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Purpose: In this study, a deep learning model was established based on head MRI 
to predict a crucial evaluation parameter in the assessment of injuries resulting 
from human cytomegalovirus infection: the occurrence of glioma-related 
epilepsy. The relationship between glioma and epilepsy was investigated, which 
serves as a significant indicator of labor force impairment.

Methods: This study enrolled 142 glioma patients, including 127 from Shengjing 
Hospital of China Medical University, and 15 from the Second Affiliated Hospital of 
Dalian Medical University. T1 and T2 sequence images of patients’ head MRIs were 
utilized to predict the occurrence of glioma-associated epilepsy. To validate the 
model’s performance, the results of machine learning and deep learning models 
were compared. The machine learning model employed manually annotated 
texture features from tumor regions for modeling. On the other hand, the deep 
learning model utilized fused data consisting of tumor-containing T1 and T2 
sequence images for modeling.

Results: The neural network based on MobileNet_v3 performed the best, 
achieving an accuracy of 86.96% on the validation set and 75.89% on the test 
set. The performance of this neural network model significantly surpassed all the 
machine learning models, both on the validation and test sets.

Conclusion: In this study, we  have developed a neural network utilizing head 
MRI, which can predict the likelihood of glioma-associated epilepsy in untreated 
glioma patients based on T1 and T2 sequence images. This advancement provides 
forensic support for the assessment of injuries related to human cytomegalovirus 
infection.

KEYWORDS

human cytomegalovirus, glioma, epilepsy, deep learning, injury assessment

1. Introduction

Human cytomegalovirus (HCMV) is a double-stranded DNA herpesvirus, while HCMV 
infections typically pose minimal harm to healthy individuals, the immune system of infected 
individuals can usually eradicate the virus in the early stages of infection, resulting in mild or 
asymptomatic presentations. However, this virus presents a considerable risk to 
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immunocompromised individuals (Nogalski et  al., 2014). The 
mechanism through which human cytomegalovirus (HCMV) inflicts 
harm is via viremia, wherein an elevation in viral load surpasses a 
specific threshold, consequently causing patients to manifest various 
clinical symptoms (Stagno et  al., 1975). Generally, upon initial 
infection with human cytomegalovirus (HCMV), individuals 
experience primary infection. Subsequently, the virus enters a latent 
phase. The capacity to establish lifelong latent infection in the host is 
a characteristic hallmark of HCMV infection (Goodrum, 2016). 
Hence, when individuals experience a decline in their immune 
defenses, clinical symptoms can reappear in patients (Jenks et al., 
2021). Re-infection remains a possibility if previously infected 
individuals come into contact with the virus again. In addition to the 
harm caused directly by cytomegalovirus-induced viremia, recent 
research suggests a potential association between human 
cytomegalovirus and glioma, as shown in Figure 1 (Cobbs, 2011). 
Glioblastoma, a broad term encompassing neuroepithelial tumors 
originating from the neural glial or supporting cells of the brain, 
stands as the most fatal and prevalent primary brain tumor in adults. 
Among adults, the most common malignant primary glioma is the 
astrocytic glioblastoma (Louis et al., 2016). Excluding genetic factors, 
the specific risk factors contributing to the onset of glioblastoma 
remain unclear. Nevertheless, there is substantial evidence indicating 
the presence of human cytomegalovirus DNA and mRNA in tumor 
samples from glioblastoma cases (Lawler, 2015).

Forensic microbiology is a branch of forensic science that involves 
the examination of various microbial characteristics to infer the 
specific microbial source and transmission pathway, thereby providing 
microbiological evidence for legal purposes (Yuan et al., 2023). In 
forensic practice, forensic biology can trace the origin of a pathogen 
in infected individuals by identifying the biological samples of both 
the source and the infected person (Murugesan et  al., 2023). As 

awareness of public health grows, passive and preventable viral 
infections are gaining increased attention. It is becoming increasingly 
common for infected individuals to seek financial compensation from 
transmitters or individuals/collectives responsible for creating 
susceptible environments (El Helou et al., 2022). In cases involving 
pathogen-related infections, the accurate forensic assessment of 
injuries is undoubtedly a focal point of forensic work. However, with 
the advancement of technology, forensic experts can now employ 
algorithms based on machine learning and deep learning to identify 
individual humans and microbial organisms (Yuan et al., 2023). In the 
context of injury assessment related to glioma caused by 
cytomegalovirus, particular attention must be given to whether the 
patient experiences epilepsy. This is crucial because the occurrence of 
epilepsy in infected individuals significantly affects the forensic 
evaluation of their injuries. Firstly, epilepsy itself is a critical 
assessment parameter in injury evaluation (Stewart et al., 2004). In 
Chinese law, according to current Chinese law, labor capacity 
assessment is divided into ten levels. Although it is necessary to 
consider the patient’s medical dependency, functional impairment, 
and self-care abilities comprehensively, the law specifically stipulates 
that, depending on the severity of epilepsy, the patient’s loss of labor 
capacity is categorized as level four, level six, and level nine. 
Additionally, research has indicated a significant survival benefit for 
patients with epilepsy diagnosed within 1 year before the diagnosis of 
glioma compared to patients without a history of epilepsy. This 
association holds substantial significance for both low-grade gliomas 
(Grade II) and high-grade gliomas (Grade III and IV; Marku et al., 
2022). Hence, concerning injury assessment, the occurrence of 
epilepsy in glioma patients unquestionably implies a shortened life 
expectancy for the patient. However, it is not a certainty that all glioma 
patients will experience epilepsy. Literature suggests that 
approximately one-quarter to one-half of brain tumors are 

FIGURE 1

Human cytomegalovirus reinfection is associated with a potential glioma risk.
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accompanied by seizures (Pace et  al., 1998; Lynam et  al., 2007). 
Currently, the relationship between brain tumors and epileptic 
seizures remains unclear. The incidence of epileptic seizures depends 
on the tumor type and grade, to some extent on the patient’s age, and 
the location of the tumor. Glioblastoma and tumor-related epilepsy 
share common pathophysiological mechanisms that can drive tumor 
progression and the onset of seizures (Huberfeld and Vecht, 2016). For 
clinicians, the primary treatment approach for glioma patients is 
surgical tumor removal. However, for a substantial number of patients, 
this approach obscures potential indicators for injury assessment. 
Therefore, the development of an early, non-invasive method for 
assessing glioma-related epilepsy is of paramount importance for 
forensic injury assessment of patients.

Currently, it is considered that for epilepsy patients, an MRI 
(Magnetic Resonance Imaging) should be conducted at the initial 
onset and diagnosis of epilepsy, and it should be repeated during 
subsequent treatment (Bernasconi et al., 2019). As for tumor-related 
epilepsy, MRI is even more crucial because it can assess tumor type, 
tumor growth rate, location, and tumor burden, providing valuable 
information in this context (Chen et al., 2018). MRI plays a pivotal 
role in the diagnosis and treatment of brain tumors in humans (Fink 
et  al., 2015). MRI can assess the extent of tumor invasion and 
recurrence by reflecting the edema and capsule region of gliomas 
(Petrecca et al., 2013). In gliomas, diagnoses based on MR imaging 
possess a high level of reliability and are widely utilized to identify 
the location and size of gliomas. This is considered a crucial method 
for diagnosing and assessing gliomas (Martínez-Garcia et al., 2018). 
A study has shown that a radiomic model based on diffusion and 
perfusion-weighted MRI images can predict the isocitrate 
dehydrogenase (IDH) mutation and tumor invasiveness in diffuse 
low-grade gliomas (Kim et al., 2020). This indicates that for gliomas, 
MRI images can comprehensively reflect the medical information 
related to the tumor. Currently, artificial intelligence based on 
medical imaging has made significant advancements in various 
fields, including gliomas. A study utilizing radiological features 
extracted from T2 sequences of 233 glioma patients was able to 
predict patient survival (Qian et al., 2018). In a study comprising 212 
patients, radiomic features extracted from patient MRI scans were 
employed to define glioma subtypes based on tumor grade, IDH 
mutation, and 1p/19q co-deletion (Li et al., 2022). In contrast, deep 
learning methods do not require the prior selection of features but 
rather have the capacity to learn which features are most relevant for 
classification and/or prediction. Concerning the deep learning 
approach, various medical images can be  employed for glioma 
diagnosis. A study utilized 990,267 histological H&E stained images 
from 79 patients for glioma classification (Jin et al., 2021). A study 
employed diffusion tensor imaging to classify the risk of glioma 
patients (Yan et al., 2021). However, the majority of deep learning 
research still predominantly utilizes MRI data, and there are now 
numerous publicly available datasets to support this research 
direction (Menze et al., 2014).

This study included data from two centers and developed a neural 
network model that predicts whether patients will develop secondary 
epilepsy due to glioma by incorporating early brain MR images of 
glioma patients. This provides forensic injury assessment support 
without interfering with patient treatment. To validate the model’s 
effectiveness, it was compared with a machine learning model 
constructed using tumor images segmented by experts.

2. Materials and methods

2.1. Data collection

This study has been approved by the Ethics Committee of China 
Medical University Shengjing Hospital and the Ethics Committee of 
Dalian Medical University Second Hospital, with ethics reference 
numbers 2023PS1002K and 2,023,216, respectively. We conducted a 
search on patients at Shengjing Hospital of China Medical University 
from January 2016 to May 2023. Patients were included based on the 
following criteria: they underwent an MRI within the first week of 
hospitalization and subsequently underwent surgery or biopsy, leading 
to a pathological diagnosis of primary glioma. Clinical symptoms of 
epilepsy were assessed by clinicians upon the patient’s initial 
hospitalization. The diagnosis of epilepsy in patients was primarily 
based on their clinical presentation. Patients were excluded based on 
the following criteria: they had low-grade gliomas or their MR images 
did not provide clear tumor visualization due to other reasons, 
preventing proper annotation. Patients had a history of or concurrent 
brain diseases other than glioma. Patients had a history of epilepsy or 
the possibility of epilepsy caused by other reasons. Patients had other 
types of tumors, with potential for metastasis. The quality of the 
patients’ images was poor. The same inclusion and exclusion criteria 
were followed to conduct a similar search on the imaging database of 
Dalian Medical University. The workflow is illustrated in Figure 2.

In the end, 142 patients were included in the study, with 127 
patients from Shengjing Hospital of China Medical University. Among 
them, 89 patients were assigned to the training set, and 38 patients 
were assigned to the validation set. The remaining 15 patients were 
from the Second Affiliated Hospital of Dalian Medical University and 
served as the test set.

2.2. ROI

The Regions of Interest (ROI) were annotated on the T2 sequence 
of MRI, as shown in Figure 3. Three radiologists with more than 
5 years of experience in medical imaging diagnosis used 3D-slicer 
(Fedorov et al., 2012) to annotate the tumor images. Ideally, the tumor 
did not include necrotic areas. When their opinions differed, a 
consensus was reached through discussion. The ROIs on the T1 
sequence were obtained by image registration based on the T2 
annotated ROIs.

2.3. Texture analysis

The Python-based pyradiomics library was used to extract 
radiomic features. The extracted radiomic features included 252 first-
order statistics features, 14 shape-based features, 336 features based 
on the Gray-level co-occurrence matrix (GLCM), 224 features based 
on the Gray-level run-length matrix (GLRLM), 224 features based on 
the Gray-level size-zone matrix (GLSZM), 196 features based on the 
Gray-level dependence matrix (GLDM), and 70 features based on the 
Neighborhood gray-tone difference matrix (NGTDM).Before building 
the model, the radiomic features were normalized to reduce the 
impact of inherent differences and enhance data comparability. To 
reduce the number of features, the Pearson correlation coefficient 

https://doi.org/10.3389/fmicb.2023.1291692
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2023.1291692

Frontiers in Microbiology 04 frontiersin.org

(PCC) was used to compare the similarity between each feature pair. 
If the PCC value between two feature pairs was greater than 0.99, 
we randomly removed one of them to ensure that the reduced features 
were independent and not strongly correlated. Next, the ANOVA 
algorithm was applied for feature selection. The machine learning 
models in this study were built using the Python sklearn library. Four 
machine learning methods was used, namely random forests, logistic 
regression, support vector machines, and decision trees, to fit the data. 
For the patient data from Shengjing Hospital of China Medical 
University, the data was split into a training set and a validation set 
with a ratio of 7:3. The model was trained using the training set and 
selected the model parameters that achieved the best performance on 

the validation set as the final model parameters. The data from the 
Second Affiliated Hospital of Dalian Medical University was used as 
an external test set, which was not used during the training process. 
While accuracy was the primary metric for evaluating the model’s 
performance, multiple evaluation metrics were presented to assess the 
model comprehensively.

2.4. Deep learning model

Individual patient MRI cross-sections containing tumor regions 
were collected based on the annotations of radiologists. The patient 

FIGURE 2

Flowchart of the sample collection process in this study, which involved data from two centers. We primarily excluded patients with poor image 
quality, those with brain diseases, and patients with low-grade gliomas that were difficult to annotate on MRI. To improve data quality, patients with a 
history of epilepsy or those whose epilepsy diagnosis was challenging based on clinical symptoms were also excluded.

FIGURE 3

Schematic diagram of labeled images, (A) T1 sequence image, (B)T2 sequence image, (C) manually labeled image.
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images were standardized. The data from two sequences, T1 and T2 
images, was used for training. For each patient, the T1 and T2 
images of the same cross-section were fused to create a single 
sample. The patient data in the training, validation, and test sets were 
consistent with the radiomics model. Multiple CNN models were 
employed for patient classification, and the deep learning models 
were built using the Python pytorch library. AlexNet, DenseNet121, 
GoogleNet, MobileNet_v3_large, ResNet101, and Vgg19 were 
utilized as base networks, and attention mechanisms were 
incorporated. As shown in Figure  4, CBAM includes two 
independent sub-modules, the Channel Attention Module (CAM) 
and the Spatial Attention Module (SAM). Each network was trained 
for 50 epochs, and the model with the highest accuracy was saved 
based on the performance on the validation set. While accuracy 

remained the main evaluation metric, the model’s recall, F1-score, 
and precision were also presented to provide a 
comprehensive evaluation.

3. Results

3.1. Baseline characteristics of patients

The patient’s clinical information is shown in Table 1.
The age distribution of patients in the training set, validation set 

and test set is shown in Figure 5. There was no significant difference 
in the age distribution of patients between the training set and the 
validation set.

FIGURE 4

(A) The structure diagram of convolutional block attention module (CBAM). (B) We use early-fusion data to greatly improve the speed of neural 
network training.
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Among patients with and without epilepsy, the age distribution is 
shown in Figure 6.

3.2. Result of texture analysis

Considering the data distribution and preliminary experimental 
results, the texture parameters were individually modeled using 
four machine learning algorithms: Random Forest, Logistic 
Regression, Support Vector Machine, and Decision Tree. After 
feature selection, 9 texture features were included for modeling, as 
shown in Table 2.

The performance of the four selected algorithms on the validation 
set, which is from the same center as the training set, is shown in 
Figure  7. Among them, SVM achieved an accuracy of 60.51%, 
precision of 68.02%, recall of 60.53%, and F1-score of 64.06%; random 
forest achieved an accuracy of 63.16%, precision of 69.03%, recall of 
63.16%, and F1-score of 65.96%; logistic regression achieved an 
accuracy of 63.16%, precision of 66.24%, recall of 63.16%, and 
F1-score of 64.66%; decision tree achieved an accuracy of 56.26%, 
precision of 63.24%, recall of 56.26%, and F1-score of 58.98%.

On the external test set from another center, the results of the 
four machine learning methods are as follows: SVM: accuracy 60%, 
precision 60%, recall 60%, F1-score 60%. Random forest: accuracy 
60%, precision 60%, recall 60%, F1-score 60%. Logistic regression: 
accuracy 60%, precision 60%, recall 60%, F1-score 60%. Decision 
tree: accuracy 53.33%, precision 50.76%, recall 53.33%, F1-score 
52.01%. The results of the four machine learning models are shown 
in Figure 8.

3.3. Result of deep learning model

As shown in Figure 9, in the training dataset, all neural networks 
demonstrated relatively strong classification abilities.

On the validation set, the results were as follows: AlexNet achieved 
an accuracy of 75.1%, precision of 0, recall of 0, and F1-score of 0; 
DenseNet121 achieved an accuracy of 86.17%, precision of 80.43%, 
recall of 58.73%, and F1-score of 67.89%; GoogleNet achieved an 
accuracy of 83.00%, precision of 76.32%, recall of 46.03%, and 
F1-score of 57.43%; MobileNet_v3 achieved an accuracy of 86.96%, 
precision of 85.71%, recall of 57.14%, and F1-score of 68.57%; 
ResNet101 achieved an accuracy of 85.38%, precision of 86.11%, recall 

TABLE 1 Clinical information of the patient.

Train Validation Test

Sex

Male 42 17 7

Female 47 21 8

Age

<44 32 14 3

45–59 57 24 12

60–74 0 0 0

75–89 0 0 0

>90 0 0 0

Epilepsy

Positive 20 8 5

Negative 69 30 10

FIGURE 5

Age distribution of patients in training sets, test sets and validation sets.
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of 49.21%, and F1-score of 62.63%; VGG19 achieved an accuracy of 
85.38%, precision of 100%, recall of 41.27%, and F1-score of 58.43%. 
The results are shown in Figure 10.

Figure 11 shows the results on the external test set. The neural 
networks based on AlexNet and VGG19 did not demonstrate 
acceptable classification performance. The models based on 

FIGURE 6

Age distribution in patients with and without epilepsy.

TABLE 2 Selected features for machine learning algorithms.
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FIGURE 7

Results of Four Machine Learning Methods on the Validation Set, with the four parameters from left to right being accuracy, precision, recall, and  
F1-score.

FIGURE 8

Results of the four machine learning methods on the test set, with the four parameters shown from left to right: Accuracy, Precision, Recall, and  
F1-score.

DenseNet121 and GoogleNet experienced a significant drop in 
classification ability, while those based on MobileNet_v3 and 
ResNet101 also showed a certain decrease in performance. On the test 
set, the accuracy of AlexNet was 71.43%, precision was 0, recall was 0, 
and F1-score was 0; DenseNet121 achieved an accuracy of 66.96%, 
precision of 33.33%, recall of 15.62%, and F1-score of 21.27%; 
GoogleNet achieved an accuracy of 60.71%, precision of 16.67%, recall 
of 9.38%, and F1-score of 12.00%; MobileNet_v3 achieved an accuracy 
of 75.89%, precision of 100.00%, recall of 15.62%, and F1-score of 

27.02%; ResNet101 achieved an accuracy of 71.43%, precision of 
50.00%, recall of 15.62%, and F1-score of 23.80%; VGG19 achieved an 
accuracy of 71.43%, precision of 0, recall of 0, and F1-score of 0.

In this study, the best-performing network has been named as 
GE-Net, and its structure and the loss curve and accuracy curve of the 
GE-Net during 50 epochs of training are shown in Figure  12. 
Meanwhile, based on the predictions for each patient in the test 
dataset, we adopted the majority vote strategy to determine the overall 
prediction for that patient. Under this approach, GE-Net achieved an 

https://doi.org/10.3389/fmicb.2023.1291692
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2023.1291692

Frontiers in Microbiology 09 frontiersin.org

accuracy of 73.3%. Results of machine learning and deep learning 
models are shown in Table 3. We constructed a dataset using MRIs 
from 10 patients with meningiomas from Shengjing Hospital, affiliated 
with China Medical University. Among them, 5 patients exhibited 
epileptic symptoms, while the other 5 did not. We applied the same 
process to process the images of these patients and tested GE-Net, 
resulting in an accuracy of 62.22%.

4. Discussion

As awareness of the right to health has increased, becoming 
infected with non-communicable diseases is now viewed by society as 

an infringement upon this right. Injury identification by forensic 
doctors is an important process in judicial practice. Both parties to the 
dispute will negotiate the amount of compensation based on the 
results of the injury evaluation. According to different injury types, the 
difficulty of forensic identification of injury varies greatly. For organic 
injuries, including trauma, the cause of the injury is clear and therefore 
can be evaluated more easily. In the identification of injuries associated 
with pathogen infection, including human cytomegalovirus, forensic 
doctors should not only consider the immediate damage caused by 
infection, but also consider the damage caused by tumors directly 
related to viral infection and other diseases caused by tumors. In the 
absence of quantitative criteria and objective indicators, the 
identification of such injuries undoubtedly poses a huge challenge for 

FIGURE 9

Results of deep learning on the training set, with the four performance metrics displayed from left to right: accuracy, precision, recall, and F1-score.

FIGURE 10

Results of deep learning on the validation set, with the four performance metrics displayed from left to right: accuracy, precision, recall, and F1-score.
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FIGURE 11

Deep learning results on the test set, with the four metrics displayed from left to right as accuracy, precision, recall, and F1-score.

FIGURE 12

(A) Structure diagram, (B) Loss curve and (C) accuracy curve of GE-Net.

forensic medicine. Human cytomegalovirus, as a virus that can 
be transmitted through re-exposure, has been demonstrated to cause 
various harms to infected individuals. Glioma, one of the most 
prognosis-poor malignant brain tumors, has been linked to 
cytomegalovirus. However, in forensic practice, identifying the 
damage suffered by patients due to glioma-related to cytomegalovirus 
remains challenging. This is primarily because epilepsy is a crucial 
determinant in injury assessment, and glioma-related epilepsy 

presents significant uncertainty. Evaluating the possibility of glioma-
related epilepsy in infected individuals without disrupting their 
treatment is of paramount importance for accurate assessments.

In this study, a total of 142 patients diagnosed with glioma from 
two centers were included. We  determined whether patients had 
exhibited typical epilepsy symptoms based on their clinical 
presentations. In this research, preoperative MR images of patients, 
specifically T1 and T2 sequences, were used to construct a deep 

https://doi.org/10.3389/fmicb.2023.1291692
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2023.1291692

Frontiers in Microbiology 11 frontiersin.org

learning predictive model. To demonstrate the advantages of the 
model proposed in this study, a radiomic model was employed for 
comparison. The model presented in this study, which is based on 
MobileNetV3 with added attention mechanisms, exhibited significant 
superiority, a superiority observed across the training set, validation 
set, and test set.

In this study, T1 and T2 sequences were included to establish 
machine learning models. Compared to machine learning, neural 
network models exhibited a significant advantage on the test set. 
However, on the external test set, the classification performance of the 
machine learning model decreased. Several factors might contribute 
to this phenomenon. Firstly, it could be  attributed to inherent 
differences in MR images from different centers, making machine 
learning models reliant on a limited number of parameters less robust. 
Secondly, the final machine learning model was essentially constructed 
using only a subset of texture features. During feature extraction, 
thousands of texture features were generated, and although the 
validation set was used for model selection, it was challenging to fully 
address issues of model overfitting. Finally, the limited size of the test 
set might not adequately reflect the model’s classification capability, 
thereby impacting the machine learning model’s performance on 
external data. This highlights the importance of considering the 
differences in data from various centers, which has often been 
overlooked in previous research where single-center data was 
commonly used for modeling [Sun et al., 2020; Wang et al., 2020; Gao 
et al., 2021; National Guideline Centre (UK), 2022]. It is worth noting 
that this decline in classification performance on the training set was 
also observed in the MobileNet_v3 model, which yielded the best 
results. This model’s performance on the test set still lagged behind 
that on the training and validation sets, which underscores the impact 
of inter-device differences resulting in image disparities. We tested 
GE-Net using data from patients with meningiomas, and the accuracy 
showed a significant difference compared to the test set composed of 
glioma patients. This further confirms that the occurrence of epilepsy 
in glioma patients depends not only on the extent of tumor invasion 
and its growth location but is also highly correlated with the type and 
growth characteristics of the tumor. In comparison to studies that only 
included a single sequence, this research incorporated a more 
comprehensive set of medical information related to epilepsy caused 
by brain tumors, thus enhancing the model’s accuracy. This 
improvement can be attributed to the unique characteristics of the 
T1-weighted sequence, where substances with short T1 relaxation 

times, such as fat, melanin, and protein, exhibit bright high signals, 
while cerebrospinal fluid (CSF) appears as a low signal, making it 
suitable for anatomical observation. The T2 sequence, on the other 
hand, provides a relatively better representation of tumor and lesion 
states. It is generally accepted that epilepsy caused by brain tumors 
involves various factors, including the tumor itself and its location. 
Therefore, the inclusion of data from both T1 and T2 sequences is 
advantageous for enhancing the model’s effectiveness. In addition to 
MRI, CT scans and EEG (Electroencephalogram) are commonly used 
diagnostic tests for epilepsy patients. CT scans can provide clear 
visualization of brain structures, making them particularly 
advantageous for detecting organic lesions like calcified brain injuries. 
However, CT images typically have lower resolution and may not 
effectively identify around 50% of the structural abnormalities that 
cause seizures. Especially in the case of temporal lobe epilepsy, CT’s 
ability to identify lesions is even poorer, and it may not provide 
sufficient information for neural network models (Shaikh et al., 2019). 
Currently, EEG remains a crucial test for epilepsy diagnosis with high 
specificity. Generally, sensitivity can also be significantly improved 
through repeated measurements. However, EEG is influenced by 
various factors and may have difficulty capturing abnormal discharges 
during seizure-free intervals, which can, in fact, increase the challenge 
of obtaining effective training data for artificial intelligence models 
(Benbadis et al., 2020).

In this study, approximately 23.24% of patients experienced 
seizures, and a significant proportion of them suffered primarily from 
physical injuries during seizure episodes. Nearly all epilepsy patients 
underwent drug therapy to control their seizure symptoms. Regardless 
of whether seizures occurred, all patients underwent surgery within 
the first week of hospitalization. These statistics align with the seizure 
incidence observed in some previous research but differ significantly 
from the seizure rates reported in other studies among glioma 
patients. However, this underscores the potential of this study in 
forensic assessments. The substantial variability in these statistical data 
may be related to the timing of surgery, indicating that a significant 
portion of patients experienced a resolution of their epilepsy 
symptoms due to early surgical intervention. Additionally, in clinical 
practice, the use of antiepileptic drugs remains the preferred choice 
for healthcare providers. This treatment approach is widely accepted 
by patients, possibly because symptom control after receiving 
medication provides them with psychological comfort (Siomin et al., 
2005). However, the harm inflicted on patients by gliomas has not 
diminished as a result. One study indicated that glioma patients 
receiving levetiracetam for prevention or treatment, despite robust 
control of seizure symptoms, did not experience significant benefits 
(Boison, 2010). This implies that regardless of the method used to 
control or eliminate seizures, the harm caused by the tumor to the 
patient is underestimated. Therefore, this study provides robust 
support for forensic assessments of the damage caused by 
cytomegalovirus reinfection through the prediction of whether 
patients will experience seizures based on preoperative MR scans.

Nevertheless, this study has certain limitations. Firstly, the 
diagnosis of epilepsy in enrolled patients was primarily based on 
clinical presentation, and thus, it cannot entirely rule out the 
possibility of seizures due to other causes. Secondly, this study utilized 
deep learning to predict whether glioma patients would develop 
epilepsy. Limited by the nature of deep learning, the ability to interpret 
the features extracted by the model is restricted. Thirdly, due to the 
difficulty in obtaining patients who never underwent surgical 

TABLE 3 Results of machine learning and deep learning models.

Accuracy Precision Recall
F1-

score

SVM 60.00% 60.00% 60.00% 60.00%

Random forest 60.00% 60.00% 60.00% 60.00%

Logistic regression 60.00% 60.00% 60.00% 60.00%

Decision tree 53.33% 50.76% 53.33% 52.01%

AlexNet 71.43% 0.00% 0.00% 0.00%

DenseNet121 66.96% 33.33% 15.62% 21.27%

GoogleNet 60.71% 16.67% 9.38% 12.00%

MobileNet_v3_large 75.89% 100.00% 15.62% 27.02%

ResNet101 71.43% 50.00% 15.62% 23.80%

Vgg19 71.43% 0.00% 0.00% 0.00%
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treatment or took antiepileptic drugs until clinical outcomes were 
reached, this research could not encompass all scenarios of glioma-
related epilepsy. Lastly, the model is derived from only two centers, 
and the data of epileptic and non-epileptic patients is not 
perfectly balanced.

5. Conclusion

In this study, a deep learning model was developed based on head 
MRIs to predict whether glioma patients would develop epilepsy. The 
data was incorporated from two different centers to validate the 
model’s robustness, and through comparisons with other artificial 
intelligence methods, which demonstrated the superiority of model. 
This research can assist forensic experts in more accurately identifying 
the damage caused by glioma associated with cytomegalovirus 
infection, thereby providing support in cases involving infringements 
on the right to health.
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