-personalized medicine, 
based on omics data integrated into electronic health/medical records. Furthermore, 
new ASD screening strategies based on GM-related predictors could be used to 
improve ASD risk assessment by uncovering novel ASD onset and risk predictors.

KEYWORDS

autism, gut microbiota volatilome, tryptophan-derived metabolism, SCFAs, machine 
learning, clinical decision support system (CDSS) algorithms

1 Introduction

Autism spectrum disorder (ASD) is a widespread 
neurodevelopmental condition characterized by neurological 
disorders, including impairments in social communication, reciprocity, 
and repetitive behavior patterns, frequently associated with recurrent 
comorbidities such as gastrointestinal (GI) disorders (Mottron and 
Bzdok, 2020), sleep disturbances, and epilepsy (Chen et  al., 2021; 
Madra et al., 2021; Liu et al., 2022). Particularly, most patients affected 
by ASD, generally males (Loomes et al., 2017), show GI morbidities 
(Mottron and Bzdok, 2020), often associated with impaired digestion 
of carbohydrates and gut dysbiosis (Williams et al., 2011), hence altered 
gut microbiota (GM) composition and metabolism may play a crucial 
role in ASD phenotypes and comorbidities (De Angelis et al., 2015; 
Vernocchi et al., 2022). GM microbial profiles (Shoubridge et al., 2022) 
have been thoroughly investigated in terms of gut microbial ecology in 
ASD children compared with neurotypical children (De Angelis et al., 
2015; Adams et al., 2022; Nirmalkar et al., 2022, 2023; Phan et al., 2022; 
Taniya et  al., 2022; Vernocchi et  al., 2022). However, through the 
“gut-brain axis,” gut microbial-driven metabolites (Järbrink-Sehgal and 
Andreasson, 2020) may exert crucial effects on the physiology of the 
central nervous system (CNS) and association to ASD (Thomas et al., 
2012; MacFabe, 2015).

Indeed, gut metabolic dysfunction can be associated with GI 
symptoms, such as deficits in digestion/absorption, or, conversely, GI 
tract alterations may impact microbial community eubiosis, 
contributing to enhancing only specific bacterial metabolites, and 
thereby triggering pro-inflammatory responses, cytokine production, 
and loss of gut epithelial barrier integrity (Martin et  al., 2018). 
Therefore, a bottom-up CNS modulation, exerted by GM-derived 
molecules, mainly occurs through neuroimmune and neuroendocrine 
pathways, typically through the vagus nerve (Singh et  al., 2016; 
Hughes et  al., 2018) via chemoreceptors and mechanoreceptors 
stimulated by microbial metabolites or bacterial taxa, respectively 
(Ristori et al., 2019). Amongst bacterial molecules, short-chain fatty 
acids (SCFAs) and tryptophan-derived metabolites (i.e., indoles, 
skatole) (Yano et al., 2015; Hughes et al., 2018) play an important role 
in the GM-brain interplay (Li et al., 2021).

This study explored the GM volatilome to assess the most 
significant gut metabolic perturbations depending on ASD phenotype 
and comorbidities and to identify novel disease biomarkers 
and predictors.

2 Materials and methods

2.1 Patient enrolment and sample 
collection

This observational cohort study was conducted in Italy at the 
Bambino Gesù Children’s Hospital (OPBG) Rome, Italy. For the study, 
41 ASD patients aged 3–15 years (36 boys and five girls) were recruited 
at OPBG and Agostino Gemelli Hospital in Rome, Italy, with a 
diagnosis of ASD based on the criteria of the Diagnostic and Statistical 
Manual of Mental Disorders DSM-5 and confirmed by the Autism 
Diagnostic Observation Schedule (ADOS-2) and by the Autism 
Diagnostic Interview – Revised (ADI-R). ASD patients were aged-
matched against a cohort of 35 neurotypical children (21 boys and 14 
girls) (controls, CTRLs) selected during a GM programming survey 
at the OPBG Human Microbiome Unit (Vernocchi et al., 2022).

The anamnestic and clinical data collected during this study 
included gender; age; weight; height; BMI; type of birth; infant 
feeding; GI symptoms categorized into presence and absence subsets 
and reported according to Rome IV criteria (Drossman and Hasler, 
2016) (i.e., constipation, diarrhea, abdominal distention, abdominal 
pain, gastroesophageal reflux disease (GERD), colic or eosinophilia); 
neuropsychological features reported as autism symptom severity (i.e., 
low, moderate, high); behavioral problems, reported as presence of 
risk for behavioral problems; absence of clinical symptoms based on 
CBCL (Child Behavior Checklist)-INT, CBCL-EXT, and CBCL-TOT 
scales; cognitive level reported as IQ/DQ (Intelligence Quotient/
Developmental Quotient) with and without cognitive impairment or 
developmental delay; pharmacological treatment; and epilepsy. 
Nutritional habits, at the time of subject recruitment, were defined in 
terms of disposition to be a Picky Eater (PE) or not, namely subjects 
with food selectivity (FS) and/or with a gluten-free or casein-free diet 
(Supplementary Table S1; Vernocchi et al., 2022).

GM metabolomic profiling was performed on fecal samples from 
each subject. Samples were taken at home and refrigerated and 
delivered during clinical visits. The fecal samples were stored on ice 
ore at +4°C and transferred to the laboratory within 2 h. All samples 
were collected by the same researcher using standardized procedures. 
The freezing tube did not include preservatives. In total, 76 fecal 
samples were collected and stored at −80°C at the Microbiome 
Biobank of the OPBG, node of the Biobanking and Biomolecular 
Resources Research Infrastructure of Italy (BBMRI) of the Human 
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Microbiome Unit until processing for GM metataxonomy (Vernocchi 
et al., 2022) and metabolomics.

2.2 Ethics statement

The study was approved by the OPBG Ethics Committee for both 
patients with ASD (1404_OPBG_2017) and healthy subject (1113_
OPBG_2016) cohorts and conducted in accordance with the 
Principles of Good Clinical Practice and the Declaration of Helsinki. 
Written informed consent was obtained from all participants.

2.3 GM metataxonomy

GM taxonomic profiles were built as previously described 
(Vernocchi et al., 2022). Specifically, the extracted DNA from 41 and 
35 fecal samples of ASD and CTRLs subjects, respectively, was 
performed using a QIAmp Fast DNA Stool mini kit (Qiagen, Hilden, 
Germany) consistent with the manufacturer’s instructions.

Amplification of the variable region V3–V4 from the bacterial 
16S rRNA gene (∼460 bp) and the PCR reaction were set up 
according to Vernocchi et al. (2022). The final libraries were cleaned 
up using CleanNGS kit beads, quantified with Quant-iT PicoGreen 
dsDNA Assay Kit (Thermo Fisher Scientific, Waltham, MA, 
United States), and normalized to 4 nM. To produce paired-end 
250- × −2 bp-length reads, normalized libraries were united 
together and run on the Illumina MiSeq platform according to 
specifications of the manufacturer. The obtained raw reads were 
processed using Quantitative Insights into Microbial Ecology 
software (QIIME, 1.9.1) (Caporaso et  al., 2010), according to 
Vernocchi et al. (2022).

2.4 GM metabolomic profiling by 
determination of volatile organic 
compounds (VOCs)

2.4.1 Gas chromatography-mass spectrometry
Fecal samples from 41 patients and 35 CTRLs were analyzed by 

GC–MS to detect VOCs by using a carboxen-polydimethylsiloxane 
coated fiber (85 μm) and a manual solid-phase micro-extraction 
holder (Supelco Inc., Bellefonte, PA, United  States) as previously 
described (Vernocchi et al., 2020).

2.5 Biocomputational approaches: 
multivariate, univariate, and correlation 
analyses

Metabolite datasets were filtered based on the criterion of metabolite 
presence in at least 10% of the total sample set, referring to both ASDs 
and CTRLs. β-diversity of ASD vs. CTRLs, with ASD subgroups 
(≤5 years old vs. >5 years old; gender; with vs. without GI symptoms; 
ASD high vs. low symptoms; disposition to be PE vs. not to be PE), were 
based on the Bray–Curtis dissimilarity algorithm (Chen et al., 2012) and 
represented by Principal coordinate analyses (PCoA). Tests were 
performed by using Python 3.8 version with Skbio.diversity package.

An explorative multivariate (Principal Component Analysis, 
PCA) analysis was applied to ASDs vs. CTRLs, whilst a partial 
least square-discriminant analysis (PLS-DA) (Bylesjö et  al., 
2007) was exploited (Li et al., 2023) by mixOmics R package to 
identify differential VOCs profiles. Results were verified by 
univariate analysis with Mann–Whitney test and p values 
adjusted by FDR (Benjamini and Hochberg, 1995). Fold change 
(FC) was computed as the ratio of average VOCs concentration 
values for ASDs and CTRLs mean [VOCs(ASDs)]/mean 
[VOCs(CTRLs)].

Z-score-based heat maps of VOCs’ distribution were obtained 
with a hierarchical Ward linkage clustering based on Euclidean 
distance, by considering only statistically significant variables 
filtered by Wilcoxon Mann Whitney test (p value ≤ 0.05 corrected 
for multiple hypothesis by Benjamini-Hochberg-based FDR) 
(Benjamini and Hochberg, 1995), and plotted with R software 
(Pheatmap package).

Anamnestic features were evaluated as potential confounding 
factors, while clinical and nutritional features were exploited to stratify 
the ASD phenotype in terms of symptoms, comorbidities, and 
nutritional habits and to assess related biomarkers.

The Upset plot was used to visualize intersections of different ASD 
subgroup combinations and CTRL condition, showing the distribution 
of uniquely detected metabolites. To generate the Upset plot, the 
UpSetR R package was applied.

All R-based scripts can be  found in the study repository as 
described in the Data availability section.

2.6 Metabolic set enrichment analysis 
(MSEA) and metabolic pathway 
analysis (MetPA)

To identify and interpret the metabolic pathways characterizing 
the GM of ASDs compared to CTRLs, MSEA and MetPA 
computations were applied (Xia and Wishart, 2010). Metabolites 
were identified based on chemical names, and annotations were 
verified using the Human Metabolome Database (HMDB), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), Small Molecular 
Pathway Database (SMPDB), PubChem, chemical entities of 
biological interest (ChEBI), and METLIN databases. These analyses 
were performed using the MetaboAnalyst (version 4.0) platform.

2.7 Network correlation analysis on 
operational taxonomic units (OTUs) and 
VOCs

A correlation network between 16S rRNA sequencing-based 
OTUs (Vernocchi et  al., 2020) and VOCs, filtered as statistically 
significant after a multiple non-parametric Mann–Whitney U-test, 
was established for ASDs and CTRLs. In particular, we applied a hard 
thresholding approach which creates binary networks where 
significant inter-node correlations (p value adjusted ≤0.05) are 
retained (edge values set to 1), whereas no significant correlations (p 
value adjusted >0.05) are removed (edge values set to 0). The network 
was performed by psych R package and visualized with 
Cytoscape v3.8.2.
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2.8 Weighted gene co-expression network 
analysis (WGCNA) on clinical and 
anamnestic data, OTUs, and VOCs

WGCNA (Zhang and Horvath, 2005) was performed on 41 ASDs 
and 35 CTRLs considering the following datasets: (i) VOCs obtained 
with a 10% cut-off (i.e., non-zero values in at least 10% of the total 
samples’ number); (ii) OTUs from three taxonomic levels (Level L2, 
Phylum; Level L5, Family; Level L6, Genus) with a 25% cut-off (i.e., 
non-zero values in at least 25% of the total samples’ number), and a 
filter based on the OTUs relative abundance considering those with 
relative abundance >1%; and (iii) OTUs, VOCs, and clinical and 
anamnestic features. The VOC and OTU data were combined and 
log-transformed prior to the downstream statistical analyses 
(Langfelder and Horvath, 2008). The complete data matrix included 
110 VOCs and 161 OTUs and the R package WGCNA (Langfelder 
and Horvath, 2008) was used to build a weighted correlation network 
where edge weights were given by a continuous mapping of correlation 
values (soft thresholding approach). In addition, WGCNA enabled the 
identification of VOC and OTU network modules with a co-expression 
similarity (Langfelder and Horvath, 2008) and the incorporation of 
the external sample traits (i.e., clinical and anamnestic data) in order 
to screen for modules and intramodular features that were strongly 
associated with specific traits of interest. Specifically, WGCNA 
produced a set of modules (labeled by color), each containing a set of 
unique nodes (OTUs and VOCs). To summarize the information 
contained in a given module of the WGCNA network, the module 
eigengene (ME), defined as the PC1 of a given module, was used 
(Langfelder and Horvath, 2008). Further, for each node in a given 
module, the module membership (MM) and the biomarker 
significance (BS) were computed (Langfelder and Horvath, 2008). The 
MM of a node represents the correlation between the node profile and 
the ME, whereas the BS of a node represents the correlation between 
the node profile and a given anamnestic or clinical feature. If the MM 
of a node is close to 0, the node is not considered a part of the module. 
Conversely, if the MM is 1 or − 1, the node is highly representative of 
the module. The sign of the MM explains if the node has a positive or 
a negative relationship with the ME. Concerning the BS, the greater 
the absolute value of the BS of a node, the more biologically significant 
the node is. A BS of 0 indicates that the node is not significant with 
reference to the feature of interest. The WGCNA R package can 
be downloaded from CRAN repository.

2.9 Multiple machine learning (ML) models

Multiple ML models (i.e., DummyClassifier, KNeighborsClassifier, 
LogisticRegression CV, LinearSVC, SVC, LogisticRegression, 
GradientBoostingClassifier, GaussianProcessClassifier, Quadratic 
DiscriminantAnalysis, SGDClassifier, RandomForestClassifier, 
BaggingClassifier, DecisionTreeClassifier, GaussianNB, ExtraTrees 
Classifier, AdaBoostClassifier, MLPClassifier, and HistGradient 
BoostingClassifier) were trained for searching ranking tasks of ASD 
vs. CTRL metabolomic profiles. To evaluate the predictive accuracy of 
the top-ranking models, the performance was assessed by model 
score. The machine learning model was built with Python (3.8 version) 
by using scikit-learn package (1.3.1 version). Accuracy, sensitivity, and 
specificity and odds ratios were computed only for the Logistic 

Regression model applied to biomarkers discovery from univariate 
analyses, and receiver operating characteristic (ROC) curves were 
represented with the relative area under the curve (AUC) values 
(Wang et al., 2021). The AUC of the model was considered excellent 
if >0.9, very good if ranging from 0.8 to 0.9, good if associated to the 
averaged values 0.6–0.8, and poor in the case of <0.6. Predictor 
evaluations and ROC graphs were performed by ROCR R package.

3 Results

3.1 Fecal VOCs identification

Overall, 626 VOCs, for both ASDs and CTRLs, were identified by 
GC–MS/SPME, quantified, and classified into 23 chemical groups: 
alcohols (n = 137), alkenes (n = 60), alkanes (n = 55), ketones (n = 67), 
esters (n = 89), acids (n = 31), amides (n = 4), phenols (n = 12), 
pyridines (n = 2), pyrazines (n = 7), indoles (n = 11), aldehydes (n = 47), 
aromatic hydrocarbons (n = 15), furans (n = 3), furfural (n = 1), 
terpenes (n = 46), sulfur compounds (n = 3), amines (n = 24), thiols 
(n = 3), piperazines (n = 2), furanones (n = 4), hydrazine (n = 2), and 
other organic compounds (n = 1).

All data comparisons were performed on a reduced matrix of 110 
out of 626 total VOCs (Supplementary Table S2), according to criteria 
reported in M&M section.

3.2 GM volatilome exploitation: ASDs vs. 
CTRLs sets

For volatilome exploratory data analysis, the β-diversity algorithm, 
based on Bray Curtis dissimilarity metrics, showed a statistically 
significant distance (p value = 0.01) in the bacterial communities of 
ASDs and CTRLs datasets (Supplementary Figure S1A). β-diversity 
was also performed for ASD subgroups to evaluate confounders 
affecting GM volatilome distribution, according to (i) age, (ii) gender, 
(iii) presence and absence of GI symptoms, (iv) autism symptoms 
severity, and (v) disposition to be PEs or not.

For age (≤5 years [23 ASDs and 11 CTRLs] and > 5 years old [18 
ASDs and 24 CTRLs]), Bray Curtis dissimilarity plots, including 
CTRLs (Supplementary Figure S1B) or not (Supplementary Figure S1C), 
were characterized by a statistically significant distance (p ≤ 0.05). 
Gender subgroups provided statistically different β-diversity 
representation (p = 0.047) (Supplementary Figure S1D).

For presence (30 ASDs) and absence (11 ASDs) of GI symptoms 
(Supplementary Figure S2A) and disposition to be PEs (24/41) or not 
(17/41) (Supplementary Figure S2B), Bray Curtis dissimilarity plots, 
including CTRLs, were characterized by a statistically significant 
distance (p = 0.001).

PCA, performed on the filtered subset of 110 VOCs from 76 
samples (41 ASDs and 35 CTRLs), identified two distinct clusters 
mainly separated along the first two principal components, PC1 and 
PC2, with a percentage of variances explained of about 29% 
(Figure 1A; Supplementary Table S3).

A stable PLS-DA (Figure  1B), characterized by 0.15 index of 
explanation ability and 0.637 of model predictive performance, 
assessed well the separation of ASDs and CTRLs along C1 and C2 
component directions (Figure 1B). PLS-DA loadings of the component 

https://doi.org/10.3389/fmicb.2023.1287350
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Vernocchi et al. 10.3389/fmicb.2023.1287350

Frontiers in Microbiology 05 frontiersin.org

C1 (Supplementary Figure S3) were 27 VOCs (Supplementary Table S4) 
associated with CTRLs and 83 with ASDs.

By exploiting univariate analysis, amongst the 32 statistically 
significant VOCs (FDR adjusted p value ≤0.05), represented below in 
the heat map (Supplementary Figure S4A), 27 VOCs were associated 
to ASDs and five VOCs to CTRLs, as quantitatively represented by the 
Fold Change (FC) bar plots (Figure 2).

In particular, the VOCs associated with ASDs were methyl-isobutyl 
ketone (p = 0.0001), acetic acid (p = 0.001), indole (p = 0.02), 
benzeneacetaldehyde (p = 0.02), 3-methyl indole (i.e., skatole) (p = 0.01), 
anethole (p = 0.0001), 3-methyl butanoic acid (p = 0.01), phenyl ethyl 

alcohol (p = 0.006), acetone (p = 0.05), 2-methyl propanoic acid 
(p = 0.02), 1-pentanol (p = 0.001), octadecanal (p = 0.001), estragole, 
(p = 0.006), 2-hexanone (p = 0.05), 3-methyl 1-butanol (p = 0.05), 
1-butanol (p = 0.05), 5-methyl hexanal, (p = 0.01), 1-octadecene 
(p = 0.01), eicosane (p = 0.0003), 1-heptadecene (p = 0.001), o-cymene 
(p = 0.03), 2,5-dimethyl, 2,5-hexanediol (p = 0.02), 2-hexadecanol 
(p = 0.02), 1-tridecene (p = 0.05), nonadecane (p = 0.01), 6,10-dimethyl-
2-undecanone (p = 0.02), and 2-methyl 1-hexadecanol (p = 0.01), and 
VOCs associated with CTRLs were iso amyl alcohol (p = 0.004), butyl 
acetate (p = 0.004), methyl acetate (p = 0.01), 1-heptanol (p = 0.02), and 
2,6-dimethyl 4-heptanone (p = 0.0002).

FIGURE 1

PCA and PLS-DA analyses of gut volatilome. (A) PCA. (B) PLS-DA score plot of VOCs detected in fecal samples collected from ASD patients and 
CTRLs.
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Moreover, 24/27 VOCs (i.e., methyl isobutyl ketone, anethole, 
eicosane, 1-heptadecene, octadecanal, acetic acid, estragole, phenyl 
ethyl alcohol, 1-octadecene, 5-methyl hexanal, 1-pentanol, 3-methyl 
butanoic acid, 3-methyl indole, 2,5-dimethyl 2,5-hexanediol, 2-methyl 
propanoic acid, benzeneacetaldehyde, indole, 2-hexadecanol, 
o-cymene, 1-tridecene, acetone, and 1 butanol, 3-methyl 1 butanol, 
and 2-exanone), characterized by FC > 2, and 4/5 VOCs (i.e., methyl 
heptanone, butyl acetate, methyl acetate, and 1-heptanol), 
characterized by FC < −2, resulted in the most and least abundant, 
respectively, for the ASDs dataset (Supplementary Figure S4B).

The distribution of the 32 statistically significant VOCs (FDR 
adjusted p value ≤0.05), describing the ASDs vs. CTRLs comparison, 
and represented as hierarchical clustering heatmap, is reported in 
Supplementary Figure S4A. Indeed, a clear separation between 
patients and neurotypical subjects was revealed and reported as two 
major clusters, while two sub-clusters (namely A and B) were 
associated only to the ASD set.

Looking at anamnestic data, age (≤5 and > 5 years) and gender did 
not affect VOCs hierarchical clustering (Supplementary Figure S5). 
However, clinical data such as GI and severity symptoms, and 
disposition to be Pes, affected clustering topography. In particular, 
subjects without GI symptoms were mainly characterized by high 
expression of 1-tridecene, while subjects with high ASD severity 
symptoms were characterized by 2-butanamine and PEs by the most-
abundant 3-methyl-1-butanol (Supplementary Figure S6).

Concerning the univariate analysis, anamnestic and clinical 
features were also considered to identify possible biomarkers 
associated with the patients’ stratification features. Hence, patients 
were grouped according to age (≤5 and > 5 years old) and gender. For 

age, nine metabolites (i.e., p-cresol, hexanoic acid, 2-octanone, 
octadecane, benzeneacetaldehyde, phenol, 2-nonanol, dimethyl 
disulphide, and butanoic acid) were statistically different between the 
two age subgroups and were all related to patients over 5 years of age 
(Supplementary Figure S7).

Regarding gender, statistically significant differences were 
reported only for 3-hexanone within the female subgroup, and for 
1-heptadecene within the male subgroup (data not shown). By 
grouping patients for PEs vs. noPEs, 1-butanol-3-methyl was 
related to PE ASDs, while 2-nonanol, estragole, anethole, 
2-hexanone, and citral were associated with noPE ASDs (p ≤ 0.05) 
(data not shown). By considering probiotics supplementation, four 
metabolites (i.e., hexanal, heptanal, 2-octanol, and 1-butanol-3-
methyl) were statistically associated with ASD with probiotics 
supplementation and only one (i.e., octadecane) to ASD without 
probiotics supplementation (Supplementary Figure S8A). 
Moreover, 2-tridecanone was related to ASD patients treated with 
antibiotics, while p-cresol and benzaldehyde were statistically 
associated to the ASD subgroup without antibiotics administration 
(Supplementary Figure S8B).

The comparison between ASD patients with and without GI 
symptoms also demonstrated statistically significant differences 
(p ≤0.05) for 2-tetradecanol, 2-pentadecanone, and 2-heptanol-5-
methyl associated to ASDs with GI symptoms, however, 1-tridecene, 
heptadecane, 1-hexadecanol-2-methyl, and indole (p = 0.054) were 
related to ASDs without GI symptoms (Figure 3A).

Amongst neuropsychological features and according to autism 
severity (i.e., severe or mild, corresponding to high or low symptoms, 
respectively), 2,3-butanedione, nonadecane, indole, and benzyl 

FIGURE 2

Bar plot of differential abundance of VOCs represented by Log2 of Fold Change (FC) for ASDs e CTRLs datasets. Bar plot represents the LogFC scores 
of differential abundance of VOCs (p-value adjusted ≤0.05, Mann–Whitney test). Color scale represents values of adjusted p value.
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FIGURE 3

Differential abundances of VOCs (p-value  ≤  0.05, Mann–Whitney test) for ASDs subgrouped for GI and severity symptoms, respectively. (A) ASD with vs. 
ASD without GI symptoms. Red histograms refer to ASDs with GI; light blue histograms refer to ASD without GI. (B) ASDs with high autism vs. low 
severity symptoms. Violet histograms refer to high ASD symptoms; orange histograms refer to low ASD symptoms.
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alcohol all demonstrated statistical significance all of which are 
associated with ASD with low symptoms (Figure 3B).

Regarding behavioral problems, the evaluation of CBCL_INT and 
CBCL_EXT scale-based values, each including ASD patients with risk 
for behavioral problems, ASD patients with the presence of clinical 
symptoms, and ASD patients with no clinical symptoms, was exploited 
to consider the comparison between ASD patients with the presence 
of clinical symptoms vs. ASD patients with no clinical symptoms.

In particular, between CBCL_INT of ASDs with the presence of 
clinical symptoms (23/38) vs. ASDs with no clinical symptoms (8/38), 
the only statistically significant difference (p ≤0.05) was seen with 
2-pentanamine, which was associated with ASDs with no clinical 
symptoms (Figure  4A). By considering the comparison between 
CBCL_EXT of ASDs with the presence of clinical symptoms (5/38) vs. 
ASDs with no clinical symptoms (26/38) (p ≤0.05), only p-cymene 
was statistically significant and related to CBCL_EXT of ASDs with 
the presence of clinical symptoms (Figure 4A). By considering the 
only CBCL_INT and CBCL_EXT risk subgroups, for the comparison 
between CBCL_INT risk group (7/38) vs ASD with no clinical 
symptoms (8/38), only 2-pentanone and 2-butanone were statistically 
associated (p ≤0.05) with the CBCL_INT risk group (Figure 4B). In 
addition, in the comparison between CBCL-EXT risk subgroup (7/38) 
vs. ASD with no clinical symptoms (26/38), 2-decanol, butanoic acid 
ethyl ester, hexanoic acid, propanoic acid, 2-tridecanol, butanoic acid 
propyl ester, butanoic acid butyl ester, and 2-pentadecanone were 
statistically significantly different, and were associated with the 
CBCL-EXT risk subgroup, while 1-heptadecene, 1-propanol, and 
heptadecane were related to ASDs with no clinical symptoms 
(Figure 4C).

For the other neuropsychological features, in particular 
pharmacological treatment and presence of epilepsy symptoms, a very 
low number of patients receiving pharmacological treatment and 
affected by epilepsy were present in the cohort, 6/41 and 3/41, 
respectively. Hence, comparisons were not robust (data not shown). 
Moreover, by considering comparisons based on cognitive level, 
reported as IQ/DQ with and without cognitive impairment or 
developmental delay, the statistically significant differences (p ≤ 0.05) 
were seen in 2,3 butanedione, 1-heptadecene, and 3-hexanone for the 
ASD group without cognitive impairment or developmental delay, and 
2-tetradecanone for the ASD group with cognitive impairment or 
developmental delay (Supplementary Figure S9).

The distribution of metabolites across neurotypical and ASD 
subgroups was visualized as UpSet plot (Figure  5; 
Supplementary Table S5). The UpSet plot shows the distribution of 
statistically significant VOCs in the ASD subgroups and CTRL 
condition. By considering a wide number of features, we have shown 
that the metabolites associated were only from 1 to 3. Conversely, for 
risk CBCL_EXT and CTRLs, the number of metabolites increase to 5 
for both conditions (Supplementary Table S5). For patients with ASD, 
17 metabolites were exclusively associated (Supplementary Table S5).

3.3 Metabolic pathways acting as 
discriminant players of GM in ASD and 
neurotypical subjects

An MSEA was performed to identify the most statistically 
significant discriminant pathways between ASD patients and CTRLs. 
The discriminant pathways included ketone bodies, chemical 

molecules produced from fatty acids by the liver (ketogenesis), amino 
sugars, pyruvate, aspartate, glyoxylate/dicarboxylate, butyrate, sulfate/
sulfite and phenylalanine metabolism, ethanol degradation, fatty 
acids biosynthesis, and glycolysis/gluconeogenesis (Figure  6; 
Supplementary Table S6). Among all these pathways, fatty acid 
metabolism (p = 0.036; impact = 0.025), generated by SMPDB, pyruvate 
(p ≤ 0.001; impact = 0.061), and phenyalanine metabolism (p ≤ 0.001; 
impact = 0.140), provided by the KEGG database, was most responsible 
for the separation between groups (Supplementary Figure S10; 
Supplementary Table S6).

3.4 Network correlation between microbial 
and metabolite signatures

The 589 OTUs and 110 VOCs from ASD and CTRL datasets were 
identified and processed to select the most important GM taxonomic 
lineages and VOC network correlations. The two datasets, including 
OTUs and VOCs filtered as statistically significant, were merged and 
a correlation matrix was obtained (Supplementary Table S7). Only 
statistically significant correlations were reported, and disconnected 
nodes were removed. At the end of the data processing, 38 OTUs and 
31 VOCs were included in the network analysis (Figure 7). From this 
was formed four main groups: a major one, a small one, a triplet, and 
a quintet of couples (Figure 7). The small group was composed of 
OTUs and VOCs all with positive correlations, including 
Carnobacteriaceae, Actinobacillus, Pepetostreptococcaceae, pentanoic 
acid, 2.6-dimethyl-pyrazine, nonadecane, and 3-methyl-butanoic acid. 
The triplet showed two VOCs, 2-heptanone and 1-pentanol, and only 
one single OTU, Pirellulaceae, with positive correlations. Finally, the 
quintet was composed of OTUs-VOCs couples including 
Bifidobacteriaceae/2-dodecanol, Serratia/benzyl alcohol, Roseburia/1-
butanol, Firmicutes/butanoic acid, and Pasteurellaceae/3-methyl 
1-butanol with a positive correlation. Interestingly, in the major group, 
Bifidobacterium was negatively correlated with indole and skatole 
(Supplementary Table S7; Figure 7). By considering only the ASD 
patients group, for which 140 statistically significant correlations 
amongst OTUs and VOCs were obtained, 54 correlations were 
negative and 86 positive (Supplementary Table S7).

3.5 Integrated network WGCNA analysis 
amongst OTUs, VOCs, and clinical data

To understand the potential correlation between the GM 
volatilome, ecology, and patients’ clinical traits, WGCNA analysis was 
applied to identify VOC and OTU biomarkers. Firstly, sample 
clustering was conducted to detect outliers. All samples, namely 41 
ASDs and 35 CTRLs, passed the cut-off threshold and two main 
clusters were identified, the first one mainly corresponding to ASDs 
and the second one mainly including CTRLs (Figure  8A). The 
weighted correlation network identified three network modules 
labeled by color (Figure 8B) with the grey module grouping all nodes 
with outlying profiles and, henceforth, not considered. Tests of 
association between each clinical trait or feature (i.e., disease 
conditions, gender, age, probiotics, antibiotics, GI symptoms, 
nutritional habits, birth modality, feeding, epilepsy, autism severity, 
neurological screening CBCL scales, IQ/DQ, IgA, zonulin, and 
lysozyme) and each ME were performed and represented by heatmap 
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FIGURE 4

Differential abundances of VOCs between ASDs with clinical symptoms and ASD with risk of clinical symptoms, reported as CBCL-based score, vs ASD 
with no clinical symptoms. (A) CBCL-INT and CBCL-EXT, both related to ASDs with presence of clinical symptoms vs ASDs with no clinical symptoms. 
(B) CBCL-INT risk subgroup vs ASDs with no clinical symptoms. (C) CBCL-EXT risk subgroup vs ASDs with no clinical symptoms. Colors: (A) Blue, 
CBCL-INT and CBCL-EXT including ASDs with clinical symptoms; green, ASDs with no clinical symptoms; (B) and (C) red, CBCL-INT and CBCL-EXT 
including with ASDs with risk of clinical symptoms; green, ASDs with no clinical symptoms. p  ≤  0.05 based on Mann–Whitney test.
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(Figure 8C). For each node in each module, the values of MM and BS, 
with respect to each significant trait or condition, were calculated 
(Supplementary Table S8). Interestingly, the turquoise module 
appeared to show the highest statistically significant (positive) 
correlations with ASD vs. neurotypical condition and epilepsy 
(Figure 8C). These correlations predominantly included VOCs for 
both ASDs and CTRLs (Supplementary Table S8). The largest number 
of significant biomarkers (i.e., 23) of ASDs were, among others, methyl 
isobutyl ketone, acetic acid, acetone, indole, iso amyl alcohol, skatole, 
phenol, and butanoic acid (Supplementary Table S8). The few 
statistically significant OTUs involved in the correlation (p ≤ 0.05) 
(Figure  8D), were mainly abundant in CTRLs rather than ASDs. 
Indeed, the unique OTUs involved in the turquoise module, and 
assigned by BS, were Erysipelotrichaceae, Lachnospiraceae, and the 
genus Coprococcus, and were associated to CTRLs 
(Supplementary Table S8), confirming the previous work on ecological 
patterns (Vernocchi et al., 2022).

3.6 Gut microbiota VOCs: role as 
predictors

To investigate if the GM volatilome of ASD patients could 
be predictive of neurodivergence, classification analyses based on ML 

were exploited. The most important features of the GM volatilome, 
able to classify 80–89% of patients compared to CTRLs, were identified 
based on the top performing five models: GaussianNB, 
ExtraTreesClassifier, AdaBoostClassifier, MLPclassifier, and 
HistGradientBoostingClassifier. The latter was the best performing 
model, characterized by an accuracy of 89%. The VOCs associated 
with ASDs were methyl isobutyl ketone, benzeneacetaldehyde, phenyl 
ethyl alcohol, ethanol, butanoic acid, octadecane, acetic acid, skatole, 
and tetradecanal (Figure 9).

Receiver operating characteristic (ROC) analysis and logistic 
regression models were used to observe the association of VOCs with 
ASD severity, particularly by considering the metabolites with 
statistically significant changes between ASD patients and CTRLs. 
Amongst the 32 VOCs filtered by Wilcoxon test and shown in the heat 
map (Supplementary Figure S4A), of which 27/32 were most abundant 
in ASDs and 5/32 in CTRLs (Supplementary Figure S4B), 12 VOCs 
were characterized as statistically significant (p ≤ 0.05), and all of them 
were most abundant in ASD patients. Moreover, based on the logistic 
regression model, 6/12 VOCs were associated with ASD. Positive odds 
for each VOC were 1.33 (methyl isobutyl ketone), 1.40 (phenyl ethyl 
alcohol),1.18 (indole), 1.22 (3-methyl indole), 1.20 (acetic acid), and 
1.31 (benzeneacetaldehyde), suggesting that these six VOCs were 
accurate as predictors in discriminating the ASD group 
(Supplementary Figure S11).

FIGURE 5

Upset plot of VOCs distribution in ASD subgroups and condition CTRL. Upset plot shows the distribution of statistically significant VOCs in the ASD 
subgroups and CTRL condition. The red/orange bar charts at the top represent the intersection size in the subgroups, while the grey bar charts 
represent the number of VOCs included in each ASD subgroup or in the CTRL condition. Legend: with CI/DD: presence of cognitive impairment/
developmental delay; without CI/DD: absence of cognitive impairment/developmental delay.
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4 Discussion

The bioavailability and utilization of substrate-derived metabolites 
in the gut are affected by microbial communities that have an impact 
on the host’s metabolic function (Neis et  al., 2015). Specifically, 
saccharolytic and proteolytic fermentation exerted by gut microbes 
contributes to the production of branched chain fatty acids (BCFA) 
and SCFAs, alcohols, ketones, ammonia, poly- and mono-amines, 
indoles, phenols, sulfide, and others metabolites (Jardon et al., 2022).

This research aims to deepen our understanding of how 
microbiota-derived metabolites interact with the host, and eventually 
compromise or maintain intestinal homeostasis, potentially affecting 
neurodevelopment and affecting the onset and progression of 
neurological disorders such as ASD (Peralta-Marzal et al., 2021). In 
this context, untargeted metabolomics may contribute to biomarker 
discovery, highlighting how the GM metabolome may indeed 
influence neurological disorders (Schwarcz and Stone, 2017; Su et al., 
2022; Ye et al., 2022).

The human volatilome included a wide mixture of volatile releases 
produced by the human body and its microbiomes (Elmassry and 
Piechulla, 2020). Particularly, microbes make VOCs as products of 
main and ancillary metabolic pathways. Crosswise microbial 
kingdoms, the metabolism of lipids, sugars, amino acids, sulfur- and 
nitrogen-compounds, and aromatic compounds, and their metabolism 
contribute to the production of thousands of VOCs (Ryu et al., 2020; 
Weisskopf et al., 2021).

Hence, several studies have utilized untargeted screening of 
volatile metabolites to discriminate patient and control groups. 

However, common microbial metabolites have also been detected 
through different disease-associated groups, and several studies have 
evidently demonstrated translation of in vitro microbial volatilomics 
through clinical samples (Elmassry and Piechulla, 2020).

The current study regards the GM volatilome profile of 41 children 
with ASD, fully characterized from a neuropsychological point of 
view, in terms of symptom severity and comorbidities, such as GI 
functional symptoms (Chaidez et al., 2014; Madra et al., 2021), and 
compared to 35 neurotypical subjects, referred to as CTRLs.

Specifically, in our study, the GM core volatilome for all ASD 
patients was characterized by over-production of 1-pentanol, 
1-butanol, phenyl ethyl alcohol; benzeneacetaldehyde, octadecanal, 
tetradecanal; methyl isobutyl ketone, 2-hexanone, acetone; acetic, 
propanoic, 3-methyl-butanoic and 2-methyl-propanoic acids; indole 
and skatole; and o-cymene. The GM volatilome of neurotypical 
subjects was mainly characterized by butyl acetate and methyl acetate 
esters, consistent with previous studies (De Angelis et al., 2013, 2015). 
SCFAs, particularly butanoic and acetic acid, can be produced by 
Faecalibacterium, Roseburia, Sutterella, and Prevotella (Vernocchi 
et  al., 2022), all of which are starch-degrading and carbohydrate-
fermenting bacteria, and which may actually preserve GM ecology 
(Tamanai-Shacoori et al., 2017; Gálvez et al., 2020). SCFAs do not act 
as a neuroactive substances class, but they play a pivotal role in 
preserving neurotransmitters (Coretti et  al., 2018), inducing 
modifications in gene expression related to neurotransmitter systems, 
neuronal cell adhesion molecules, FA and lipid metabolism, 
inflammation, and mitochondrial function oxidative stress, all having 
possible relevance in autism (Nankova et al., 2014).

FIGURE 6

Metabolic Set Enrichment Analysis (MSEA) showing the most altered metabolic pathways in ASDs. (A) MSEA obtained by interrogation of SMPDB 
database. (B) MSEA obtained by interrogation of KEGG database. The length of each bar is dependent on the fold enrichment; the color intensity (from 
yellow to red) is proportional to statistical significance.
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Indeed, in animal models it has been detected that low doses of 
butyrate produce positive effects on the brain and behavior, while high 
doses induce a stress-like response (Gagliano et al., 2014; Kratsman 
et al., 2016; Coretti et al., 2018). In our patient cohort, butanoic acid 
was detected by WGCNA and ML as a biomarker associated with 
ASD, while the univariate analysis identified it as a biomarker 
associated with ASD patients specifically over 5 years of age, consistent 
with the hypothesis of pathogenetic effects triggered by butanoic acid 
in autism (Gagliano et  al., 2014). Moreover, a bi-directional 
perturbation of the dopaminergic pathways by both propanoic and 
butanoic acids has been described, suggesting that a similar 
dysregulation of brain catecholaminergic system occurs, as a response, 
in the presence of excessive concentrations of SCFA (Nankova 
et al., 2014).

In our patient cohort, propanoic acid was associated with the 
CBCL_EXT scale for ASDs with risk of symptoms, compared to ASDs 
without clinical symptoms, hence suggesting a role for SCFAs in the 
manifestation of behavioral problems. Since propanoic acid passes the 
gut-blood and blood–brain barriers, it could travel from the intestine 
to the CNS (Mepham et al., 2019). Moreover, propanoic acid has been 
shown to induce hyperactivity, monotonous behaviors, impaired 
social behavior, increased repetitive locomotor activity, caudate 
spiking, and an innate neuroinflammatory response in ASD patients 
(Zwaigenbaum et al., 2005; MacFabe, 2012, 2015; Liu et al., 2019; 
Mirzaei et al., 2021). High concentrations of SCFA also downregulate 
the expression of genes involved in the biosynthesis and degradation 
of dopamine, norepinephrine, and serotonin (Ebert et  al., 1997). 
Particularly, butanoic acid operates as a powerful inhibitor of histone 

deacetylase in the regulations of the neurotransmitters norepinephrine, 
dopamine, and epinephrine, and also modulates the inflammatory 
and oxidative conditions of intestinal mucosa (MacFabe, 2015). It is 
possible to assume that epigenetic regulation of gene expression via 
GM-derived SCFAs could result in “loss” or “increase” functions and 
in the modification of pathways/networks, such as the genetic 
modifications related to ASD (Nankova et al., 2014).

Furthermore, tryptophan derivatives such as indole and skatole 
were significantly increased (p ≤ 0.05) in children with ASD, 
particularly skatole, and thus were also identified as biomarkers by the 
ML predictive model. Only a small proportion of ingested tryptophan 
can be metabolized by human host cells (kynurenine pathway and 
serotonin pathway) and the remaining part by symbiotic intestinal 
bacterial (indole and its derivatives pathway) (Gostner et al., 2020; 
Konopelski and Mogilnicka, 2022). Recent research outcomes are 
providing evidence that GM-derived metabolites from tryptophan 
share the biological properties of their precursors (Konopelski and 
Mogilnicka, 2022). It has been hypothesized that indole is an inter-
kingdom signal in gut epithelial cells, reinforcing the host cell-barrier 
assets (Bansal et al., 2010). It is derived from tryptophan, produced by 
several microbes (i.e., Bacteroides, Clostridium, Desulfovibrio) 
colonizing the human GI tract (Persico and Napolioni, 2013), and is 
a critical precursor of physiologically important molecules, such as 
serotonin and melatonin (De Angelis et al., 2013).

Consistent with this evidence, it was found that indole and skatole 
concentrations were increased in children with ASD (De Angelis et al., 
2013). However, indole was more represented in ASD subgroups 
characterized by low severity symptoms and without GI symptoms, 

FIGURE 7

Correlation network analysis between OTUs and VOCs. In each network, nodes represent the OTUs (circles) and the VOCs (triangles), and an edge 
between two nodes occurs if they exhibit a statistically significant correlation (p  ≤ 0.05). The color of the network edges indicates positive (red) and 
negative (blue) correlations.
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hence suggesting a GI protective role and a quenching effect on the 
neuropsychological conditions, that could act as a kind of protective 
agent. Particularly, indole and its derivatives seem to increase the 
integrity of the epithelial barrier and function of tight junctions 
(Bansal, 2012; Shimada et al., 2013) and to reduce colitis related to 
Citrobacter rodentium and Candida albicans infection (Bommarius 
et al., 2013). Moreover, GM indole derivatives may influence the level 
of serotonin precursors that affect the amount of serotonin in the 
brain (Agus et al., 2018). However, high levels of oxindole and isatin, 
after the epithelial and hepatic enzymatic digestion of indole in blood 
and urine, respectively, have been detected in hepatic encephalopathy 
and Parkinson’s disease (Hamaue et al., 2000).

Therefore, it has been hypothesized that an excessive production 
of indole by GM, which may be due to a gut dysbiosis or to specific 
GM composition signatures, could emerge in increased brain 
exposure to oxindole and isatin, affecting behavior and thus defining 
another pathway whereby indole could act as a signal to the brain and 
cause behavior alterations (Jaglin et al., 2018). In addition, it has been 
suggested that subjects whose GM is highly inclined to produce indole 
could be more likely to develop anxiety or depressive disorders (Jaglin 
et al., 2018). Moreover, the principal communication pathway between 
gut bacteria and the brain is recognized to be the vagus nerve (Bravo 
et al., 2011; Kelly et al., 2015), and the metabolites originating from 

the GM, such as butyrate, seem to stimulate the vagus nerve (Stilling 
et al., 2016). Thus, it is conceivable that this route represents a possible 
signaling pathway for indoles to the brain (Jaglin et al., 2018).

Finally, other potential metabolic biomarkers in ASD were 
represented by alcohols (ethanol, phenyl ethyl alcohol, 1-pentanol, 
3-methyl-1-butanol, etc.). Alcohols promote dysbiosis and gut 
permeability and may alter the mucosal tight junctions and the 
immune activity in the GI tract, leading to a modification of gut 
barrier integrity, which allows microbial products such as indoles and 
FA to cross into the circulatory system (Samuelson et  al., 2019). 
Alcohols were also reported to alter the GM composition, stimulating 
the growth of Gram-negative facultative anaerobes producing 
exotoxins (i.e., lipopolysaccharides, LPS) (Duan et al., 2019). These 
products, via toll-like receptors (TLRs), may enhance inflammatory 
activity, fibrosis, and cell death, probably being mediators of alcohol-
related organ damage (Carpita et al., 2022). In addition, aldehydes 
such as benzenacetaldehyde were thought to be  involved in the 
phenylalanine pathway (Piras et al., 2022)1 and have been highlighted 
by the ML approach as potential ASD biomarkers.

1 https://www.genome.jp/pathway/phs00360

FIGURE 8

Weighted correlation network analysis (WGCNA) of OTUs, VOCs, and clinical data of ASD patients and CTRLs. (A) Clustering dendrogram of ASD and 
CTRL samples. The horizontal bars represent how the ASD and CTRL condition relates to the sample dendrogram: white annotation refers to CTRLs 
(low distance values) and red to ASD patients (low distance values). (B) WGCNA modules. The bars represent the size (i.e., number of nodes) of each 
WGCNA-detected module, colored with different module labels (i.e., grey, turquoise, blue). (C) associations between clinical trait or feature and ME, 
represented by correlation heatmap. In the heat map, each row corresponds to a given ME and each column to a trait or feature of interest. Each cell 
contains the correlation and (within the round brackets) the associated p value between them. The heatmap’s color-coded by correlation according to 
the color legend. (D) WGCNA turquoise module composition. Pie charts represent the numbers of 16 OTUs (one phylum, five families and 10 genera) 
and 66 VOCs falling in the module.
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Aldehydes and ketones produced by bacteria have been reported 
to have both beneficial and harmful effects (Salaspuro, 1997; Mu et al., 
2018). These metabolites can be generated endogenously as a result of 
oxidative stress via lipid peroxidation, as they are dietary components, 
and have been related to diabetes, cancer, and neurodegenerative 
disorders (Xie et al., 2016).

Specifically, for methyl isobutyl ketone, the highest ketone 
associated with ASD, we assume that its presence probably derived 
from the gut microbial imbalance of patients. This metabolite has also 
been described for nonalcoholic fatty liver disease (NAFLD)/
nonalcoholic steatohepatitis (NASH) (Del Chierico et al., 2017) and 
for Juvenile Idiopathic Arthritis (JIA) (Vernocchi et al., 2020).

Regarding the enrichment pathway analysis, several pathways 
overexpressed in ASD patients, such as ketone body metabolism, 
butyrate, sulfate/sulfite and phenylalanine metabolism, and FA 
biosynthesis, actually characterized the patient group. Ketone bodies 
are produced primarily in the liver from β-oxidation and are 
transported to extrahepatic tissues for final oxidation. The principal 
ketone bodies are represented by acetoacetic acid, β-hydroxybutanoic 
acid, and acetone, which play key roles as signaling molecules, affect 
protein post-translational modification (PTM), and act as mediators 
of inflammation and oxidative stress (Puchalska and Crawford, 2017).

Hence, ketone body metabolism can be  involved in the 
inflammation and in the oxidative stress that may be  one of the 
mechanistic origins of neuroprogressive disorders (i.e., depressive and 
bipolar disorder or schizophrenia) (Guo et al., 2022), hence reflecting 
advanced neuroanatomical and cognitive degeneration, caused by 
several factors such as inflammation, peripheral, brain, and oxidative 
stress, and mitochondrial dysfunction correlated with tryptophan 
metabolism disorders (Berk et al., 2011).

Furthermore, the high expression of phenylalanine metabolism 
suggests some association between ASD and unusual gut bacterial 

metabolism of phenylalanine, as inferred by Vernocchi et al. (2022), 
in which the overexpression of quinate/shikimate dehydrogenase in 
children with ASD, involved in the production of aromatic AA, such 
as L-phenylalanine and L-tryptophan by Proteobacteria, were inferred. 
Additionally, an increase of phenylacetylglycine has been detected in 
the urine of children with ASD children, indicating a consistent 
increase of gut permeability that could be linked to phenylalanine 
accumulation, stimulated by bacterial aromatic amino acid 
biosynthesis via the shikimate pathway (Mir et al., 2015).

Phenol compounds were increased in the stool of children with 
Pervasive Developmental Disorder Not Otherwise Specified (PDD-
NOS) and, especially, ASD (De Angelis et al., 2013). Consistently with 
this evidence, our data showed phenol and p-cresol were higher in 
ASD patients (p ≥ 0.05) compared to CTRLs. These are metabolites 
deriving from amino acids (AAs) such as tyrosine and phenylalanine 
(Vanholder et  al., 1999). Particularly, p-cresol is hypothesized to 
exacerbate ASD severity and gut disorders, in the presence of intestinal 
infection, antibiotic consumption, and atypical intestinal permeability 
considered as potential p-cresol excess sources in ASD (Persico and 
Napolioni, 2013).

To date, the pathophysiology of ASD is still unclear and there are 
no specific treatments designed for it. Taken together with the 
previously published ecological study on children with ASD 
(Vernocchi et  al., 2022), it seems that some microbial taxa (i.e., 
Bacteroidetes, Proteobacteria, Roseburia, Sutterella, Prevotella, 
Faecalibactrium, etc.) and some VOC (i.e., indoles, skatole, phenol, 
SCFAs, benzeneacetaldehyde, methyl isobutyl ketone, and ethanol) 
levels might be  potential biomarkers to discriminate ASDs from 
neurotypical children. Moreover, the results of our cross-cohort 
analysis suggest that influencing factors, particularly host age, GI 
hallmarks, and autism severity, should always be  taken into 
consideration to establish GM-related biomarkers of disease.

FIGURE 9

Significant metabolites selected by the classification model HistGradientBoostingClassifier. The bar charts represent the importance scores of each 
VOC in the ASD prediction models compared to CTRLs.
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Finally, it is possible to assume that autism pathogenesis is related 
to both gut microbial ecosystem ecology and to signaling molecules 
of bacterial origin (Finegold et al., 2002).

Overall, our findings highlight the presence of altered microbial 
metabolites, as well as potential neuroactive effects, by which 
gut-derived SCFAs, indole derivatives, and other molecules could 
impact disease onset and progression. Indeed, indole, skatole, and 
butanoic and propanoic acids need to be re-assessed in this disorder as 
potential ASD phenotypes, related to GM metabolic activity, and, hence, 
to molecules that may play a potential role as postbiotic treatments.

All GM-related computational approaches, based on prediction 
capabilities of ML-based models, may play a pivotal role for the 
development of new strategies for ASD diagnostic assistance with a 
smart approach, such as clinical decision support systems (CDSSs) 
(Ristori et al., 2020). The progressive identification of new metabolites 
acting as biomarker candidates, combined with patient genetic and 
clinical data and environmental factors, including GM, would bring 
us towards advanced CDSSs, assisted by ML models for advanced 
ASD-personalized medicine, based on omics data integrated into 
electronic health/medical records. Furthermore, new ASD screening 
strategies based on GM-related predictors might be used to improve 
ASD riskiness assessment. Enhanced understanding of GM-related 
metabolites may bring new insights into ASD onset and progression, 
as well as leading to the discovery of new risk predictors.
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