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Hypoxia represent a condition in which an adequate amount of oxygen supply 
is missing in the body, and it could be caused by a variety of diseases, including 
gastrointestinal disorders. This review is focused on the role of hypoxia in the 
maintenance of the gut homeostasis and related treatment of gastrointestinal 
disorders. The effects of hypoxia on the gut microbiome and its role on the 
intestinal barrier functionality are also covered, together with the potential 
role of hypoxia in the development of gastrointestinal disorders, including 
inflammatory bowel disease and irritable bowel syndrome. Finally, we discussed 
the potential of hypoxia-targeted interventions as a novel therapeutic approach 
for gastrointestinal disorders. In this review, we  highlighted the importance of 
hypoxia in the maintenance of the gut homeostasis and the potential implications 
for the treatment of gastrointestinal disorders.
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1. Introduction

Oxygen is essential for mammals to survive, including humans. It is also a key factor in 
several biochemical reactions involved in the normal physiology of the body. At the same time, 
it may be also converted into reactive oxygen species (ROS), which was reported to have negative 
impact on cells. Hypoxia-inducible factor (HIF) could activate gene transcription and modulate 
the cellular oxygen levels and metabolic activity (Choudhry and Harris, 2018), playing a role in 
the oxygen sensing within mammalian cells (Agani and Jiang, 2013), demonstrated by 
investigations about the erythropoietin regulation. Since its discovery, the number of known 
HIF and hypoxia-regulated target genes increased, including the ones encoding proteins of 
several and important biological processes, such as erythropoiesis, angiogenesis, glycolytic 
pathway, glucose transport, metastasis, and cell survival (Cummins et al., 2008; Colgan and 
Eltzschig, 2012). As a result, HIF was identified as the most involved factor in the regulation of 
the cellular responses to oxygen deprivation (Agani and Jiang, 2013). Indeed, the HIF and its 
related signaling pathways are essential to facilitate the metabolic adaptation to hypoxia-induced 
stress (Jin et al., 2018; Zhong et al., 2020). Additionally, HIF is involved in many important 
physiological processes such as cardiovascular generation (Semenza, 2014), tumor progression 
(Palazon et al., 2017), and pulmonary hypertension (Luo et al., 2019). Over the past decade, the 
importance of intestinal microbiota in human physiological and metabolic functions has been 
widely recognized. At the same time, research shows that HIF also plays an important role in 
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regulating intestinal function (Kumar et al., 2020). Specifically, HIF-1α 
facilitates the host-microbe crosstalk maintaining the gut homeostasis 
(Fan et al., 2015) as it up-regulates the tight junction proteins, thereby 
improving the integrity of the epithelial barrier, leading to a resolution 
of gut inflammation while facilitating the microbial colonization 
(Kumar et al., 2020). The mucin induced by HIF-1α promotes the 
colonization of commensal bacteria within the mucus layer, an 
essential component of the innate immune system, forming a 
defensive physical barrier for pathogens at the intestinal epithelium 
level (Kang et al., 2022). Substantial evidence indicated that HIF-1α 
contributed to the development of disease, and that it can 
be considered as a promising therapeutic target due to its involvement 
in the intestinal homeostasis maintenance. This review 
comprehensively discussed the HIF-1α structure and function, the 
associated signaling pathways, its role in the disease development, as 
well as the impact on the intestinal homeostasis.

2. Structure and function of HIF

Semenza et al. (1991), Ratcliffe (2007), and Pugh et al. (1991) 
discovered a transcriptional enhancer able to control the expression 
levels of erythropoietin, which is in turn regulated by the oxygen 
concentration as it is induced under hypoxic conditions. The hypoxia-
inducible gene expression is regulated by a group of proteins 
recognized as hypoxia-inducible factors (HIFs). In 1992, Semenza 
et al. (1991) found that HIF-1 is composed of two proteins (HIF-1α 
and HIF-1β) that mediates the body adaptation to hypoxic conditions 
through red blood cell and angiogenesis. There are five major isoforms 
of HIFs, including HIF1α, HIF2α, and HIF3α which are oxygen-
sensitive, and HIF1β and HIF1β2 that showed oxygen-insensitive 
(Hankinson, 2008; Prabhakar and Semenza, 2012; Choudhry and 
Harris, 2018). HIF-1α and HIF-2α are stable in hypoxic conditions, 
they form heterodimers with HIF-1β and thus to activate the gene 
transcription (Smythies et al., 2019). Interestingly, HIF-1α showed 
high activation during brief stage of severe hypoxia or anoxia, while 
HIF-2α was found to be more active in mild or physiological hypoxia, 
and retain continuous active in 48–72 h of hypoxia (Hu et al., 2022). 
Thus, it may be possible to state that HIF-1 is responsible for initiating 
the hypoxic response, while HIF-2α plays a more predominant role in 
driving the prolonged hypoxic response (Koh et al., 2011; Koh and 
Powis, 2012; Hu et al., 2022).

Being an oxygen-sensitive transcription factor, HIF-1α is 
correlated with the maintenance of oxygen homeostasis in mammalian 
cells, and it mediates the adaptive responses to hypoxia (Choudhry 
and Harris, 2018; Sousa et al., 2019). The protein stability of HIF-1α 
is mainly modulated by the oxygen-dependent degradation domain 
(Sun et  al., 2017; Zheng et  al., 2021). In the presence of oxygen, 
HIF-1/2α encounters hydroxylation via a specific prolyl hydroxylases 
(PHDs) at two conserved proline residues (P402/P564 and P405/P531 
for human HIF-1α and HIF-2α, respectively) (Hu et al., 2022). After 
hydroxylation, HIFα is thus identified by von Hippel–Lindau (VHL) 
to be subsequently degraded through an oxygen-dependent ubiquitin-
proteasome pathway (Figure 1) (Sousa et al., 2019). Therefore, under 
regular conditions, HIF-1α has a very short half-life. The hydroxylation 
of proline residues in HIFα is critical for VHL binding and relies on 
PHD, α-ketoglutarate-dependent dioxygenase, and asparagine 
hydroxylase, that have inhibitory effects on HIF (Choudhry and 

Harris, 2018). In case of hypoxia, the proteasomal of HIFα is stably 
expressed and not degraded by the ubiquitin ligase system. HIF-1α is 
therefore accumulated and it can be translocated to the nucleus, where 
it binds to aryl carbon receptor nuclear translocator (ARNT) to form 
the HIF-1α/β heterodimer (Aj et al., 2010; Lee et al., 2019), that binds 
to p300 to form a transcriptional activation complex targeting the 
hypoxia response element (HRE) within the DNA that activated the 
transcription of HIF-1 target genes, such as vascular endothelial 
growth factor (VEGF), erythropoietin, inducible nitric oxide synthase 
(iNOS), and glucose transporter (GLUT) (Choudhry and Harris, 
2018; Singh et al., 2018). HIF-2α is an heterodimeric transcription 
factor formed following the dimerization between HIF-2α subunit and 
its obligate partner subunit nuclear translocator (ARNT) (Wu et al., 
2019). Similarly to HIF-1α, HIF-2α is activated in hypoxic conditions 
through a common signaling pathway (Hu et al., 2022), causing a 
more relevant response to hypoxia due to its higher affinity for the 
promoters of genes involved in the hypoxia response (Hu et al., 2022), 
which results also in an enhanced inducing activity of HIF-2α in some 
cancers (Wu et al., 2019). The inhibitory PAS domain protein (IPAS), 
a short splice variant of hypoxia-inducible factor 3 alpha (HIF-3α), has 
been shown to drive transcriptional activity through its interactions 
with HIF-1α and HIF-2α in mice, as demonstrated by Tanaka et al. 
(2009) and Kobayashi et al. (2015). HIF-3α has been traditionally 
considered as a negative regulator of the hypoxia response pathway 
(Ravenna et  al., 2016). However, recently it was found that long 
variants of HIF-3α have the capacity to create αβ dimers with an 
inverse activation ability (Tolonen et al., 2020). HIF-β subunit, also 
named as the aromatic hydrocarbon ARNT, is not regulated by e 
oxygen levels. Recent research has revealed that a prolonged hypoxic 
environment can increase HIF-1β expression in high-risk multiple 
myeloma cells, with this effect mediated via the expression of nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB) (Wu 
et al., 2018).

HIFs is classified within the bHLH/PAS protein family, and it is 
composed of one N-terminal basic-helix–loop–helix (bHLH) domain 
and two Per-ARNT-Sim (PAS) domains that are crucial for DNA 
binding and dimerization (Bersten et al., 2013; Yang et al., 2021). 
Activation of the target gene is facilitated by the N-terminal 
transactivation domain (NTAD) present in HIFα isoforms, as well as 
by the C-terminal transactivation domain (CTAD) that is included in 
both isoforms (Prabhakar and Semenza, 2012). HIF-3α features a 
unique C-terminal leucine zipper (LZIP) domain that facilitates 
protein–protein interactions instead of the CTAD. On the other hand, 
both HIF-1β and HIF-2β lack the ODDD/NTAD and LZIP domains, 
and while they possess a CTAD, they lack an asparagine residue 
(Figure  2) (Ravenna et  al., 2016). Within the DNA binding and 
dimerization domains, HIF-1α and HIF-2α shared a high level of 
homology in both DNA sequence and structure (Smythies et  al., 
2019). However, substantial evidence suggests that HIF-1α and 
HIF-2α heterodimers show distinct physiological functions and 
different roles in the same disease (Rosenberger et al., 2002; Takeda 
et al., 2010). For example, following the activation of both subtypes in 
VHL-deficient renal cancer, it was suggested that HIF-2α is oncogenic, 
whereas HIF-1α has tumor suppressor properties (Shen et al., 2011; 
Salama et  al., 2015). Structurally, HIF-2α and HIF-1α are highly 
similar, with an overall amino acid (aa) identity of 48%. In particular, 
their bHLH domains share up to 83% of aa identity, while their PAS 
regions approximately 70% of aa identity (Hu et al., 2022). Despite a 
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common consensus DNA-binding motif, HIF-1α and HIF-2α bind 
two distinct but overlapping sites in chromatin with common and 

unique patterns of downstream gene induction (Koh et al., 2011). 
Through the examination of the gene induction pattern in renal cell 

FIGURE 1

Oxygen-dependent regulation of HIFs.

FIGURE 2

Schematic illustration of the domain structure of HIFs.
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carcinoma 786-O WT-8 cellsstrongly indicates that the upregulation 
of ADRP, NDRG-1, and VEGF can be attributed to the activity of 
HIF-2α (Keith et al., 2011). A previous investigation that decreased 
the expression of specific HIF-α isoforms in Hep3B cells by siRNA 
revealed a predominant function of HIF-2α in the stimulation of 
erythropoietin (EPO) production (Shu et  al., 2019). Several 
investigations demonstrated that HIF-1α or HIF-2α could regulate the 
expression of several genes induced by hypoxia, however, each HIFα 
isoform showed also distinct targets (Figure 3) (Rr et al., 2005). Several 
studies suggested that different transcriptional responses mediated by 
HIF-1α and HIF-2α allow the adaptation to hypoxia (Colgan and 
Eltzschig, 2012). For example, the ones that coordinate the glycolytic 
pathway include multiple target genes, and it appears that the HIF-1α 
subtype is more selective than HIF-2α (Keith et al., 2011). Hif-1α−/− ES 
cells lost the hypoxic response of the glycolytic genes GLUT-1 and 
VEGF, suggesting a regulation only by HIF-1α (Keith et al., 2011). In 
addition, compared with HIF-1α, HIF-2α shows a more prominent 
effect on the induction of erythropoietin (Shu et al., 2019).

3. HIF-1α and signaling pathways

HIF-1α is located in a wide range of human cells and it interacts 
with several up-stream and downstream proteins to establish different 
signaling pathways. HIF-1α mediates the hypoxia signals, leading to a 
range of compensatory responses to hypoxia, and it plays a significant 
role in physiological and pathological processes within the body (Xu 
et al., 2022). The HIF stabilization during the hypoxia is important to 
upregulate several hundred of downstream target genes, in light of the 
complexity and importance of HIF signaling (Lee et al., 2019). Most 
recent research studies indicate that HIF-1α is involved in several 
signaling pathways, including phosphatidylinositol-3 kinase/protein 
kinase/mechanistic target of rapamycin (PI3K/Akt/mTOR), 
extracellular signal-regulated kinase (ERK), Wnt/β-catenin, Notch, 
and NF-κB (Figure 4) (Malekan et al., 2021; Zhang et al., 2021). These 
pathways affect several functions including cellular metabolism, 
regulation of cell proliferation, and control of inflammatory responses 
(Luo et al., 2022).

Previous research indicated that the phosphatidylinositol-3 
kinase/protein kinase B signaling pathway (PI3K/Akt), governs a 

variety of cellular processes, is able to modulate the HIF-1α expression 
(Zhang et  al., 2018). The downstream localization of HIF-1α is 
modulated by the mechanistic target of rapamycin complex 1 
(mTORC1) pathway, while the PI3K/Akt signaling pathway regulates 
mTORC1 in an independent way (Malekan et al., 2021). In human 
mesenchymal stem cells, the exposure to hypoxia stimulated an 
increase in the levels of both p-Akt and HIF-1α, with p-Akt reaching 
its maximum earlier than HIF-1α (Zhang et  al., 2018). The Akt 
inhibitor, wortmannin, is also able to inhibit the expression of HIF-1α 
while mTOR is Akt specific and represent a target of Akt during 
phosphorylation (Zhang et  al., 2018). mTOR functions as an 
up-stream mediator of HIF-1α activation, and it was recently 
demonstrated that PI3K/Akt signaling pathway may regulate HIF-1α 
through mTOR. This regulation may be on a post-transcriptional 
protein level, altering HIF-1α (Liu et  al., 2014). The activation of 
platelet-derived growth factor (PDGF), transforming growth factor 
(TGF), tumor necrosis factor-α (TNF- α), and inter-leukin-1β (IL-1β) 
triggers the HIF-1α regulation through the PI3K/Akt pathway (Oktay 
et al., 2007; Niu et al., 2008), that lead to an enhanced expression of 
HIF-1α when activated by receptor tyrosine protein kinase (RTK) (Xie 
R. et al., 2019). All together these findings suggest that PI3K/Akt/
mTOR signaling pathway regulates the HIF-α mRNA levels.

NF-κB is a transcription factor involved in different biological 
processes including apoptosis, viral replication, tumorigenesis, 
inflammation, and autoimmune diseases (Barnabei et  al., 2021). 
Endothelial cells (EC) were found able to autocrine TNF-α in case of 
hypoxia, and to activate the HIF pathway through a NF-κB-dependent 
process, while producing VEGF that led to the neovascularization (Jin 
et al., 2019). The silencing of HIF1α and specific glycolytic enzymes 
can reduce the NF-κB activation and ex-pression of pro-inflammatory 
genes in endothelial cells when exposed to a disordered flow (Wu 
et al., 2017). Consequently, endothelial cells when exposed to low and 
turbulent flow increase the HIF-1α expression and inflammatory 
signaling by enhancing the NF-κB activation while upregulating the 
number of glycolytic enzymes (Li et  al., 2017). The principal 
mechanism underlying the canonical NF-κB activation involves a site-
specific phosphorylation of IκBα by the multi-subunit IκB kinase 
(IKK) complex, that leads to its inducible degradation (LaGory and 
Giaccia, 2016). Furthermore, the activation of the non-canonical 
NF-κB pathway (i.e., TNFSF14/LIGHT) induces an in-creased 

FIGURE 3

Representative shared and unique target genes regulated by HIF-1α and HIF-2α.
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expression of HIF, specifically HIF-2α. This is also facilitated by direct 
interaction of NF-κB subunit p52 and HIF-2α, that initiates multiple 
site binding on the subunit (Wu et al., 2017). In previous studies, 
we observed that TNFα, which is a canonical activator of NF-κB, may 
also be involved in the activation of the HIF pathway in ECs (Yao 
et al., 2015). Studies have shown that the anti-angiogenic activity of 
low-density lipoprotein (LDL) is focused on the reduction of HIF-1α 
and HIF-2α protein levels in ECs, and this is possibly related to the 
inactivation of NF-κB and down-regulation of HIF-1β (Yao et al., 
2015). Inflammatory stimulants and other factors can increase the 
HIF-1 gene and protein level expressions by modulating NF-κB-
dependent signaling (Xu et al., 2022). Other studies demonstrated that 
the NF-κB pathway can activate the expression of HIF-2α mRNA in 
osteoarthritis following the increased HIF-2α expression in mouse 
articular chondrocytes following the treatment with IL-1β, which is a 
stimulator of the NF-κB pathway (Yang et al., 2010). Additionally, 
icariin regulated the NF-κB/HIF-2α axis and reduced the 
inflammation in chondrocytes (Wang et  al., 2020), and NF-κB 
signaling was found to stimulate the expression of HIF-1β (van Uden 
et al., 2011).

The ERK pathway represent another key pathway triggering the 
expression of HIF-1α by increasing the HIF-1α protein generation 

(Wan and Wu, 2016; Luo et al., 2022). It is important to note that the 
ERK pathway not only regulates the synthesis of HIF-1α but also 
phosphorylates the coactivator CBP/p300, thus enhancing the 
formation of the HIF-1α/p300 complex (Malekan et  al., 2021). 
Hyperthermia induces the expression of HIF-1α in lung cancer 
through the AKT and ERK signaling pathways (Wan and Wu, 2016). 
In addition, it was demonstrated that photodynamic therapy (PDT) 
increases the expression of HIF-1α through the ROS-ERK axis, 
thereby enhancing the resistance to the treatment (Lamberti et al., 
2017), indicating a regulation role of ERK signaling on the 
HIF-1α expression.

Besides the signaling pathways mentioned above, Wnt/β-catenin 
and Notch pathways are also involved in the modulation of HIF 
signaling. HIF-1α indeed acts downstream and upstream of the Wnt/β-
catenin signaling pathway indicating their mutually regulating functions 
(Liu et al., 2015; Wu et al., 2015). Specifically, Wnt/β-catenin regulates 
the function of HIF-1α by initiating the PI3K/Akt signaling pathway 
(Laukoetter et al., 2008; Lau et al., 2011). The high expression of HIF-1α 
resulting from hypoxia in cells can activate the Wnt/β-catenin signaling 
pathway and thus increasing the β-catenin (Wu et al., 2015), while 
HIF-1α signal also regulates Wnt/β-catenin pathway via calreticulin 
(Liu et al., 2021). In turn, as an upstream pathway through related 

FIGURE 4

Signaling pathway of HIF-1α. HIF-1α induced expression of downstream genes by activating different signaling pathways.
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signaling pathways, Wnt/β-catenin can indirectly regulate the HIF-1α 
expression. Recently, it was also demonstrated the role of Notch/HIF-1α 
signaling in different processes like liver regeneration, angiogenesis, and 
cancer epithelial-mesenchymal-transition (Li et  al., 2020). It was 
reported that the downstream Janus kinase (JAK)-STAT3 signaling 
pathway is activated by IL-6, leading to an increase in HIF-α. Notably, 
this mechanism is consistent with the fact that mTORC1 phosphorylates 
STAT3, and is involved in the upregulation of HIF-1α mRNA expression 
(LaGory and Giaccia, 2016).

4. HIF and gut homeostasis

In the recent years, it was extensively described that the gut 
microbiota plays a crucial role for the balance between health status 
and disease development of host species. The microbiota can 
be  considered as a distinct “human organ” (Shepherd et  al., 2018; 
Marietta et al., 2019). The establishment, selection, and colonization of 
microbes are governed by a complex molecular network of host-gut 
microbiota interactions (Kumar et  al., 2020). Specifically, several 
clinical studies showed that hypoxia and inflammation are present in 
the tissue microenvironment in several inflammatory diseases (Malkov 
et al., 2021). At a cellular level, the primary control underlying the 
tissue adaptation to hypoxia is through the HIF signaling pathway 
(Malkov et al., 2021), and in particular HIF-1α is considered a key 
regulator of hypoxic injury. In case of IBD, not only the entire mucosa 
can become even more hypoxic and the expression of HIF-1α and 
HIF-2α may also be elevated in intestinal surgical specimens (Eltzschig 
and Carmeliet, 2011). Intestinal epithelial cells (IECs) are thus exposed 
to the hypoxic environment within the intestinal lumen and represent 
a major site for host–microbe interactions in order to modulate 
physiological outcomes (Muenchau et al., 2019; Kumar et al., 2020). 
The intestinal epithelium not only is re-sponsible for the transfer of 
nutrients, water, and electrolytes from the lumen to the underlying 
tissues, but also plays a crucial role in maintaining gut homeostasis by 
serving as a physical and immunological barrier that prevents the entry 
of commensal bacteria and potentially harmful microorganisms 
(König et al., 2016). Altered intestinal barrier function is known to 
increase susceptibility to enteric infections and disrupt the physiological 
mechanisms responsible for maintaining tolerance to commensal 
microorganisms. These changes can ultimately lead to chronic 
gastrointestinal inflammation and the development of inflammatory 
bowel diseases, including Crohn’s disease (CD) and ulcerative colitis 
(UC) (Konjar et al., 2021).

4.1. The effect of HIF on the intestinal 
barrier

Studies have found that HIF-1α may play a key role in maintaining 
intestinal homeostasis by regulating the integrity of the intestinal 
epithelial barrier while cultivating a suitable ecological niche (Kumar 
et al., 2020). Additionally, HIF-1α maintains the intestinal epithelial 
integrity by upregulating genes involved in the maintenance of the 
intestinal barrier integrity, such as muc2, ITF, cldn1 as well as other 
tight junction proteins (Figure 5) (Kumar et al., 2020). Given that 
HIF-1α plays a direct role in preserving the intestinal epithelial 
integrity by promoting barrier functionality (Muenchau et al., 2019), 

the increased integrity of the gut barrier may have immunosuppressive 
effects, as it seals paracellular pathways while inhibiting the immune 
cells activation (Chelakkot et al., 2018). Both HIF-1α and HIF-2α are 
expressed in the intestinal epithelial cells of ulcerative colitis and 
Crohn’s disease patients and in mouse models of colitis (Xue et al., 
2013). In a model of radiation-induced intestinal toxicity, HIF-2α 
restores epithelial integrity and reduces apoptosis by inducing 
angiogenic gene expression (Olcina and Giaccia, 2016). Following 
intestinal injury, HIF-2α directly regulates chemokine/cytokine 
networks to recruit neutrophils and multiple pro-inflammatory 
mediators to eliminate noxious stimuli and restore the mucosal barrier 
(Singhal and Shah, 2020). The differentiation of regulatory T (Treg) 
(Lei et al., 2015) cells plays a crucial role in the establishment and 
proliferation of the human gut microbiome (Luu et  al., 2017). In 
particular, under cellular hypoxic conditions, HIF-1α promotes the 
differentiation of naive CD4 cells into regulatory T cells by inducing 
the transcription of FoxP3., and the anti-inflammatory cytokine IL-10 
is produced, to downregulate the immune response, thereby reducing 
the colonic inflammation while promoting the immune tolerance (Luu 
et al., 2017). Extracellular ATP is subject to enzymatic hydrolysis by 
nucleoside triphosphate dephosphorylase (NTPDase or CD39) to 
generate AMP, which is in turn converted into adenosine by Ecto-5′- 
Nucleotidase (5-NT or CD73) (Allard et al., 2017). Adenosine exerts 
immune-modulatory effects and promotes the enhancement of the 
epithelial barrier by activating A2B adenosine receptors, that then 
trigger the phosphorylation of vasodilator-stimulated phosphoprotein 
(VASP) (Aherne et al., 2015). Elevated expression levels of HIF-1α were 
evidenced in patients with Crohn’s disease and ulcerative colitis, 
indicating its protective role in mitigating inflammatory bowel 
disorders by improving the epithelial barrier functionality (Shah, 2016).

4.2. Interaction of NF-κB and HIF-1α in the 
intestine

The maintenance of gut homeostasis depends on an intricate 
functional crosstalk between HIF-1α and NF-κB signaling pathways. 
Specifically, HIF-1α inhibits TAK1, which in turn prevents the 
downstream activation of IKK, ultimately leading to downregulation 
of NF-κB activity and decreased inflammation (Liu et al., 2017). The 
transcription factor NF-κB is involved in the expression of numerous 
genes involved in immune response, serving as a key mediator of 
inflammatory responses. Specifically, NF-κB induces the expression 
of numerous pro-inflammatory genes, which encoding cytokines and 
chemokines, and also is involved in the regulation of inflammasomes 
(Cutolo et  al., 2022). HIF-1α pathway indeed strongly affects the 
epithelial and immune system function and development during 
inflammation by activating an adaptive response in these cells (Taylor 
et al., 2016). The pro-inflammatory function of NF-κB has been widely 
investigated in macrophages, which are innate immune cells located 
across several tissues with defensive functions against infectious 
agents. Notably, the constitutive activation of NF-κB was detected in 
the inflamed colonic tissue of individuals diagnosed with IBD (Liu 
et al., 2017). NF-κB serves as a pivotal transcription factor in M1 
macrophages and plays a crucial role in inducing a multitude of 
inflammatory genes, such as those encoding TNF-α, IL-1β, IL-6, 
IL-12p40, and cyclooxygenase-2 (Wang et al., 2014). A recent study 
employing dextran sulfate sodium (DSS)-induced colitis mouse model 
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reported that the absence of HIF-1α in dendritic cells leads to 
intestinal inflammation through the upregulation IL-6 and IL-23 
(Flück et al., 2016). Additionally, HIF-1α can activate NF-κB under 
hypoxic conditions and enhance the expression of TNF-α (Gerri et al., 
2017; Gunton, 2020). Furthermore, HIF-1α-induced NF-κB pathway 
increases TLRs expression while inducing an inflammatory cascade 
leading to ECs injury (Groschwitz and Hogan, 2009; Gerri et  al., 
2017). In turn, downregulation of HIF-1α expression can effectively 
reduce the inflammation and oxidative stress-induced damage during 
EC stress in hyperglycemia-induced mice (Liu et al., 2018; Xie Y. et al., 
2019). The stabilization of HIF-1α conferred protective effects by 
attenuating the NF-κB signaling pathway, and thus reducing the 

cellular inflammation (Bandarra et  al., 2015). Given the potential 
therapeutic properties of HIF for inflammatory disorders, further 
investigations into the role of inflammatory cytokines in the HIF 
pathway may provide novel therapeutic insights into the management 
of inflammatory diseases.

4.3. Hypoxia-mediated effects of HIF-1α 
and SCFAs

Microbiota-derived short-chain fatty acids (SCFAs) have gained a 
growing attention in recent years. The microbial supply for SCFAs, 

FIGURE 5

HIF-1α plays an important role in maintaining the intestinal homeostasis as it enhances the epithelial barrier integrity by upregulating the expression of 
genes, thereby reducing intestinal inflammation, and promoting microbial colonization. IEC and other cellular activation (such as ILC3) release anti-
inflammation cytokines and increase the oxygen consumption to stabilize the expression of HIF-1α.
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especially butyrate, is a recognized contributor to the gut homeostasis 
and disease resistance, while is used as a favorable energy source for 
enterocytes of the colon (Wang et al., 2021). The mucus layer, secreted 
by goblet cells, functions as a protective barrier against both 
endogenous and exogenous irritants, as well as microbial adhesion 
and invasion (Kang et  al., 2022). As a vital element of the innate 
defense system, the mucosal barrier not only contributes significantly 
to mucosal repair but also safeguards the mucosal epithelium from a 
range of injuries within the gastrointestinal tract (Guo et al., 2023). 
SCFAs increase oxygen consumption by intestinal epithelial cells, 
reduce their availability in the intestine and lead to hypoxia (Bersten 
et  al., 2013; Pral et  al., 2021). The decrease in oxygen utilization 
stabilizes the expression of HIF-1α and translocates it to the nucleus, 
causing the transcriptional expression of multiple genes (Choudhry 
and Harris, 2018). Stable expression of HIF-1α upregulates the 
expression of related genes such as MUC2, MUC3, and intestinal 
trefoil factor (Guo et al., 2023). Furthermore, related studies have 
shown that mice lacking HIF-1α exhibit less organized and diffusible 
mucin granules, suggesting that HIF-1α is necessary for mucin 
processing and maintenance of mucosal integrity (Kumar et al., 2020). 
Fachi et al., demonstrated in a mouse model that butyrate increases 
the expression of claudin in a HIF-1α-dependent manner, leading to 
improved barrier integrity and reduced inflammation by inhibiting 
microbial translocation (Fachi et al., 2019; Muenchau et al., 2019), and 
HIF-1α was found to be  required for butyrate protection of the 
intestinal epithelium in a mouse model of Clostridium difficile 
infection (CDI) (Fachi et al., 2019). Butyrate inhibits PHDs leading to 
the stabilization of HIF-1α, which in turn upregulates the expression 
of genes involved in intestinal barrier function, including muc2, ITF, 
cldn1, and other tight junction proteins (Kumar et al., 2020). Kelly 
et al. (2015) demonstrated that the treatment of Caco-2 cells with 
butyrate resulted in a decreased barrier permeability. Studies 
demonstrated that the knockdown of HIF-1β using specific shRNA in 
T84 and Caco-2 cells resulted in a decrease in the expression of 
claudin-1 at both mRNA and protein levels along with defects in 
barrier function and abnormal morphology of tight junctions 
(Muenchau et al., 2019). The researchers found that the gut barrier 
was weakened, HIF-1α was activated and the HIF-1αΔIEC phenotype 
was reversed during 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis 
in a mouse model (Karhausen et al., 2004; Holmquist-Mengelbier 
et al., 2006). Hirota et al., reported an alleviation of intestinal injury 
and inflammation induced by C. difficile in mice expressing HIF-1α 
in IECs compared to Hif1α-deficient mice (Hu et al., 2003; Hirota 
et  al., 2010). Taken together, these findings suggest that SCFAs 
increase the oxygen consumption of intestinal epithelial cells, stabilize 
the expression of HIF-1α, and upregulate the gene expression of tight 
junction proteins and intestinal barrier function, maintaining mucosal 
and epithelial barrier integrity, thereby reducing intestinal 
inflammation and promoting Microbial colonization.

4.4. HIF-1α and SCFA-mediated regulation 
of ILC3s

Innate lymphoid cells (ILCs) play a crucial role in regulating 
mucosal immunity, inflammation, and tissue homeostasis.” ILCs 
includes cytotoxic cells (NK cells) and “helper-like” ILCs, that are 
primarily tissue-resident cells and play a vital role in tissue 

homeostasis, inflammation, and mucosal immunity. These cells act 
rapidly in the immune response, responding to signals or inducer 
cytokines that are expressed by tis-sue-resident cells (Vivier et al., 
2018). ILC3s are highly prevalent in mucosal tissues and play a crucial 
role in the innate immune response against extracellular bacteria and 
in the containment of intestinal commensals (Rankin et al., 2016). 
SCFAs regulates the number of ILC3s in peripheral tissues and 
attenuates rodent infection in mouse gut by promoting cytokine 
signaling and activating the mammalian target of rapamycin (mTOR) 
pathway (Sepahi et  al., 2021). ILC3s produce the predominant 
homeostatic cytokine, IL-22, which is important for the maintenance 
of the intestinal homeostasis and proliferation of intestinal stem cells 
(Figure 5). Studies using antibodies against IL-22 and IL-22 knockout 
mice have demonstrated the role of this cytokine in alteration of the 
gut microbiota by stimulating the production of antimicrobial 
peptides (AMPs) such as the regenerating protein RegIIIγ (Lo et al., 
2019). Additionally, activation of hypoxia/HIF-1α signaling was 
shown to enhance murine resistance to C. difficile infection. This was 
demonstrated by an improvement in clinical scores together with a 
reduction in intestinal bacterial translocation in infected wildtype 
(WT) mice com-pared to mice with a conditional RORyt-specific 
HIF-1α knockout (HIF-1αfl/flRORc-Cre) (Fachi et al., 2021). Several 
studies have also demonstrated that butyrate has anti-inflammatory 
effects on M1 macrophages stimulated with LPS, as it is capable of 
reducing the production of pro-inflammatory mediators such as NO 
and IL-6 (Chang et al., 2014). M2 macrophages are involved in the 
resolution of inflammation and tissue repair by producing anti-
inflammatory cytokines such as IL-10 and IL-13, as well as growth 
factors and extracellular matrix proteins (Cekic and Linden, 2016; Liu 
et al., 2017). Commensal microbe-derived butyrate, as a novel effector 
molecule, can ameliorate DSS-induced colitis in mice by reducing the 
activation of M1 macrophages and promoting the differentiation of 
regulatory T cells. DCs treated with butyrate show less ability to 
stimulate T cells with a reduction in the production of the 
pro-inflammatory cytokines IL-12p40 and IFN-γ, while instead 
releasing greater amounts of the an-ti-inflammatory cytokine IL-10 
(Liu et al., 2012).

4.5. HIF-1α and intestinal homeostasis 
mediate alcoholic liver disease

Previous research showed that alcoholic liver disease (ALD) is 
associated with gut dysbiosis and release of endotoxins (Shao et al., 
2018). Shao et al. demonstrated that HIF-1α plays a critical role in 
regulating the expression of genes involved in maintaining intestinal 
homeostasis, including those involved in hepatic lipogenesis, 
maintenance of intestinal barrier function, antimicrobial defense, and 
the normal microbiome (Zhao et al., 2010). Goblet cells, a specialized 
cell type within the intestinal epithelium, are responsible for producing 
protective trefoil factors and mucins, which are heavily core 
glycosylated and can be found within the cell membrane or secreted 
into the lumen where they can form the mucus layer (Zhao et al., 2010; 
Shao et al., 2018), which is the first barrier encountered by bacteria 
and that needs to be penetrated in order to reach the epithelial cells 
(Johansson et  al., 2008). In IEhif1α−/− mice subjected to alcohol 
exposure, there is a decrease in intestinal trefoil factor (ITF), claudin-1, 
and p-glycoprotein, leading to a compromised gut barrier 
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functionality. This leads to an increased concentration of 
lipopolysaccharide in the serum and E. coli protein in the liver (Shao 
et al., 2018). Long-term and excessive alcohol consumption can lead 
to intestinal dysbiosis, which leads to increased intestinal permeability 
and translocation of LPS into the blood. After LPS binds to TLR4 on 
hepatocytes (including hepatocytes and Kupffer cells), it triggers an 
inflammatory response and Leads to hepatic steatosis (fat buildup) 
and inflammation (Shao et  al., 2018). Activation of HIF-1α can 
regulate the gut bacterial homeostasis by increasing the production of 
anti-microbial peptides. Additionally, HIF-1α stabilization leads to 
upregulation of P-glycoprotein and tight junction proteins, which help 
to maintain barrier functions (Chen et al., 2015). Therefore, ALD can 
be prevented/treated by developing dietary methods and drugs that 
specifically activate the intestinal HIF-1α.

5. Future perspectives

HIF-1α represents a crucial transcription factor produced under 
hypoxic conditions, and it plays a pivotal role in the regulation of 
several cellular processes, including angiogenesis, glucose metabolism, 
apoptosis, and autophagy. Moreover, HIF-1α is involved in the 
regulation of multiple signaling pathways, being essential during the 
body growth and development, as well as in several physiological and 
pathological processes. Diverse HIF isoforms are responsible for 
physiological and pathological processes, and HIF-1α may be involved 
in the development of diseases through the regulation of multiple 
target genes. Comprehensive investigations on HIF-1α better 
elucidated its regulatory roles in angiogenesis, glucose metabolism, 
apoptosis, autophagy, and several signaling pathways. It is well to 
point out that further advancements in HIF-1α-based therapeutic 
strategies and the related research will gain more attention, and it may 
lead to the development of potent HIF-1α inhibitors to use for clinical 
applications, allowing new discoveries and achievements in terms of 
disease prevention and treatment.

Significant differences in baseline oxygen tension between 
gastrointestinal mucosal tissues play unique roles in intestinal 
homeostasis and inflammation. With in-depth research, more and 
more evidence shows that the intestinal mucosal barrier, as an 
important component of intestinal immunity, not only serves as a 
medium for the absorption and exchange of substances between 
organisms and the environment, but also prevents external antigens 
from entering the body. The complete composition and function of 
the intestinal mucosal barrier function is critical for maintaining 
immune homeostasis. Once the intestinal barrier function is damaged 
under the action of multiple factors, immune homeostasis will 
be disrupted and inflammatory responses will be triggered. Hypoxia 
regulates the expression of hundreds of genes through HIF 
transcription factors, such as enhancing tight junctions and reducing 
intestinal permeability, as well as increasing mucus and AMP to 

protect mucosal integrity. HIF has been extensively studied in the 
areas of modulating intestinal tissue barrier function, metabolism, and 
inflammatory and immune responses. Many studies have highlighted 
the therapeutic potential of targeting hypoxic signaling pathways in 
intestinal diseases. Therefore, hypoxia and activation of the HIF 
pathway may be considered as putative therapeutic targets for the 
treatment of certain inflammatory and/or infectious diseases, 
particularly those affecting the gut such as CDI and IBD. Therefore, 
further studying the interaction between HIF and intestinal 
microorganisms may be a new strategy for preventing and treating 
different diseases in the future.
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