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As society ages, the number of patients with spinal degenerative diseases (SDD) is 
increasing, posing a major socioeconomic problem for patients and their families. 
SDD refers to a generic term for degenerative diseases of spinal structures, 
including osteoporosis (bone), facet osteoarthritis (joint), intervertebral disk 
degeneration (disk), lumbar spinal canal stenosis (yellow ligament), and spinal 
sarcopenia (muscle). We propose the term “gut-spine axis” for the first time, given 
the influence of gut microbiota (GM) on the metabolic, immune, and endocrine 
environment in hosts through various potential mechanisms. A close cross-talk is 
noted between the aforementioned spinal components and degenerative diseases. 
This review outlines the nature and role of GM, highlighting GM abnormalities 
associated with the degeneration of spinal components. It also summarizes the 
evidence linking GM to various SDD. The gut-spine axis perspective can provide 
novel insights into the pathogenesis and treatment of SDD.
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1. Introduction

With an increasing aging population in society, the number of patients with spinal 
degenerative diseases (SDD) has been on the rise, with a reported annual prevalence of 27.1% 
for SDD in the United States (Parenteau et al., 2021). SDD refers to a generic term for diseases 
caused by the degeneration of spinal structures. Examples of combinations of spinal structures 
and their degenerative diseases include osteoporotic vertebral fractures (OVF) in bones, facet 
joint osteoarthritis (OA) in cartilages, intervertebral disk degeneration (IVDD) in the 
intervertebral disk (IVD), lumbar spinal canal stenosis (LSS) in ligaments, and spinal sarcopenia 
in muscles. Furthermore, osteoporosis, facet joint OA, IVDD, LSS, and spinal sarcopenia tend 
to coexist, as their incidence increases with age (Parenteau et al., 2021), adversely affecting each 
other’s pathology and forming a negative spiral cycle.

Several studies have reported risk factors, including aging, heavy labor (mechanical stress), 
trauma, genetics, obesity, and metabolic syndrome, for SDD (Puenpatom and Victor, 2009; 
Yoshimura et al., 2012; Imajo et al., 2015; Chen et al., 2019; Guss et al., 2019; Azzini et al., 2020; 
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Kuo et al., 2020; Parenteau et al., 2021; Li et al., 2022). The pain and 
paralysis caused by SDD have become a major problem that affects the 
patient’s life and work and imposes a significant economic burden on 
the patient, family, and society (Imajo et al., 2015). The causes of SDD 
remain poorly understood, and understanding their causes can 
be critical for prevention and treatment. The progressive degeneration 
of spinal structures has been attributed not only to biomechanical 
injury or stress but also to biochemical stressors that can adversely 
affect the regular activity of cells and tissues in spinal structures. These 
risk factors, independently or complexly linked, contribute to the 
complex interplay between mechanical and biochemical factors that 
lead to the etiology of SDD.

Metabolic syndrome involves multiple physiological systems that 
are directly related to the presence of four major clusters: insulin 
resistance, obesity, vascular pathology, and dyslipidemia (Azzini 
et  al., 2020). Metabolic syndrome induces “meta-inflammation,” 
characterized by persistent, low-grade systemic inflammation caused 
by metabolic stress, which places biochemical stress on systemic 
tissues (Azzini et al., 2020). In particular, in metabolic syndrome, 
chronic low-level inflammation mediated by macrophages occurs in 
the liver, visceral fat, pancreas, colon, brain, and musculoskeletal 
tissues and is implicated in the development of various diseases 
(Azzini et al., 2020). In addition, chronic low-level persistent tissue 
inflammation that occurs with aging, also referred to as 
“inflammaging,” has been reported to be  associated with the 
development of osteoporosis (Benoist, 2003; Ibáñez et al., 2019; Zaiss 
et al., 2019), IVDD (Benoist, 2003; Franceschi and Campisi, 2014; 
Sadowska et al., 2018; Li et al., 2022), OA (Berthelot et al., 2019; De 
Sire et al., 2020; Favazzo et al., 2020; Gracey et al., 2020; Qaiyum 
et al., 2021; Zaiss et al., 2021; Motta et al., 2023; Romero-Figueroa 
et al., 2023), and sarcopenia (Picca et al., 2018; Ticinesi et al., 2019; 
Kuo et al., 2020; Przewłócka et al., 2020). The gut microbiota (GM), 
a complex of intestinal bacterial populations, is responsible for a 
series of metabolic, immune, structural, and neurological functions, 
including metabolic homeostasis, immune system development and 
maturation, resistance to infection, and neurotransmitter production 
(Biver et  al., 2019). Recent studies have highlighted important 
regulatory functions of GM in neuroendocrine and immune 
functions through the activity of microbiome and its metabolites and 
its involvement in disease processes in various organs inside and 
outside the gut (such as brain, kidney, liver, heart, musculoskeletal) 
(Biver et  al., 2019). GM is also involved in the development and 
progression of inflammatory diseases such as obesity and metabolic 
syndrome. GM disruption has emerged as a hidden risk factor 
inducing the production of inflammatory cytokines and bacterial 
metabolites, which may be  involved in the pathophysiological 
mechanisms of musculoskeletal diseases, including SDD (Biver 
et al., 2019).

Although the gut-brain axis is the best-known term for this 
cross-talk between GM and the gut and distant organs, data 
supporting the important role of GM in spinal conditions and its 
involvement in the onset and progression of SDD have been 
obtained. A gut-bone axis (Ibáñez et al., 2019; Zaiss et al., 2019), 
gut-joint axis (Berthelot et al., 2019; De Sire et al., 2020; Favazzo 
et al., 2020; Gracey et al., 2020; Qaiyum et al., 2021; Zaiss et al., 
2021; Romero-Figueroa et al., 2023), gut-disk axis (Li et al., 2022), 
and gut-muscle axis (Picca et al., 2018; Ticinesi et al., 2019; Kuo 
et al., 2020; Przewłócka et al., 2020) have also been proposed, with 
possible association between GM and SDD-related pain (Tonelli 
Enrico et  al., 2022). Furthermore, studies have also reported a 
relationship between GM and adolescent idiopathic scoliosis (Shen 
et  al., 2019) and ankylosing spondylitis (Guggino et  al., 2021). 
Given the close relationship between GM and SDD based on the 
common factors of immunity, metabolism, and inflammation, 
we can hypothesize the involvement of GM in the degeneration of 
spinal structures, with GM being a potential mechanism for the 
development of SDD.

We propose the novel and comprehensive concept of the “gut-spine 
axis” for the first time, as knowledge about the “gut-spine cross-talk,” 
which summarizes the relationship of GM with spinal structures (bone, 
cartilage, disks, ligaments, and muscle) and the impact of GM on pain 
can improve our understanding of the etiology of SDD and contribute 
to development of treatment strategies for SDD. This review outlines 
the nature and role of GM and GM abnormalities associated with the 
degeneration of spinal structures and also summarizes the evidence 
linking GM to various SDD. For a broader, more flexible, and more 
comprehensive organization, we employed a narrative review approach 
and analyzed several important articles regarding the relationship 
between SDD and GM published in peer-reviewed scientific journals. 
This study outlines the reports supporting the presence of a gut-spine 
axis in the etiology of SDD.

2. Gut microbiota and host interaction

2.1. Characteristics of GM

Surprisingly, the large intestine contains more than 70% of all the 
microorganisms in the human body (Jandhyala et  al., 2015). GM 
refers to the diverse collection of microorganisms, including 
commensal, symbiotic, and pathogenic species, that reside in the 
intestine (Jandhyala et al., 2015). The intestine, being a multicellular 
organ acquired at birth, exists as a distinct entity yet has clearly 
co-evolved with the human genome. It interacts with the host and 
exerts various influences on it through communication and other 
mechanisms (Qin et al., 2010). Although there are more than 1,000 
species of bacteria and 1014 bacterial cells in the human gut (Chen 
et al., 2022b), detection of most anaerobic bacteria has been difficult 
using culture techniques. In recent years, a new sequencing 
technology, known as high-throughput “next-generation sequencing” 
(NGS) of microbial DNA, has emerged as a leading approach to better 
characterize the human microbiota (Chen et al., 2022b). GM samples 
for analysis are collected from the stool. Microbiome profiling is often 
performed by sequencing 16S rRNA gene amplicons in a culture-
independent method or by shotgun sequencing (metagenomics) of 
the entire microbiome. As a result, GM has gained significant attention 
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due to advancements in NGS technology. The importance of GM’s 
diversity, composition, and functional characteristics in shaping 
human health has been widely acknowledged.

Under normal physiologic conditions, GM plays a fundamental 
role in various aspects of host physiology. This includes functions such 
as nutrition and metabolism, maintaining the integrity of the gut 
barrier to prevent pathogen invasion, and supporting immune 
responses. In contrast, disruption of these roles may contribute to 
inflammation, pain, and development of various diseases (Jandhyala 
et al., 2015).

2.2. Role of GM in nutrition, metabolism, 
and immunomodulation related to SDD

GM provides the host with vital functions, including the 
fermentation of dietary fiber and indigestible polysaccharides, leading 
to the production of biotransformed bile acids that regulate calcium 
absorption. Additionally, GM is involved in the synthesis of vitamins 
B and K, as well as the production of essential and nonessential amino 
acids, short-chain fatty acids (SCFA) (i.e., acetic acid, propionic acid, 
and butyric acid), and neurotransmitters (including some precursors) 
(Ibrahim et al., 2022, p. 191; Chen et al., 2022b; Figure 1A). GM is 
often referred to as an endocrine organ capable of influencing the 
function of distant organs and systems, given the involvement of GM 
in the production of metabolites (Clarke G. et al., 2014).

Naturally, the absorption of calcium and the production of 
vitamin K and amino acids, both of which involve GM, are essential 

for musculoskeletal health (Chen et al., 2022b). In addition, because 
GM secretes estrogen-regulating enzymes, aberrations in GM, such as 
low diversity of GM, may lead to a decrease in circulating estrogen 
level (Baker et al., 2017). Estrogen deficiency at menopause is a major 
cause of postmenopausal osteoporosis, with excessive osteoclast 
formation and bone resorption stimulation due to estrogen deficiency 
at menopause leading to rapid bone loss (D’Amelio et  al., 2008). 
Decreased estrogen levels increase the production of inflammatory 
and osteoclastogenic cytokines, leading to osteoporosis. There is 
speculation that postmenopausal women, who lose the 
immunosuppressive effects of estrogen, may experience greater bone 
loss due to an increased inflammatory state caused by an unfavorable 
GM composition (Baker et al., 2017). Thus, the interaction between 
GM and estrogen influences the composition of GM and the response 
of host tissues, including bone, to GM (Baker et al., 2017). Thus, the 
interaction between GM and estrogen is also referred to as the 
“estrogen-gut microbiome axis” (Baker et al., 2017).

The analgesic, anti-inflammatory, antinociceptive, and 
neuroprotective effects of the B vitamins have been widely 
documented. Among the B vitamins, vitamin B12 is known to 
be effective in reducing back pain and nerve pain (Tonelli Enrico 
et al., 2022).

SCFA are largely secreted in the colon by GM through anaerobic 
fermentation of dietary fiber and have a critical role in regulating 
intestinal inflammation and epithelial barrier function. In addition, 
SCFA enters the bloodstream and further contributes to the regulation 
of systemic inflammation (Tonelli Enrico et al., 2022). Besides the 
immune system controlling inflammation, SCFA influences various 

FIGURE 1

The gut-spine axis: a model of intestinal epithelial damage signaling that may regulate degeneration of spinal structures. (A) Gut microbiota and 
dysbiosis: GM supplies the host with essential functions such as the synthesis of short-chain fatty acids (SCFA), vitamins, nutrients, and 
neurotransmitters (including some precursor substances). When leaky gut syndrome occurs, which results in altered GM composition and GM 
dysbiosis, the intestinal barrier is compromised, altering physiological and metabolic functions and disrupting immune, endocrine, vascular, and 
nervous system responses, resulting in bacteremia, bacterial-derived compounds (LPS), and cytokines circulating along the bloodstream to systemic 
tissues. (B) Spinal degenerative diseases (SDD): osteoporosis, IVDD, facet OA, and LSS. GM dysbiosis-derived metabolites, bacteremia, and 
inflammatory cytokines can result in local and systemic responses that may cause SDD. This figure was adapted and modified from the figure by Li 
et al. (2022) and was created using BioRender.com. This content is available under Creative Commons Attribution 4.0 International License (https://
link.springer.com/article/10.1007/s00586-022-07152-8). IVDD, intervertebral disk degenerative disease; OA, osteoarthritis; LSS, lumbar spinal canal 
stenosis; SCFA, short-chain fatty acids; LPS, lipopolysaccharide.
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aspects of metabolism, including bone metabolism, glucose 
metabolism, brown adipose tissue activation, liver mitochondrial 
function regulation, whole body energy homeostasis, appetite, and 
sleep regulation (Lucas et  al., 2018). Neurotransmitters such as 
dopamine, serotonin, leptin, noradrenaline, glutamate, and GABA can 
be directly produced by GM or indirectly regulated by GM (Tonelli 
Enrico et al., 2022).

At least 50% of dopamine is produced in the gut and has 
regulatory functions in systemic inflammation and chronic pain 
through its involvement in immunity responses (Vidal and Pacheco, 
2020). A previous study has reported that 90% of serotonin is 
produced in the intestinal tract and that circulating serotonin of 
intestinal origin inhibits bone formation and decreases bone mass 
(Yadav et  al., 2008). The GM was shown to regulate intestinal 
chromaffin cells that modulate serotonin production in the gut (Yadav 
et al., 2008). Serotonin also regulates physiological functions related 
to pain (Malinova et al., 2018). Leptin, an adipocyte-specific hormone, 
regulates bone formation, while GM positively regulates systemic 
levels of leptin and is involved in bone metabolism (Charnay 
et al., 2000).

Noradrenaline is also responsible for pain and inflammation 
(Tonelli Enrico et al., 2022). Glutamate and GABA function as major 
excitatory and inhibitory neurometabolites, respectively, in the central 
nervous system and play various important physiological roles, 
including processing and regulation of pain (e.g., inflammation; 
Tonelli Enrico et al., 2022).

Consecutively, vitamin B, SCFA, and neurotransmitters are 
involved in the immune response and regulate pain and inflammation. 
Therefore, GM-related changes in nutrition and metabolites can 
impact musculoskeletal health, reduce anti-inflammatory effects 
globally, and lower pain tolerance through the gut-brain axis. These 
factors may contribute to the development of SDD and 
SDD-related pain.

Conversely, lipopolysaccharide (LPS) from gram-negative 
bacteria, a metabolite derived from GM, is an inflammatory 
metabolite that acts on macrophages, which maintain tissue 
homeostasis and exert pro-inflammatory effects (Burcelin et al., 2013). 
LPS enters the systemic circulation through the intestinal tract and 
bloodstream to induce low-level systemic inflammation. LPS levels are 
known to be elevated in chronic inflammatory diseases such as obesity 
(Burcelin et al., 2013), metabolic syndromes (Burcelin et al., 2013), 
osteoporosis (Wu et al., 2021), OA (Huang and Kraus, 2016), and 
IVDD (Lisiewski et al., 2022).

Therefore, while some molecules produced by intestinal bacteria 
are beneficial, others are harmful and can affect endocrine cells in the 
gut, the enteric nervous system, intestinal permeability, and the 
immune system (Ohlsson and Sjögren, 2015). Meanwhile, GM 
composition and function may have beneficial or detrimental effects 
on the degeneration of spinal structures (such as bones, cartilage, 
disks, ligaments, and muscles) and pain associated with SDD (Charles 
et al., 2015; Chen et al., 2022b; Figure 1B).

2.3. Dysbiosis of GM

2.3.1. Change in GM composition
GM is acquired at birth, derived almost exclusively from the 

mother (Das and Nair, 2019; Chen et al., 2022a). In the case of healthy 

people, the characteristic features of GM are a state of dynamic 
homeostasis defined by the richness and diversity of GM compositions 
and by its stability and resilience to withstand various types of 
disturbances (Das and Nair, 2019). The richness and diversity of GM 
compositions can be altered by environmental factors (such as aging) 
and lifestyle factors (such as diet, sleep, and exercise; Ohlsson and 
Sjögren, 2015; Fei et al., 2021; Figure 2).

2.3.2. Effects of aging on GM composition
Since GM composition continues to change in an age-dependent 

pattern from infancy to old age as GM co-evolves with the host (Chen 
et al., 2022a), organismal aging is inevitably accompanied by changes 
in GM. GM in older adults is characterized by reduced diversity and 
stability, decreased expression of genes producing SCFA, reduced 
ability to degrade glycoconjugates, enhanced proteolytic function, and 
at the genus level, enrichment of Proteobacteria (including many 
members of opportunistic pathogenic bacteria), and an increased 
proportion of the Bacteroidetes and Clostridium genera (Buford, 2017). 
Notably, reduced diversity of GM may correlate with “frailty index,” 
an indicator of biological age and a predictor of healthy life expectancy 
(Ke et al., 2021).

Furthermore, aging not only affects the composition of GM but 
also is associated with changes in the gut lumen and barrier function, 
including shrinkage of the protective mucus layer of the gut, loss of 
gut tight junction proteins, and increased permeability of the epithelial 
barrier (Elderman et al., 2017). Several lines of evidence in this regard 
suggest that low-level systemic inflammation has recently been 
recognized as a phenomenon associated with older adults (Konturek 
et al., 2015; Borghesan et al., 2020). Meanwhile, in healthy centenarian 
GM, the anti-inflammatory effect of Faecalibacterium spp. is strong, 
and blood LPS level is low, indicating that Faecalibacterium spp. may 
be suppressing host inflammation (Park et al., 2015).

In recent years, a cellular senescence-centric view of the aging 
process has emerged. Cellular senescence results in senescent cells 
(SCs), which exhibit age-dependent accumulation in tissues and 
organs of various mammalian species, including rodents and primates 
(Sharma, 2022). The surviving senescent cells develop a senescence-
associated secretory phenotype (SASP), which secretes various 
inflammatory cytokines and promotes chronic inflammation and 
carcinogenesis (Tuttle et al., 2021). Low levels of chronic inflammation 
occur in older adults, which has been partly attributed to cellular 
senescence (Herbig et  al., 2006). Increased SC burden with aging 
destroys tissue structure and function and is emerging as an important 
factor in increasing disease risk and mortality in older adults (Burd 
et  al., 2013). Osteoporosis, sarcopenia, IVDD, and OA have been 
reported as musculoskeletal diseases associated with SASP (Burd 
et al., 2013; Khosla et al., 2020; Tuttle et al., 2021).

Increased age-related oxidative/inflammatory stress contributes 
to SC accumulation, and the application of antioxidants has been 
shown to inhibit cellular senescence both in vitro and in vivo 
(Kumar et  al., 2019; Varela-Eirín et  al., 2020). Therefore, it is 
conceivable that neutralizing oxidative/inflammatory stressors may 
attenuate or delay SC development and accumulation. In a 
landmark study, removing SC load in aging tissues delayed the 
onset and severity of age-related conditions (Baker et al., 2011). 
Since then, several natural and synthetic compounds that selectively 
target SC, called “senolytics,” have been identified. Clinical trials 
based on senolytics have already shown promising results in 
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countering the harmful effects of aging (Baker et al., 2011; Kumar 
et al., 2019; Varela-Eirín et al., 2020).

Various metabolites of GM are known to exert strong anti-
inflammatory and antioxidant properties and may be useful in the 
prevention of inflammatory and tumorigenic environments associated 
with aging (Chang et al., 2014; De Marco et al., 2018; Wang et al., 
2018; Riaz Rajoka et al., 2019; Chung et al., 2020; Rossi et al., 2020; 
Sharma, 2022). In contrast, GM dysbiosis can also cause chronic 
inflammatory stress throughout the body, which may promote cellular 
senescence. GM dysbiosis may also affect SDD via cellular senescence. 
Thus, GM is closely related to human aging, and changes in GM may 
predict the development and prognosis of SDD.

2.3.3. Effects of lifestyle (i.e., diet, sleep, exercise) 
on GM composition

Diet, sleep, and exercise are three key components of a healthy 
lifestyle that can affect GM composition and function (Ohlsson and 
Sjögren, 2015; Fei et al., 2021; Figure 2). Diets can significantly change 
GM composition depending on nutrients. This can be attributed to the 
fact that nutrients can alter the GM microenvironment, including GM 
composition, metabolism, and the host’s immune response (Li 
et al., 2016).

Sleep length has been demonstrated to have a significant effect on 
the composition and function of GM (Fei et al., 2021). Short sleep 
duration promotes GM abnormalities (less diversity of gut bacteria 
and fewer anti-inflammatory gut bacteria), which may affect chronic 
inflammation-related diseases (Benedict et al., 2016; Poroyko et al., 
2016; Reynolds et al., 2017; Fei et al., 2021).

Sleep disruption has been reported to affect physical, mental, and 
emotional functioning, in addition to hormonal and metabolic 
disturbances (Fei et  al., 2021). Possible causes include increased 
inflammatory markers (Leproult et al., 2014), increased sympathetic 
nervous system activity, abnormal cortisol rhythms, and changes in 
appetite-regulating hormones and food intake (Spiegel et al., 1999), all 

of which contribute to the risk of diabetes and obesity. Given the 
association between diseases associated with sleep disorders and 
diseases derived from abnormalities in the GM, the adverse health 
effects observed in sleep disorders may be partly due to gut bacteria 
(Fei et al., 2021).

Physical activity (including exercise) has been shown to produce 
positive changes in the qualitative and quantitative composition and 
metabolic function of GM and provide health benefits to the host in 
animal models (Li et al., 2016; Poroyko et al., 2016; Reynolds et al., 
2017) and humans (Clarke S. F. et al., 2014). Athletes generally have a 
high diversity of GMs with anti-inflammatory properties and a high 
capacity for SCFA synthesis compared to sedentary controls (Barton 
et al., 2018; Ticinesi et al., 2019). In studies including both younger 
and older adults, the expression of Bifidobacterium spp. and 
Faecalibacterium prausnitzii involved in SCFA production, which 
potentiates anti-inflammatory effects, increased after exercise 
implementation (aerobic and resistance training), and the 
concentration of butyrate in the stool increased (Allen et al., 2018; 
Erlandson et al., 2021). Regular exercises have been shown to benefit 
older adults, especially those who are overweight, by maintaining the 
stability (composition and function) of the intestinal microbiota (Zhu 
et al., 2020). The utility of exercise in preventing and treating SDD is 
not limited to the typical rehabilitative effects, such as improved 
muscle function, pain relief, and improved range of motion, but also 
to the synergistic effects of improving GM composition and function 
with improved health benefits for the host.

2.3.4. Causes and effects of GM dysbiosis
Aging, dietary changes, smoking and alcohol consumption, 

disease, antibiotic treatment, and pathogens can alter GM 
composition, leading to dysbiosis, defined as detrimental changes in 
bacterial composition, diversity, and function (Zheng et al., 2020). 
Dysbiosis can lead to imbalances in metabolic and immune regulatory 
networks that usually suppress intestinal inflammation, leading to 

FIGURE 2

Gut dysbiosis and spinal degenerative diseases. Gut dysbiosis and SDD have common risk factors and treatments that can interact with each other. 
OPLL, ossification of the posterior longitudinal ligament; DISH, diffuse idiopathic skeletal hyperostosis.
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inflammation, tissue destruction, and disease development (Kinashi 
and Hase, 2021).

The so-called “leaky gut syndrome,” which is characterized by 
altered permeability of the intestinal wall to antigens, is an example of 
dysbiosis, leading to systemic inflammation and abnormal immune 
response (Kinashi and Hase, 2021). When leaky gut syndrome, an 
example of dysbiosis, occurs, GM loses its protective capacity, the 
intestinal barrier is compromised, diffusion of bacterial-derived 
compounds is enhanced, and metabolite and cytokine expression is 
altered (Ohlsson and Sjögren, 2015; Kinashi and Hase, 2021). 
Therefore, it is not impossible for dysregulated circulatory 
inflammatory cytokines to reach spinal structures (bones, cartilage, 
disks, ligaments, and muscles; Figures 1A,B, 2) and disrupt normal cell 
signaling and metabolic activity.

In ophthalmology, GM dysbiosis reportedly causes chronic 
low-grade inflammation, which is characteristic of inflammatory 
conditions with increased intestinal permeability and increased 
production of IL-6, IL-1β, TNF-α, and VEGF-A, ultimately leading to 
exacerbation of pathological angiogenesis in choroidal 
neovascularization (Andriessen et al., 2016). Similar mechanisms may 
exist in the pathological angiogenesis of various diseases, including 
SDD. Dysbiosis, with an altered composition of GM, can alter gut wall 
permeability and physiological and metabolic functions, and disrupt 
immune, endocrine, vascular, and nervous system responses, 
ultimately leading to: diseases characterized by immune dysregulation 
(allergies, autoimmune diseases, inflammatory; Miyauchi et al., 2023), 
metabolic diseases (diabetes, metabolic syndrome; Guss et al., 2019), 
cardiovascular diseases (coronary artery disease; Jie et  al., 2017), 
neurodegenerative diseases (autism; Cryan et  al., 2019), cancer 
(stomach, lung, colon; DeStefano Shields et al., 2021; Sepich-Poore 
et  al., 2021), and even SDD such as osteoporosis, facet joint OA, 
IVDD, and LSS (Ohlsson and Sjögren, 2015; Azzini et  al., 2020; 
DeStefano Shields et al., 2021; Kinashi and Hase, 2021; Li et al., 2022; 
Lisiewski et al., 2022; Figure 2).

Furthermore, the reduced number of myeloid progenitor cells in 
sterile mice suggests that the metabolites of intestinal bacteria affect 
immune cells in the bone marrow (Khosravi et al., 2014). The human 
spine has 26 vertebrae that are the source of immune cells. GM 
dysbiosis can cause abnormal immune cell formation in the spinal 
bone marrow, leading to systemic inflammation and back pain (Nouh 
and Eid, 2015). To summarize, the role and relevance of GM in the 
pathogenesis of a group of age-related chronic inflammation-related 
diseases is an important emerging phenomenon that should not 
be overlooked.

2.3.5. Are the spinal structures (disks, joints) 
sterile?

Culture-independent approaches such as 16S rRNA sequencing 
and shotgun metagenomics have expanded our ability to identify all 
bacteria, confirming the presence of bacteria at sites previously 
considered sterile (Ozkan and Willcox, 2019). As a result, microbiomes 
are present in sites outside of joint environments traditionally thought 
to be sterile, including the reproductive tract, sperm, fetus, breast, and 
eye (Ardissone et al., 2014; Ozkan and Willcox, 2019).

During the neovascularization phase in OA, there is evidence that 
bacteria and bacterial products have a greater tendency to enter 
cartilage and subchondral bone from the blood; this is particularly 
notable as these areas are typically less vascularized (Pesesse et al., 

2011). Certainly, the microbiome is present in knee and hip OA 
(Dunn et al., 2020). In addition, a systematic review reported the 
presence of various bacteria in degenerated and Modic change-altered 
IVD (Granville Smith et al., 2022).

In dysbiosis, due to the impaired barrier function of the intestinal 
wall and immune system, some GM may migrate from the intestinal 
tract to the bloodstream and cause transient bacteremia (Fine et al., 
2020), allowing some GM to settle directly in the joints or allowing 
leukocytes and macrophages (Miller et al., 2020) to reach the joints 
and IVD as “Trojan horses” for the bacteria (Alverdy et al., 2020). This 
may result in the migration of some GM in the subchondral bone 
marrow and deep in the cartilage or disks, which may directly 
contribute to the deformity changes (Chisari et al., 2021; Rajasekaran 
et al., 2022). Chronic inflammation and adverse immune effects due 
to GM dysbiosis and bacteremia may also contribute to postoperative 
infection for SDD.

3. Gut-spine axis

GM influences host metabolism, immunity, the endocrine 
environment, and the gut-brain-bone axis. It also affects spinal 
structures (bone, cartilage, disks, ligaments, and muscles) through a 
variety of potential mechanisms (Behera et al., 2020; Seely et al., 2021; 
Figures 1A,B).

GM dysbiosis affects the health of spinal structures through the 
following three mechanisms: (1) nutrition, including calcium, amino 
acids, and vitamin K; (2) immune regulation related to estrogen, 
SCFA, and systemic inflammation; and (3) neurotransmitters such as 
serotonin and leptin that have been demonstrated to affect bone 
metabolism, ultimately causing an imbalance between osteoblasts and 
osteoclasts (Chen et al., 2022b). Additionally, increased inflammatory 
stress associated with GM dysbiosis promotes the senescence of spinal 
musculoskeletal cells and the accumulation of various SCs at spinal 
structures (Borghesan et al., 2020; Sharma, 2022). SCs may cause local 
and systemic inflammation via SASP and contribute to the 
development of the following SDD: osteoporosis for senescent 
osteocytes and osteoblasts, OA for senescent chondrocytes, and IVDD 
for senescent nucleus pulposus cells (Borghesan et al., 2020; Sharma, 
2022). This chapter outlines the nature and role of GM and dysbiosis 
associated with the degeneration of spinal structures (bone, cartilage, 
ligaments, disks, and muscles) and contributing to the development 
and progression of SDD and SDD-derived pain.

3.1. Gut-bone axis: osteoporosis and 
hyperostotic diseases

SDD related to bone metabolism includes OVF and hyperostotic 
diseases [i.e., ossification of posterior longitudinal ligament (OPLL) 
and diffuse idiopathic skeletal hyperostosis (DISH)] (Figure  3). 
Osteoporosis and hyperostotic diseases have an immune-
inflammatory mechanism involved in their pathogenesis (Zaiss et al., 
2019; Mader et al., 2021; Kawaguchi, 2022). Bone is an organ that 
depends on the dynamic balance between osteoblasts and osteoclasts 
to maintain normal function.

Inflammatory diseases involve several inflammatory cytokines 
that play a role in regulating osteoblasts and osteoclasts, and immune 

https://doi.org/10.3389/fmicb.2023.1290858
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Morimoto et al. 10.3389/fmicb.2023.1290858

Frontiers in Microbiology 07 frontiersin.org

activity is considered a significant risk factor for osteoporosis (Arron 
and Choi, 2000). The term “osteoimmunology” describes the close 
interaction between the immune system and bone metabolism and the 
role of immune cells or immune-related factors in the regulation of 
skeletal development (Takayanagi, 2021).

In recent years, the effects of GM on bone tissue have been 
confirmed in animals lacking GM (Axenic mice), in animals fed 

GM-modifying antibiotics and diet, and in humans (Ibáñez et al., 
2019). In addition, the presence of osteoporosis is associated with the 
composition and diversity of GM components (Wang et al., 2017; Ling 
et al., 2021).

Regarding osteoimmunology, GM dysbiosis has been reported to 
contribute to osteoporosis (Wang et al., 2017; Ibáñez et al., 2019; Ling 
et al., 2021) but may also affect hyperostosis diseases. Hyperostotic 
diseases such as OPLL and DISH exhibit a strong association with 
obesity, type 2 diabetes mellitus, and the complications of metabolic 
syndrome, which are characterized by systemic low-grade 
inflammation related to aging (Mader et al., 2021; Kawaguchi, 2022). 
In addition, OPLL has been reported to be associated with leptin and 
chronic inflammation (Kawaguchi, 2022). As mentioned, GM 
dysbiosis affects bone metabolism in association with low levels of 
chronic inflammation-related diseases and the neurotransmitter 
leptin, suggesting that it could be a pathological factor not only in 
osteoporosis but also in hyperostotic diseases such as OPLL. Thus, the 
term “gut-bone axis” (Zaiss et al., 2019) indicates that GM is associated 
with bone metabolism via nutrient absorption, inflammation 
immunity, and neurotransmitters, suggesting a strong association 
between GM dysbiosis and osteoporosis and hyperostotic diseases 
such as DISH and OPLL. As our understanding of the gut-bone axis’ 
pathophysiology improves, GM could emerge as a potential treatment 
option for bone metabolism disorders and low back pain. However, to 
the best of our knowledge, no epidemiological studies have reported 
on the association between GM and bone-related SDD such as 
osteoporotic spinal vertebral fractures or hyperostotic diseases.

3.2. Gut-joint axis: OA and facet joint 
syndrome

OA caused by cartilage degeneration in facet joints has been 
proposed as a facet joint syndrome among SDD (Du et  al., 2022; 
Figure  4). The “gut-joint axis” has been established based on the 
possibility of cross-talk between the gut and joint (Berthelot et al., 
2019; De Sire et al., 2020; Chisari et al., 2021; Qaiyum et al., 2021).

Unfortunately, no reports have shown an association between 
facet joint syndrome and GM. However, based on the correlation 
between GM and lower-extremity OA, we  believe that the 
association between GM and facet joint syndrome could 
be analogous. Obesity and metabolic syndrome are risk factors for 
OA not only in the load-bearing joints of the lower extremities but 
also in non-load-bearing joints (wrist and temporomandibular 
joints), indicating that systemic chronic low-level inflammation 
may play a role in its development (Puenpatom and Victor, 2009; 
Yoshimura et al., 2012). Although mechanical and genetic factors 
have classically been shown to play a major role in the development 
of OA, a growing number of reports indicate that low levels of 
inflammation play an important role in the development and 
progression of OA (Puenpatom and Victor, 2009; Yoshimura et al., 
2012). Low levels of inflammation have been associated with 
obesity/metabolic syndrome as well as aging, diet, and 
postmenopausal women (estrogen deficiency), all of which are 
strongly associated with both OA and GM dysbiosis (Li et al., 2016).

Based on common factors between OA and GM dysbiosis, it 
seems reasonable that GM dysbiosis is associated with the 
development of OA. It has been suggested that OA patients show 

FIGURE 3

Example of thoracic ossification of the posterior longitudinal 
ligament (OPLL) in a 53-year-old obese male with type 2 diabetes 
mellitus. The spinal canal is markedly narrowed by thoracic OPLL, 
with inability to walk. (A) Sagittal computed tomography (CT) of the 
whole spine. (B) Sagittal CT of the thoracic spine. This is a case from 
our institution.

FIGURE 4

Myelography computed tomography (CT) in lumbar axial view. The 
red arrow indicates facet degeneration and osteophyte. This is a case 
from our institution.
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significant GM dysbiosis, revealing a shift in pathogenic 
microorganisms associated with OA (Huang and Kraus, 2016; Favazzo 
et al., 2020). In addition, because microbes are present in knee and hip 
OA, occult or subclinical bacterial infections resulting from 
bacteremia due to GM dysbiosis may accelerate OA (Dunn et al., 
2020). Thus, the concept of the “gut-joint axis” can be applied to facet 
OA, a subset of SDD. However, further research is required to establish 
the relationship between the gut-joint axis and facet OA in both basic 
and clinical settings.

3.3. Gut-disk axis: IVDD

The IVD comprises three interrelated structures—namely, the 
central gelatinous nucleus pulposus, the outer annulus fibrosus, and 
the upper and lower cartilaginous endplates (Li et al., 2022). Vascular 
invasion into the IVD, which is generally considered the largest 
non-vascularized structure in the human body, may be detected in 
IVDD (Li et al., 2022).

While IVDD is multifactorial, chronic uncontrolled low-grade 
inflammation is progressively implicated in its etiology (Li et  al., 
2016). The microenvironment of a healthy IVD is vulnerable to 
immune surveillance functions (playing the role of sentry) because it 
has a blood-disk barrier, such as the blood–brain barrier in the central 
nervous system that keeps the IVD immunodominant and provides 
protection against systemic infection. Hypoxia and a lack of immune 
surveillance in the IVD create ideal conditions for the growth of 
anaerobic bacteria in degenerated disks (Wedderkopp et al., 2009). 
These bacteria growing on the IVD can recruit more inflammatory 
cells (e.g., T cells, B cells, dendritic cells, macrophages) via the release 
of inflammatory factors (e.g., IL-6, TNFα; Schirmer et  al., 2016). 
Hence, a damaged IVD can become an ideal site for the growth and 
proliferation of microbes that evade humoral and cellular immunity, 
as well as the spread of harmful microbiome metabolites (Li et al., 
2022). Therefore, GM dysbiosis has been suggested to possibly cause 
GM and GM metabolites to migrate into the bloodstream and IVD, 
causing or exacerbating IVDD (Li et al., 2022).

Rajasekaran et al., 2020 evaluated 24 lumbar IVDs and reported 
that the microbiome composition of healthy IVD differed from that 
of degenerative and herniated IVD. Thus, the concept of gut-disk axis 
(Li et al., 2022) is emerging, which may play an important role in 
IVDD and low back pain.

3.4. Gut-ligament axis: lumbar spinal 
stenosis

In addition to facet joint OA and IVDD, thickening of the yellow 
lumbar ligament is the leading cause of LSS pathogenesis (Figure 5), 
and an inflammation-related scar mechanism has been suggested for 
the thickening of the lumbar ligament (Sairyo et al., 2007). Although 
an association has been shown between LSS and diabetes, 
hypertension, and metabolic syndrome, all of which have been closely 
associated with GM dysbiosis (Fujita, 2021), no reports have shown 
an association between LSS and GM. However, IVDD and facet OA, 
which are factors of LSS, have a relationship with GM. Furthermore, 
the association of LSS with chronic inflammation-related conditions 
such as diabetes and metabolic syndrome, as well as inflammation 
observed in ligament thickening among LSS patients, indicates a 

potential connection between LSS and GM, suggesting the possibility 
of a gut-ligament axis in LSS.

3.5. Gut-muscle axis: spinal sarcopenia

Sarcopenia is defined as a progressive and systemic loss of skeletal 
muscle mass, strength, and function, according to the European 
Working Group on Sarcopenia in Older People (Cruz-Jentoft et al., 
2019). GM dysbiosis can affect muscle mass and function via 
inflammation, immunity, protein metabolism, SCFA metabolism, and 
mitochondrial dysfunction, thereby leading to sarcopenia in the spine 
and ultimately affecting host physiology (Picca et al., 2018). In several 
studies exploring the correlation between GM and skeletal muscle, 
significant differences in GM diversity and composition were observed 
in sarcopenia cases, and a gut-muscle axis has been proposed to 
indicate cross-talk between the two (Picca et al., 2018; Ticinesi et al., 
2019; Kuo et al., 2020; Przewłócka et al., 2020). The number of adult 
spinal deformities due to spinal sarcopenia (loss of erector spinae) is 
increasing, and its involvement with GM is an interesting topic of 
investigation (Kuo et al., 2020).

3.6. Impact of GM on SDD-derived pain

The main symptoms of SDD include low back pain and pain or 
numbness in the upper and lower extremities of nerve origin. Since 
GM is involved in the production of SCFA, neurotransmitters 

FIGURE 5

T2-weighted magnetic resonance imaging (MRI) sagittal image of 
the lumbar spine. The green arrowhead indicates normal 
intervertebral disk, the yellow arrowhead indicates intervertebral 
degenerated disk, and the white arrowhead indicates hypertrophic 
yellow ligament. This is a case from our institution.
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(including some precursors), and vitamins that regulate inflammation 
and pain (Benedict et al., 2016; Yan and Charles, 2017; Barton et al., 
2018; Lucas et al., 2018), it is plausible that it is strongly involved in 
SDD-derived pain.

GM produces the neurotransmitters involved in pain modulation 
and analgesia (including some precursors)–namely, dopamine, 
serotonin, noradrenaline, glutamate, and GABA (Liu et al., 2020). In 
addition, the analgesic effects of B vitamins produced by GM are 
explained by their anti-inflammatory, antinociceptive, and 
neuroprotective effects (Buesing et  al., 2019). The association of 
abnormal GM composition has also been demonstrated in patients 
with low back pain (Dekker Nitert et al., 2020), fibromyalgia (Minerbi 
et al., 2019), chronic pain (Freidin et al., 2021), knee OA (Boer et al., 
2019), hand OA (Wei et al., 2021), and peripheral neuropathic pain 
(Ellis et al., 2022), suggesting that abnormal GM composition may 
be involved in individual differences in pain sensitivity. However, GM 
composition abnormalities have not been validated for 
SDD-related pain.

In addition, analgesics may be used in cases of pain of SDD origin; 
however, GM strongly interacts with certain drugs, affecting their 
response and effectiveness (Vich Vila et al., 2020). Especially in cases 
of long-term opioid use, it has been inferred that adverse changes in 
GM composition (dysbiosis) can occur and cause predisposition to 
opioid tolerance (Akbarali and Dewey, 2017). Therefore, 
understanding the cross-talk between GM and SDD-derived pain may 
be helpful in understanding the pathogenesis of SDD. In addition, 
understanding the effect of GM on analgesics used for SDD may 
explain individual differences in analgesic efficacy and prognosis.

3.7. Summary of reports related to GM and 
spinal musculoskeletal diseases, including 
SDD

Table 1 presents a summary of the association between GM and 
spinal musculoskeletal diseases, including SDD (Yang et al., 2016; 

Wang et al., 2017; Wen et al., 2017; Shen et al., 2019; Rajasekaran et al., 
2020; Kang et al., 2021; Ling et al., 2021).

As a combination of specific microbiota abundance and SDD, 
Blautia and osteoporosis (Wang et  al., 2017; Ling et  al., 2021), 
Prevotella and Intervertebral disk disease (Rajasekaran et al., 2020), 
and Adolescent idiopathic scoliosis (Shen et  al., 2019), 
Spondyloarthritis (Wen et al., 2017).

SDD usually first results from degeneration of IVD and facet 
joints, i.e., IVDD or facet OA develops. As a result, the stabilizing 
function between intervertebral bodies is impaired, which leads to the 
formation of bony spurs around intervertebral bodies and facet joints, 
and the thickening of the yellow ligament, resulting in LSS, including 
lumbar spondylolisthesis. In addition, spinal sarcopenia and OVF can 
accelerate the pathology. Moreover, SDD-related pain derived from 
IVDD, facet OA, LSS, and OVF impairs activity, further aggravating 
GM dysbiosis, sarcopenia, and osteoporosis. Thus, osteoporosis, 
IVDD, facet OA, LSS, and spinal sarcopenia coexist, adversely 
affecting not only SDD but also GM dysbiosis, leading to a negative 
spiral. With the advent of an aging society, understanding the 
pathophysiology, prevention, and treatment of SDD will become 
increasingly important. We  have discussed that GM affects all 
pathologies of SDD and SDD-derived pain. Investigating the profile 
of GM in the progression of SDD could help identify patients with 
rapidly progressive SDD and improve our understanding of the 
pathogenesis of SDD.

4. Gut microbiota modulation as 
treatment for SDD

Given the worldwide prevalence of SDD, there is a critical need 
for effective disease-modifying treatment strategies to alleviate 
symptoms and slow SDD progression.

GM communicates with the distant spinal structures via various 
axes, such as the gut-bone axis, gut-joint axis, gut-disk axis, 
gut-ligament axis, and gut-muscle axis. Bacteremia and chronic 

TABLE 1 Gut microbiota and spinal musculoskeletal diseases.

Area Spinal musculoskeletal 
diseases

Characteristics of gut microbiota Evidence

Bone Osteoporosis Positive correlation: Actinobacillus, Blautia, Oscillospira, Bacteroides, Phascolarctobacterium Ling et al. (2021)

Osteoporosis Higher proportion of Blautia and Parabacteroides and lower proportion of Ruminococcaceae 

UCG-002

Wang et al. (2017)

Joint Facet joint osteoarthritis No report

Disk Intervertebral disk disease More frequently or specifically: Pseudomonas veronii, Pseudomonas stutzeri, Streptococcus 

anginosus, Prevotella pallens, Avibacterium gallinarum, Enterobacter cowanii

Many known human pathogens such as Prevotella tannerae, Halomonas nitritophilus, and 

Streptococcus alactolyticus

Rajasekaran et al. 

(2020)

Muscles Sarcopenia Reduced microbial diversity, with an increased level of Lactobacillus and decreased levels of 

Lachnospira, Fusicantenibacter, Roseburia, Eubacterium, and Lachnoclostridium

Kang et al. (2021)

Others Adolescent idiopathic scoliosis The Prevotella genus showed considerable increase in proportion. Shen et al. (2019)

Spondyloarthritis A significantly increased abundance of Prevotella melaninogenica, Prevotella copri, and 

Prevotella sp. C561 and decreased representation of Bacteroides spp.

Wen et al. (2017)

Ankylosing Spondylitis Porphyromonas gingivalis, Klebsiella pneumoniae, Klebsiella aerogenes, and Bacteroides 

vulgatus are associated with pathogenesis

Yang et al. (2016)
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low-level inflammation caused by GM dysbiosis adversely affect spinal 
structures (bones, cartilage, disks, ligaments, and muscle) and 
contribute to the onset and progression of SDD, including 
osteoporosis, IVDD, and OA. Conversely, restoring GM dysbiosis 
through therapeutic intervention may restore physiological regulation 
through various axes and prevent the onset and progression of SDD 
(Figure 2).

GM has attracted attention as a promising target for therapeutic 
strategies because it can be modified by lifestyle modifications such as 
dietary interventions, sleep and exercise, fecal transplants, and future 
microbiome-targeted therapies (Kolasinski et al., 2020).

4.1. Lifestyle interventions (diet, sleep, 
exercise) for GM dysbiosis may improve 
SDD

Given the association between GM dysbiosis and SDD and 
chronic inflammation, GM dysbiosis may be  involved in the 
development and progression of SDD. As discussed in Chapter 2 
(Li et al., 2022), a healthy lifestyle (including factors such as diet, 
sleep, and exercise) improves GM composition (increases “good” 
bacteria) and may improve GM dysbiosis. An improvement in GM 
dysbiosis may also alleviate inflammation, inhibit the degeneration 
of spinal structures, and relieve pain via SCFA or 
neurotransmitters. The interaction between lifestyle (diet, sleep, 
exercise) and GM has contributed to our understanding of the role 
of lifestyle in the prevention and treatment of chronic 
inflammation-related diseases, including SDD, in which GM 
dysbiosis plays a significant role. Notably, dietary interventions 
involving prebiotics and probiotics have shown promising effects 
in managing osteoporosis and OA via GM modulation (Vitetta 
et al., 2013; Zhang et al., 2022a).

Prebiotics are non-digestible food components such as 
dietary fiber and oligosaccharides. Prebiotics stimulate the 
growth and/or activity of beneficial bacteria in the digestive tract 
in ways that are beneficial to health, induce SCFA synthesis, 
affect cell growth and differentiation, hormone production, and 
inflammation regulation, and have a beneficial effect on the host 
(Vitetta et al., 2013; Zhang et al., 2022a). Probiotics consist of live 
microorganisms, typically lactic acid bacteria that modulate 
protease-activated receptor expression in epithelial cells, 
gastrointestinal smooth muscle cells, and capsaicin-sensitive 
neurons to regulate gastrointestinal mucosal barrier function and 
inflammation (Vitetta et  al., 2013; Zhang et  al., 2022a). As a 
result, they play an important role in the homeostasis of healthy 
GM by promoting epithelial barrier function and reducing 
dysbiosis, stimulating the production of antimicrobial substances 
and immunoglobulins, and inhibiting the production of bacterial 
toxins, thereby promoting host immune responses and anti-
inflammatory pathways (Vitetta et al., 2013; Zhang et al., 2022a).

Both prebiotics and probiotics have been reported to have anti-
inflammatory effects, promote calcium and vitamin D absorption, 
reduce osteoclast differentiation, and protect the bone and cartilage. 
They have also shown beneficial effects on osteoporosis and OA 
(Table 2; Abrams et al., 2005; Jones et al., 2013; Vitetta et al., 2013; Lei 
et al., 2017; Takimoto et al., 2018; Lyu et al., 2020; Paul et al., 2021; 

Zhang et al., 2022a). Nevertheless, no reports on their effects on IVD 
or LSS have yet been published.

Regarding exercise interventions, focusing on the “gut-muscle” 
axis and spinal sarcopenia, GM has been shown to improve skeletal 
muscle mass and function, while exercise affects GM composition 
(Locantore et  al., 2020). In addition, the gut-spine axis can 
be  considered as a result of treatment for spinal structures 
degeneration (bones, cartilage, disks, ligaments, and muscles), in 
which improvement in exercise level leads to improvement in GM 
composition. This positive spiral relationship between exercise, GM, 
and spinal structures could be  useful in the prevention and 
treatment of SDD.

Sleep disturbances promote GM dysbiosis (decreased intestinal 
bacterial diversity and anti-inflammatory intestinal bacteria), which 
induces systemic chronic inflammation, which has been reported to 
be a risk factor for chronic inflammation-related diseases (diabetes 
and obesity). Chronic inflammation has been associated with the 
onset and progression of SDD; therefore, the association between 
sleep disturbances and SDD cannot be ruled out. Conversely, healthy 
sleep can be expected to contribute to SDD improvement. However, 
no studies have reported on the effects of sleep on the development or 
progression of SDD or its preventive effects.

GM also plays an important role in drug metabolism, which may 
influence drug efficacy (Vich Vila et al., 2020). Hence, GM modulation 
through lifestyle modification may enhance the efficacy of analgesics 
and contribute to drug reduction. Drug reduction is a critical issue in 
SDD patients, mostly older individuals because polypharmacy is also 
a significant problem. Regulation of GM through lifestyle 
improvement may also be effective in this regard.

Maintaining a healthy lifestyle is well understood to be based on 
good nutrition, regular exercise, and adequate sleep. However, only 
few studies have investigated the correlation between a healthy lifestyle 
and SDD in the field of spine surgery.

The GM-mediated therapeutic effect of lifestyle interventions is 
both a new perspective on SDD treatment and effective for 
SDD. Large-scale clinical trials on lifestyle interventions are required.

4.2. Fecal microbiome transplant

FMT is a method of improving certain medical conditions such 
as GM dysbiosis-related diseases of three types of inflammation: acute 
inflammation (e.g., Clostridioides difficile infection), chronic 
inflammation (e.g., chronic Crohn’s disease and ulcerative colitis), and 
chronic low-grade inflammation by delivering specially prepared stool 
material from a healthy donor to the patient (i.e., recipient) and 
restoring the balance of the intestinal bacterial community (Wang 
et al., 2022; Zhang et al., 2022b).

In contrast to applications targeting single microorganisms, such as 
probiotics and prebiotics, FMT maintains the integrity of GM and 
metabolites during the entire process, thus preserving the original 
function of GM to the maximum extent possible, significantly improving 
GM-related diseases and restoring gut microenvironmental homeostasis 
more rapidly and efficiently (Zhang et al., 2022b). While physiological 
disturbances due to disease can alter the composition and abundance of 
GM, GM dysbiosis can, on the other hand, induce or exacerbate disease, 
and FMT can be expected to prevent or alleviate disease conditions.
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The potential regulatory mechanisms involving the FMT are to 
reestablish a normal intestinal environment and to correct 
disturbances in the intestinal microbiota. It is believed to potentially 
restore the intestinal mucosal barrier, improve intestinal permeability, 
restore imbalances in intestinal metabolites (SCFA, indole derivatives, 
vitamins, cholic acid, polyamines), and regulate immune responses 
(Zhang et al., 2022b).

FMT has been performed and validated for GM dysbiosis-related 
diseases in (1) Gastrointestinal diseases: Bacterial intestinal infection 
(Clostridioides difficile infection), inflammatory bowel disease (Crohn’s 
disease and ulcerative colitis), and irritable bowel syndrome, (2) Liver 
Diseases: Severe alcoholic hepatitis, primary sclerosing cholangitis, 
and liver cirrhosis, (3) Brain diseases: Autism spectrum disorder, 
Parkinson’s disease, multiple sclerosis, Alzheimer’s disease, and 
epilepsy, (4) Metabolic diseases: Diabetes, obesity, metabolic 
syndrome, and gout, (5) Cancer: Melanoma, and gastroesophageal 
cancer, (6) Skin diseases: alopecia and atopic dermatitis (Wang et al., 
2022; Zhang et al., 2022b).

Spinal musculoskeletal disorders in which FMT has been reported 
to be  effective are inflammatory, immune, or metabolic diseases: 
osteoporosis (Zhang et al., 2022b), psoriatic arthritis (Selvanderan 
et al., 2019), and axial arthritis (Mahajan et al., 2020). For other SDD 
(OA, IVDD, LSS, spinal sarcopenia) for which the effects of FMT have 
not yet been reported, GM dysbiosis may increase the risk of 
development and progression, and further normalization of GM 
composition and function may contribute to prevention, treatment, 
and symptom improvement.

5. Conclusion and perspective

The close relationship between GM and spinal structures (bones, 
cartilage, disks, ligaments, and muscles) due to common factors such 

as immunity, metabolism, and inflammation has been described by 
the terms gut-bone axis, gut-joint axis, gut-disk axis, gut-ligament 
axis, and gut-muscle axis.

Bacteremia and chronic low-level inflammation caused by GM 
dysbiosis have been found to adversely affect spinal structures and 
contribute to the development and progression of SDD, including 
osteoporosis, LSS, IVDD, spinal sarcopenia, and SDD-derived pain. 
Since GM-derived neurotransmitters may regulate the excitability of 
neurons in the peripheral nervous system and nociceptors involved in 
the onset of SDD-derived pain, GM may modulate the pathogenesis 
and therapeutic effects of SDD. This close association between GM 
and SDD led us to propose the gut-spine axis.

Scientific progress is often driven by the clear demarcation of 
research areas; however, to understand the complex and 
multifaceted nature of SDD, it is necessary to integrate the 
findings of various disciplines, such as spinal anatomy, 
immunology, microbiology, aging, and more. The perspective 
provided by GM research is a good example of such 
interdisciplinary integration and may not only provide a new 
framework for understanding these biological systems but may 
also offer many valuable insights into the development of 
effective therapies for the treatment of SDD (new disease-
modifying therapies that intervene in GM). New biomarkers 
associated with inflammation and gut dysbiosis may predict the 
development of SDD and monitor the effectiveness of therapeutic 
interventions. Chronic inflammation and adverse immune effects 
due to GM dysbiosis and bacteremia (joint and IVD are not 
always sterile) may also contribute to postoperative 
infection of SDD.

However, the literature on the relationship between GM and SDD 
is scarce due to various issues such as cost, time, and declining 
participation, suggesting that there is an existing knowledge gap 
between the two. While a healthy lifestyle (diet, sleep, exercise) and 

TABLE 2 Prebiotics and probiotics for musculoskeletal diseases in human.

Prebiotics/Probiotics Area Musculoskeletal diseases Comments Evidence

Prebiotics

Bone

Osteoporosis Prebiotic short- and long-chain inulin type fructans 

significantly increases calcium absorption and 

enhances bone mineralization

Abrams et al. (2005)

Probiotics

Bone Osteoporosis Bacillus subtilis C-3102 (C-3102), total hip BMD 

improved

Takimoto et al. (2018)

Osteoporosis Lactobacillusreueri

NCIMB 30242 increases mean

circulating 25-hydroxyvitamin D

Jones et al. (2013)

Osteoporosis Lactobacillus reueri reuteri

NCIMB 30242 increases the mean

circulating 25-hydroxyvitamin D level

Jones et al. (2013)

Joint Osteoarthritis Lactobacillus casei strain Shirota:

a positive effect of improvement in knee OA

Lei et al. (2017)

Rheumatoid arthritis Lactobacillus casei 01 improved

the inflammation status

Paul et al. (2021)
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FMT may improve GM dysbiosis and consequently contribute to SDD 
improvement, few reports exist on this issue, and large-scale studies 
are therefore needed.

Preventive medicine is important because increasing SDD is an 
urgent problem in an aging society. Preventive medicine is divided into 
three categories: primary prevention (health promotion, anti-aging 
medicine, prevention of diseases), secondary prevention (early detection, 
early treatment, prevention of aggravation), and tertiary prevention 
(rehabilitation, prevention of recurrence). GM is strongly related to all 
these SDD prevention aspects. The Nobel Prize-winning discovery of the 
bacterium Helicobacter pylori as the primary cause of gastritis and peptic 
gastritis was a game changer in diagnosis and treatment, radically shifting 
the management of peptic ulcers from surgical treatment to antibiotics 
and acid secretion inhibitors (Rajasekaran et al., 2020).

A better understanding of GM could be the catalyst for a new 
game changer in the prevention, diagnosis, and treatment of SDD, 
with GM as the axis. The established association between GM and 
spinal structures (gut-spine axis) supports the feasibility of a new 
approach to the prevention, diagnosis, and treatment of SDD.
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