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Nidovirales is one order of RNA virus, with the largest single-stranded positive 
sense RNA genome enwrapped with membrane envelope. It comprises four 
families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has 
been circulating in humans and animals for almost one century, posing 
great threat to livestock and poultry，as well as to public health. Nidovirales 
shares similar life cycle: attachment to cell surface, entry, primary translation 
of replicases, viral RNA replication in cytoplasm, translation of viral proteins, 
virion assembly, budding, and release. The viral RNA synthesis is the critical 
step during infection, including genomic RNA (gRNA) replication and 
subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires 
the synthesis of a negative sense full-length RNA intermediate, while the sg 
mRNAs transcription involves the synthesis of a nested set of negative sense 
subgenomic intermediates by a discontinuous strategy. This RNA synthesis 
process is mediated by the viral replication/transcription complex (RTC), 
which consists of several enzymatic replicases derived from the polyprotein 
1a and polyprotein 1ab and several cellular proteins. These replicases and 
host factors represent the optimal potential therapeutic targets. Hereby, 
we summarize the Nidovirales classification, associated diseases, “replication 
organelle,” replication and transcription mechanisms, as well as related 
regulatory factors.
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1 Introduction

Named after the Latin word “nidus” (meaning nest), Nidovirales refers to an order of 
viruses which produce a 3′ co-terminal nested set of sg mRNAs during infection 
(Cavanagh, 1997). They are enveloped virus with a single-stranded, positive-sense RNA 
genome inside, which consists of a 5′ cap and a 3′ poly (A) tail (de Vries et al., 1997; King 
et al., 2012). They also contains the longest and the most complex RNA genome, which 
can be distinguished from other RNA viruses by their molecular genetics (Gorbalenya 
et al., 2006). So far, our knowledge about their molecular biology have mainly originated 
from the research progress on Arterividae and Coronaviridae.

Nidovirus infection is initiated by the process of binding between a virus and its 
receptors, fusing with membranes, and releasing of the virus into the cytoplasm, in which 
the nucleocapsid protein is degraded to un-coat the viral genome and subsequently the 
uncoated gRNA is translated into polyproteins 1a and 1ab (Brian and Baric, 2005). Both 

OPEN ACCESS

EDITED BY

Shijian Zhang,  
Dana–Farber Cancer Institute, United States

REVIEWED BY

Jingqiang Ren,  
Wenzhou University, China
Qian Du,  
Northwest A&F University, China

*CORRESPONDENCE

Ying Liao  
 liaoying@shvri.ac.cn

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 10 September 2023
ACCEPTED 06 November 2023
PUBLISHED 24 January 2024

CITATION

Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, 
Qiu X  and Ding C (2024) Classification, 
replication, and transcription of Nidovirales.
Front. Microbiol. 14:1291761.
doi: 10.3389/fmicb.2023.1291761

COPYRIGHT

© 2024 Liao, Wang, Liao, Sun, Tan, Song, Qiu 
and Ding. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Review
PUBLISHED 24 January 2024
DOI 10.3389/fmicb.2023.1291761

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1291761﻿&domain=pdf&date_stamp=2024-01-24
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1291761/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1291761/full
mailto:liaoying@shvri.ac.cn
https://doi.org/10.3389/fmicb.2023.1291761
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1291761


Liao et al. 10.3389/fmicb.2023.1291761

Frontiers in Microbiology 02 frontiersin.org

polyproteins (pp1a and pp1ab) undergo auto-proteolysis by intrinsic 
cysteine proteases to yield 13 to 17 non-structural proteins (NSPs) 
(Ziebuhr et al., 2000; Fang and Snijder, 2010; Snijder et al., 2013). These 
NSPs are encoded by gene 1, including two proteases and three 
transmembrane domains (TM) containing proteins, primer synthetases, 
RNA-dependent RNA polymerase (RdRp), RNA helicase, and 
endoribonuclease. To be specific, RdRp serves as a key component in 
the formation of the replication-transcription complex (RTC) and plays 
a crucial role in the viral RNA synthesis (Hagemeijer et al., 2010; Yan 
et al., 2021). The RTC interacts with the modified membrane structures 
such as double-membrane vesicles (DMVs), tiny open double-
membrane spherules (DMSs), and convoluted membranes (CMs) to 
carry out its functions of replication and transcription (Hagemeijer 
et  al., 2010). The DMVs, DMSs, and CMs are derived from the 
endoplasmic reticulum (ER) membranes by the help of several TM 
containing viral NSPs (Posthuma et al., 2008; Angelini et al., 2013; van 
der Hoeven et  al., 2016; Oudshoorn et  al., 2017). They provide a 
protective environment for the RTC to efficiently process and synthesize 
RNA molecules (Roingeard et al., 2022). With the help of RTC, the 
negative-stranded full-length genomic RNA (-gRNA) and subgenomic 
RNAs (-sgRNAs) are synthesized, serving as templates to generate 
gRNA and sg mRNAs, which are further involved in the synthesis of 
replicases (pp1a and pp1ab), structural proteins, and the accessory 
proteins. The transmembrane structural proteins are synthesized by 
ER-associated ribosomes and inserted into the ER membranes, while 
the nucleocapsid protein (N protein) is synthesized by ribosomes in the 
cytoplasm. N protein binds to the viral RNA to form a stable structure 
called RNA-N complex, which enhances the efficiency of replication or 
translation (Chang et al., 2014; McBride et al., 2014). The assembly 
process of virion takes place in the membranes located between the ER) 
and Golgi apparatus (ERGIC), within which specialized compartments 
are formed when the membrane folds inward to create a small vesicle-
like structure (Venkatagopalan et al., 2015; Boson et al., 2021). This 
assembly process is triggered by the interaction among the viral 
structural proteins and membranes (Klumperman et al., 1994; Nguyen 
and Hogue, 1997; de Haan et al., 1998; Wissink et al., 2005; Neuman 
et  al., 2011; Zhang Z. et  al., 2022), and the structural proteins 
subsequently bind to N protein and recruit the gRNA-N complex, 
during which the structural proteins and membranes form the outer 
envelope while the gRNA-N nucleocapsid is wrapped inside (Lim and 
Liu, 2001; Hsieh et al., 2008; Wang et al., 2009; Tseng et al., 2010; Zhang 
et  al., 2015; Rüdiger et  al., 2016; Lu et  al., 2021). Once the virion 
assembly is completed within the ERGIC, the mature virus particles are 
transported out of the cell through a process called exocytosis (Figure 1).

2 Classification and associated 
diseases of Nidovirales

Officially defined by the International Committee on Taxonomy of 
Viruses (ICTV) at the Xth International Congress of Virology (ICV) 
held in Jerusalem (Pringle, 1996), Nidovirales was classified into four 
families: Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae, 
with the Coronaviridae further divided into two sub-families: 
Coronavirinae and Torovirinae (Figure 2). However, as a result of the 
development of virus detection technologies and viral metagenomics, 
an increasing number of previously unknown viruses have been 
discovered (Shi et al., 2018). According to the changes to virus taxonomy 

approved by the ICTV in 2019, currently the order Nidovirales is 
composed of eight suborders: Abnidovirineae, Arnidovirineae, 
Coronadovirineae, Mesnidovirineae, Monidovirineae, Nanidovirineae, 
Ronidovirineae, and Tornidovirineae (Van Regenmortel, 2000; Walker 
et  al., 2019; Parrish et  al., 2021). These eight suborders contain 14 
families, 25 subfamilies, 39 genera, 65 subgenera, and 109 species. 
Because the newly emerged viruses have not yet been comprehensively 
studied yet, the following introduction on the Nidovirales is still based 
on the original taxonomy (Pringle, 1996).

Nidovirales can infect both vertebrates (Coronaviridae, Arteriviridae, 
and Roniviridae) and invertebrates (Mesoniviridae) (Table 1), with a 
wide range of host organisms, from mammal to bird, fish, crustacean, 
and insect (Cavanagh et  al., 1994; Snijder and Meulenberg, 1998; 
Masters, 2006; Snijder et al., 2013; Hartenian et al., 2020; Ujike and 
Taguchi, 2021). Classification of viruses within the Nidovirales order is 
primarily based on several factors, including the organization of the 
viral genome, the homology of the genome sequence, the antigenic 
characteristics of the viral proteins, the replication strategy, the structure 
and physicochemical properties of the virus particle, the natural host 
range. Based on these factors, scientists and researchers are able to 
understand the characteristics and relationship of such viruses (Masters, 
2006; King et al., 2012; Lavi et al., 2012). Compared to DNA viruses, 
RNA viruses lack proofreading capacity in their RdRp and thus come 
across more frequent errors or mutations during replication of their 
genetic materials, which results in their faster genetic drift and their 
ability to cross species barriers.

2.1 Coronaviridae

Coronaviridae is a family of viruses with a single-stranded RNA 
genome in the size of 25–32 kb. The 5′-proximal two-thirds region 
encodes two large polyproteins (pp1a and pp1ab) to generate NSPs 
which are crucial for viral replication, while the 3′-proximal genome 
encodes 4 structural proteins which are responsible for viral entry and 
assembly (Brian and Baric, 2005). As well, the virus species specific 
accessory proteins, which play an important role in modulating the 
host immune response, are interspersed among the structural protein 
genes in the 3′-proximal region (Figure 3B).

According to the original classification, the virus family of 
Coronaviridae is further divided into two subfamilies: Coronavirinae 
and Torovirinae (Lai and Cavanagh, 1997). The subfamily 
Coronavirinae is named after its crown-like appearance under electron 
microscopy and characterized by its spherical particle structure with 
a diameter ranging from 80 nm to 120 nm and its surface adorned with 
spike (S), membrane (M), and envelope (E) protein. Inside the 
envelope, there is nucleocapsid which is composed of the viral 
genomic RNA and N protein (Figure 3A). In contrast, the subfamily 
Torovirinae is named after the Latin word “torus” which means 
“cushion” or “protuberance” and appears like pleomorphic, elongated 
particles with a characteristic “cushion-like” or “torus-like” shape, with 
the particle morphology including rod-shaped, kidney-shaped, and 
spherical particles (Ujike and Taguchi, 2021).

The subfamily Coronavirnae can be  further divided into four 
genera: α-Coronavirus, β-Coronavirus, γ-Coronavirus, and 
δ-Coronavirus. These genera encompass a wide range of coronaviruses 
that infect human, mammalian animals, and avian species (Lai and 
Cavanagh, 1997; Masters, 2006; McCluskey et  al., 2016). This 
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subfamily of viruses mainly causes diseases characterized by 
symptoms in the respiratory tract, intestinal tract, liver, and central 
nervous system and poses severe threat not only to human health but 
also to livestock breeding (Drosten et  al., 2003; Woo et  al., 2009; 
Myrrha et  al., 2011; Hemida et  al., 2014; Zhu et  al., 2020). The 
subfamily can be transmitted from animals to human and differ in 
terms of their pathogenicity, symptoms and fatality rates. Before the 
highly pathogenic severe acute respiratory syndrome coronavirus-1 
(SARS-CoV-1), middle east respiratory syndrome coronavirus 
(MERS-CoV), and SARS-CoV-2 emergence, the human coronaviruses 
usually cause mild or moderate upper respiratory tract diseases, which 
include HCoV-229E (Hamre and Procknow, 1966), HCoV-OC43 
(Hamre and Procknow, 1966; Vabret et al., 2003), HCoV-NL63 (van 
der Hoek et al., 2004), and HCoV-HKU1 (Woo et al., 2005). These 
viruses are generally not considered to be  highly dangerous or 

life-threatening (El-Sahly et al., 2000; Falsey et al., 2002; Gagneur 
et al., 2002). Whereas, MERS-CoV, SARS-CoV-1, and SARS-CoV-2 
cause severe symptoms in low respiratory tract, with the typical 
syndromes of fever and pneumonia (Drosten et al., 2003; Zaki et al., 
2012; Salzberger et al., 2021). Among them, MERS-CoV infection is 
characterized by such symptoms as fever, cough, shortness of breath, 
and pneumonia, with a fatality rate of 34.4%; SARS-CoV infection is 
characterized by such symptoms as fever, chills, and body pain, and 
pneumonia, with a fatality rate of 9.5%; and SARS-CoV-2 infection is 
characterized by a wide ranges of symptoms, including fever, cough, 
fatigue, loss of taste or smell, pneumonia and acute respiratory distress 
syndrome (Petrosillo et  al., 2020; Sharma et  al., 2020). Since the 
outbreak of SARS-CoV-2 in December 2019, it has spread globally at 
an alarming rate, causing more than 771.5 million infections and 6.97 
million deaths, with an average mortality rate of 0.9%, as reported to 

FIGURE 1

Nidovirales life cycle. (1) Virus particles attach to specific receptors on the surface of host cell, which enables the virus to enter into cells through direct 
fusion with cellular or endosomal membranes; (2–3) The incoming viral genome, a single-stranded RNA molecule, after being released and uncoated 
serves as template for the synthesis of two polyproteins (pp1a and pp1ab), which are afterwards cleaved by internal papain-like proteases (PLPs) and 
main protease (Mpro) to generate mature NSPs, including replicases; (4) The formation of viral replication/transcription organelle. The three NSPs 
containing TM (TM1-3) insert into the intracellular membrane to induce the formation of various membrane structures such as DMVs, CMs, and DMSs, 
which provide a protective microenvironment for replication and transcription. The NSPs including RdRp, primer synthetases, RNA helicase, 
endoribonuclease, interact with each other to form the RTC. (5–6) The gRNA and sg mRNAs are synthesized by RTC in the DMVs or DMSs and then 
transported outside of the DMVs or DMSs; (7) The gRNA and sg mRNAs serve as templates for synthesis of viral proteins by ribosomes; (8) Viral 
structural proteins are first transported into the ER membrane and then reach the ER-to-Golgi intermediate compartment (ERGIC). Once reaching at 
the ERGIC, the structural proteins interact with the membranes to curve it and then wrap around the N-gRNA nucleocapsid, resulting in the virion 
budding into secretory vesicular compartments. (9–10) Mature virus particles are transported out of the cell by exocytosis.
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WHO by 25 October 2023 (Cheng et al., 2020; Petrosillo et al., 2020; 
Zhu et al., 2020; Salzberger et al., 2021). In fact, the real infections and 
deaths number are severely underestimated. As the omicron variant 
has become the predominant strain and the herd immunity has been 
established, the mortality rate of SARS-CoV-2 is continuing to decline.

Additionally, Coronavirinae turns out an important concern for 
veterinary. It is currently known that six coronaviruses infect pigs, 
including transmissible gastroenteritis virus (TEGV), porcine 
respiratory coronavirus (PRCV), swine acute diarrhea syndrome 
coronavirus (SADS-CoV), porcine hemagglutinating 
encephalomyelitis virus (PHEV), porcine epidemic diarrhea virus 
(PEDV), and porcine δ-coronavirus (PDCoV) (Mora-Díaz et  al., 
2019; Liu and Wang, 2021; Turlewicz-Podbielska and Pomorska-Mol, 
2021). Specifically, TGEV，PRCV, and PHEV have been commonly 
found in pig herds worldwide for decades, whereas PEDV, SADS-CoV, 
and PDCoV have been identified more recently and cause clinically 
indistinguishable acute gastroenteritis, especially lethal to newborn 
piglets, posing significant challenges to the porcine breeding industry. 
As the first discovered coronavirus in the 1930’s, infectious bronchitis 
virus (IBV) belongs to the genus of γ-Coronavirus and is a highly 
contagious respiratory virus that causes significant economic loss in 
the poultry farm. It primarily infects chickens, causing respiratory 
signs such as depression, coughing, sneezing, nasal discharge, and 
even death (Najimudeen et al., 2020). Despite routine efforts in its 
vaccination, this virus is becoming increasingly difficult to prevent 

and control as a result of its high mutation rate and unpredictable 
emergence of diverse types throughout the world (Cavanagh, 2007; 
Khataby et al., 2016; Bande et al., 2017).

With a size of approximately 25–30 kb, the subfamily Torovirinae 
shares similar genome organization with Coronavirnae and has two 
genera: Torovirus and Bafinivirus (Snijder and Horzinek, 1993; 
Cavanagh et al., 1994; Koopmans and Horzinek, 1994; de Vries et al., 
1997). Four virus species under this genus have been identified to 
date: equine torovirus (EToV), bovine torovirus (BToV), porcine 
torovirus (PToV), and human torovirus (HToV), with genetic 
divergence of 20–40% (Ujike and Taguchi, 2021). Infections of 
torovirus have been reported worldwide, with cases documented in 
Europe, America, Asia, New Zealand, and South Africa (Durham 
et al., 1989; Penrith and Gerdes, 1992; Koopmans and Horzinek, 
1994; Cavanagh, 1997; Ujike and Taguchi, 2021). These viruses can 
cause various gastrointestinal and respiratory symptoms in their 
respective host species: EToV is known to cause gastrointestinal and 
respiratory infections in horses and is the only torovirus which has 
been successfully cultured in vitro (Kuwabara et al., 2007); BToV 
primarily infects cattle and cows with diarrhea and respiratory 
symptoms (Ito et al., 2009; Aita et al., 2012; Lojkic et al., 2015); PToV 
mainly brings about gastrointestinal infection in pigs，with its 
coinfections with other pathogens usually exacerbating the symptoms 
(Hu et al., 2019); HToV associates with gastroenteritis and diarrhea 
in children as well as necrotizing enterocolitis in infants (Durham 

FIGURE 2

The classification of Nidovirales. Nidovirales consists of 4 families, 2 sub-families, 9 genera and a total of 36 lineages. PEDV, Porcine epidemic diarrhea 
virus; TGEV, Transmissible gastroenteritis coronavirus; CCoV, Canine coronavirus; FCoV, Feline coronavirus; HCoV-229E, Human coronavirus 229E; 
HCoV-NL63, Human coronavirus NL63; CCoV-HuPn-2018, Canine coronavirus-human pneumonia-2018; BCoV, Bovine coronavirus; ECoV, Equine 
coronavirus; CRCoV, Canine respiratory coronavirus; MHV, Mouse hepatitis virus; HCoV-OC43, Human coronavirus OC43; HCoV-HKU1, Human 
coronavirus HKU1; SARS-CoV-1, Severe acute respiratory syndrome coronavirus-1; SARS-CoV-2, Severe acute respiratory syndrome coronavirus-2; 
MERS-CoV, Middle east respiratory syndrome coronavirus; IBV, Infectious bronchitis virus; BWCoV-SW1, Beluga whale coronavirus SW1; PDCoV, 
Porcine delta-coronavirus; CMCoV, Common-moorhen coronavirus; ALCCoV, Asian leopard cat coronavirus; WBV, white bream virus; EToV, Equine 
torovirus; BToV, Bovine torovirus; PToV, Porcine torovirus; HToV, human torovirus; PRRSV, porcine reproductive and respiratory syndrome virus; EAV, 
Equine arteritis virus; LDV, Lactate dehydrogenase elevating virus; SHFV, Simian hemorrhagic fever virus; YHV, Yellow head virus; GAV, Gill-associated 
virus; DKNV, Dak nong virus; CavV, Cavally virus; NDiV, Nam Dinh virus.
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et al., 1989). The genus of Bafinivirus that infects fish was discovered 
in 2006 (Schütze et al., 2006).

2.2 Arteriviridae

The Arteriviridae was established as a distinct family in 1996; later 
on, it was grouped into the order Nidovirales because it shares 
similarities with the family Coronaviridae (Cavanagh, 1997; Snijder 

and Meulenberg, 1998; Gorbalenya et al., 2006; King et al., 2012). 
Arterivirus particles are spherical and enveloped, with a core housing 
the RNA genome of approximately 12.7–15.7 kb (Plagemann and 
Moennig, 1992). Unlike coronaviruses, arteriviruses do not have an 
obvious spike protein on their surface. Instead, they have relatively 
small protrusions. The envelope consists of several proteins, including 
two major envelope proteins GP5-M heterodimer, three minor 
proteins GP2-GP3-GP4 heterotrimer and GP2-GP4 heterodimer, and 
two minor protein E and 5a (Snijder et al., 2013). All envelope proteins 

TABLE 1 The classification of Nidovirales.

Family Sub-family Genus Virus species Host Genome size 
(kb)

Genbank 
accession no

Coronaviridae

Coronavirinae

α-coronavirus

PEDV Swine 28.031 MK841495.1

TGEV Swine 28.572 DQ811788.1

CCoV Canine 29.051 MT114538.1

FCoV Feline 29.273 DQ848678.1

HCoV-229E Human 27.021 KU291448.1

HCoV-NL63 Human 27.537 DQ445912.1

CCoV-HuPn-2018 Human 29.089 MW591993.2

β-coronavirus

BCoV Bovine 31.031 U00735.2

ECoV Equine 30.943 OL770366.1

CrCoV Canine 30.876 KX432213.1

MHV Murine 31.291 FJ647225.1

HCoV-OC43 Human 30.753 KU131570.1

HCoV-HKU1 Human 29.811 MH940245.1

SARS-CoV-1 Human 29.746 AY545919.1

SARS-CoV-2 Human 29.903 NC_045512.2

MERS-CoV Human 30.031 MH734115.1

γ-coronavirus
IBV Avian 27.608 NC_001451.1

TCoV Avian 27.657 NC_010800.1

δ-coronavirus

PDCoV Swine 25.370 MN942260.1

HKU11 Bulbul 26.487 NC_011547.1

HKU12 Thrush 26.396 NC_011549.1

Torovirinae

Bafinivirus WBV White bream 26.660 NC_008516.1

Torovirus

EToV Equine a part of sequence DQ310701.1

BToV Bovine 28.341 MN882587.1

PToV Swine 28.305 KM403390.1

HToV Human a part of sequence KJ645983.1

Arteriviridae Arterivirus

PRRSV Swine 15.447 AY150312.1

EAV Equine 12.704 MG137481.1

LDV Murine 14.104 NC_001639.1

SHFV Primate (Macaque) 15.717 NC_003092.2

Roniviridae Okavirus

YHV Shrimp 26.672 FJ848673.1

GAV Prawn 26.253 NC_010306.1

Okavirus Shrimp 26.662 FJ848674.1

Mesoniviridae α-mesonivirus

DKNV Culex 20.125 OV054251.1

CavV Culex 20.128 NC_015668.1

NDiV Vishnui 20.074 NC_020901.1
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are critical for producing infectious progeny (Dea et al., 2000; Wissink 
et al., 2005; Music and Gagnon, 2010). Inside the envelope, there is 
RNA genome wrapped with N protein, which form a pleomorphic 
core with a mean diameter of 39 nm (Spilman et al., 2009; Dokland, 
2010) (Figure 3A). The diame1ter of the virus particles, observed 
under the cryo-electron microscopy, was approximately 50–60 nm, 
significantly smaller than coronaviruses (Spilman et al., 2009).

The Arteriviridae primarily infect mammals, including equid, 
swine, opossum, non-human primate, and rodent (Plagemann and 
Moennig, 1992). One notable member of this family is the prototype 
equine arteritis virus (EAV), which was firstly discovered in 1957 and 
is known to infect horses (Bryans et  al., 1957; Del Piero, 2000; 
Balasuriya et al., 2013). Another two species of lactate dehydrogenase-
elevating virus (LDV) and simian hemorrhagic fever virus (SHFV), 
were firstly isolated more than 50 years ago. SHFV is known to cause 

a highly lethal fever in African non-human primates while LDV 
infects mice (Riley et al., 1960; Notkins and Shochat, 1963; Plagemann 
et al., 1995; Snijder and Meulenberg, 1998; Brinton et al., 2015). The 
porcine reproductive and respiratory syndrome virus (PRRSV) is a 
highly contagious virus that infect pigs, and its emergence causes 
significant economic losses to the global swine industry (Neumann 
et al., 2005; Tian et al., 2007; Lunney et al., 2016; Guo et al., 2018; 
Zhang H. et  al., 2022). Arteriviruses are transmitted through 
respiratory routes or body fluids; in most cases, they affect 
macrophages. They can cause a range of symptoms, including 
persistent or acute asymptomatic infections, miscarriage, respiratory 
disease, arthritis, fatal hemorrhagic fever, and polio (Snijder et al., 
2013). For example, EAV and PRRSV are known to cause mild-to-
severe respiratory disease and lead to abortion in pregnant animals 
(Balasuriya and Carossino, 2017). Due to their veterinary importance, 

FIGURE 3

Prototype virus particle and genome structure of Nidovirales. (A) The prototype virus in each family is represented in the diagram, including SARS-
CoV-2 from Coronaviridae, BToV from Torovirus, porcine reproductive and respiratory syndrome virus (PRRSV) from Arterividae, YHV from Roniviridae, 
and CavV from Mesoniviridae. (B) Genome organization of the prototype virus (SARS-CoV-2, BToV, PRRSV, YHV, CavV) in each family: the replicase 
ORF1a and ORF1b are followed by the genes encoding structural and accessory proteins. Red circles represent ribosomal frameshifting sites, and the 
rectangles represent the open reading frames (ORFs). Colored patterns represent domains common to all nidovirus.
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EAV and PRRSV have been characterized extensively, severing as the 
basis for our current understanding of arterivirus.

2.3 Roniviridae

The family Roniviridae include a single genus called Okavirus 
which infect crustacean, mostly shrimp (Cowley et al., 2000; Walker 
et  al., 2021). The virus particles are enveloped with bacilliform 
geometries and helical symmetry, with a diameter of around 40–60 nm 
and a genome of 26–27 kb inside (Dhar et al., 2004; Figure 3A). The 
genus Okavirus includes gill-associated virus (GAV) and yellow head 
virus (YHV), which have been found to associate with mortality in 
cultured black tiger prawns (Penaeus monodon) and white Pacific 
prawns (Penaeus vannamei). It has been reported that these viruses 
caused economic loss in shrimp farm in Eastern Australia, Thailand, 
and China (Cowley et al., 2001; Munro and Owens, 2007; Munro 
et al., 2011; Dong et al., 2017). They have been listed as notifiable 
pathogens by the World Organization for Animal Health.

2.4 Mesoniviridae

Found in 2011, the Mesoniviridae has only one genus called 
α-Mesonivirus, which are mosquito-specific virus with a wide geographic 
distribution (Nga et al., 2011; Zirkel et al., 2011; Lauber et al., 2012; 
Vasilakis et al., 2014). Belonging to the genus α-Mesonivirus, Cavally 
virus (CavV) and Nam Dinh virus (NDiV) have been the first two 
characterized mesoniviruses (Nga et al., 2011; Zirkel et al., 2011). These 
two viruses are closely related and belong to the same species, 
α-Mesonivirus 1. Other phylogenetically diverse mesoniviruses are 
isolated from a range of mosquito species and geographic locations 
(Kuwata et al., 2013; Thuy et al., 2013; Zirkel et al., 2013). The mesonivirus 
particles are about 120 nm in diameter, with rod-shaped spike protein 
(77 kDa) and differentially glycosylated membrane proteins (17, 18, 19, 
20 kDa) on the surface, and a nucleocapsid (25 kDa-N protein and 
20 kb-RNA genome) inside (Figure 3A).

3 RNA genome

The Nidovirales genome have been studied extensively in recent 
decades (de Vries et al., 1997; Gorbalenya et al., 2006). Despite variations 
in genome size and virus particle morphology, Nidovirales have been 
classified primarily based on their common genetic organization, a set of 
conserved domains and enzyme functions within the polyproteins, and 
their unique transcription strategy (King et al., 2012). The 5′-proximal 
genome contains two ORFs (ORF1a and ORF1b), which encompass 
two-thirds of the genome and encode two giant polyproteins pp1a and 
pp1ab. These two ORFs possess a conserved domain backbone, including 
their domains in the sequential order as follows: 5′-TM1-TM2-Mpro-
TM3-NiRAN-RdRp-ZBD-HEL-NendoU-3′ (the first four in ORF1a 
while the remaining in ORF1b) (King et al., 2012). The 3′-proximal 
genome contains smaller ORFs, which encode structural proteins and 
accessory proteins, as translated from co-terminal sg mRNAs. These 
ORFs are different in number, size, and length in different families, and 
some accessory genes are unique to certain virus species, especially in 
coronaviruses (de Vries et al., 1997; Figure 3B). In addition, at the 5′- and 

3′-termini, there are untranslated regions (UTR) which can regulate the 
viral RNA replication and transcription.

After virus entry and uncoating, the gRNA is released into the 
cytosol, and directly serves as a template for transcription, enabling 
cap-dependent translation of ORF1a to produce pp1a. In addition, 
an RNA pseudoknot structure is located near the end of ORF1a 
together with a slippery sequence of “UUUAAC,” enabling −1 or −2 
ribosomal frameshift and translation on ORF1b to produce a longer 
pp1ab (Brierley et al., 1989; Plant et al., 2005; Patel et al., 2020). Pp1a 
and pp1ab are cleaved by intrinsic proteases, either co-translationally 
or post-translationally, to generate mature NSPs, including papain-
like proteases (PLPs), NSPs with TM (TM1, TM2, TM3), 3C-like 
main protease (Mpro), nucleotidyltransferase (NiRAN), RdRp, 
superfamily 1 helicase (ZBD-HEL), and endoribonuclease (NendoU) 
(Gorbalenya et al., 1989; Ziebuhr et al., 2000; Li et al., 2015). The 
proteins encoded by ORF1a play a significant role in modulation of 
host gene expression, cleavage and maturation of pp1a and pp1ab 
(PLP and Mpro) (Ziebuhr et al., 2000), and modification of host 
membranes so as to create an environment suitable for viral genome 
synthesis (NSPs with TM1, TM2, or TM3) (van der Hoeven et al., 
2016), while the proteins encoded by ORF1b play an important role 
in RNA replication and transcription, including NiRAN, RdRp, HEL, 
and NendoU, referred to as replicases (Liu et al., 1994; Thiel et al., 
2001; Fang and Snijder, 2010; Lehmann et al., 2015c; Hu et al., 2021). 
Next, we focus on reviewing these replicases.

4 Replicases

4.1 PLP and 3CLpro (Mpro)

Nidoviruses encode multiple PLPs and a 3CLpro (also called Mpro) 
(Ziebuhr et al., 2000; Snijder et al., 2013). The PLPs are located in the 
upstream of TM1 and are present in NSP2 for arteriviruses and in NSP3 
for coronaviruses (Snijder et al., 1995; Kanjanahaluethai and Baker, 2000; 
Ziebuhr et al., 2001; Harcourt et al., 2004). The number of active PLP 
domains can vary from one virus species to another (Vatter et al., 2014). 
Structural and enzymatic studies reveal that the PLPs not only cleave 
peptide bonds (NSP1/NSP2/NSP3 junctions in arteriviruses and NSP1/
NSP2/NSP3/NSP4 junctions in coronaviruses) but also act as a 
deubiquitinating (DUB) enzyme to remove Lys63-linked ubiquitin chains 
or ubiquitin-like modifiers (ISG15) from host substrates, antagonizing the 
innate immune response (Frias-Staheli et al., 2007; van Kasteren et al., 
2012). Mpro, a chymotrypsin-like protease that plays the main role in the 
polyprotein processing, is located in NSP4 for arteriviruses and NSP5 for 
coronaviruses, respectively (Tian et  al., 2009). Mpro cleaves all sites 
downstream of NSP3 for arteriviruses and downstream of NSP4 for 
coronaviruses (Ziebuhr et al., 2000; Tian et al., 2009). As these proteases 
facilitate the cleavage of pp1a/pp1ab and maturation of the replicases, the 
conserved functional enzymatic structures are becoming the optimal 
therapeutic targets (Dai et al., 2020; Khare et al., 2020; Zhang L. et al., 
2020; Banerjee et al., 2021; Capasso et al., 2021). For example, the FDA 
authorized Paxlovid (nirmatrelvir/ritonavir) specifically targets at the 
Mpro of SARS-CoV-2 to block the enzymatic function, thereby effectively 
reducing virus replication and resulting in a great decrease of 
hospitalization and death among the COVID-19 patients (Graham, 2021; 
Cokley et  al., 2022; Marzolini et  al., 2022; Amani and Amani, 2023; 
Harris, 2023).
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4.2 Transmembrane proteins

ORF1a encodes three TM proteins (TM1, TM2, and TM3), 
namely NSP2, NSP3, NSP5 in arteriviruses and NSP3, NSP4, NSP6 in 
coronaviruses. TM1 and TM2 reside upstream of the Mpro, while 
TM3 is located at its downstream (Figure 3B). All of the TM proteins 
span across the membrane more than once. These TM proteins play a 
crucial role in modifying intracellular membranes to form DMV, 
DMS, or CM, which accommodate the RTC and associate with viral 
RNA synthesis (Bost et al., 2000; Snijder et al., 2006; Posthuma et al., 
2008; Angelini et al., 2013; Hagemeijer et al., 2014; van der Hoeven 
et  al., 2016; Oudshoorn et  al., 2017). However, their biological 
significance needs to be further studied.

4.3 RNA-dependent RNA polymerase 
(RdRp)

RdRp is encoded by the N-terminal region of ORF1b (the 
enzymatic domain is present in NSP9 for arteriviruses and NSP12 for 
coronaviruses). It is the critical component of RTC to catalyze the 
synthesis of RNA with the help of helicase, NendoU, and ribose-2’-O-
methyltransferase (O-MTase), and thus plays a crucial role in the 
replication and transcription (Subissi et al., 2014; Lehmann et al., 
2016). Our current knowledge of the structural and enzymatic 
characteristics of RdRp primarily comes from studies conducted on 
SARS-CoV and SARS-CoV-2 (Kirchdoerfer and Ward, 2019; Gao 
et al., 2020). RdRp consists of three domains: a canonical RdRp core 
domain at C-terminus (occupying two-thirds of the protein), a 
NiRAN domain at N-terminus, and an interface domain (Figure 4C) 
(Lehmann et al., 2015a; Posthuma et al., 2017).

The RdRp core domain can be  further divided into three 
subdomains: fingers, palm, and thumb subdomains. In the active site 
there are multiple functional motifs (6  in arteriviruses and 7  in 
coronaviruses), named A-G respectively, which are responsible for 
recognizing the RNA template and substrate, as well as catalyzing the 
condensation of nucleotides (Poch et al., 1989; Lehmann et al., 2016; 
Kirchdoerfer and Ward, 2019; Gao et al., 2020). The motif A contains 
the divalent-cation-binding residues D (D619 and D623 in SARS-
CoV-1 NSP12, D618 in and D623 in SARS-CoV-2 NSP12, and D445 
and D450  in EAV NSP9), while motif C contains the conserved 
catalytic residues SDD sequence (residues 759–761 in SARS-CoV-1 
and SARS-CoV-2 NSP12, and residues 559–561 in EAV NSP9). The 
RNA template is supposed to enter the active site in motifs A and C, 
and the NTP entry channel is within motif F, as determined by the 
cryo-electron microscopy structure of SARS-CoV-2 NSP12 (Gao 
et  al., 2020). With its key role in viral RNA replication and 
transcription, RdRp is considered as a primary target for antiviral 
inhibitors that are designed to mimic nucleotides and inhibit viral 
RNA replication and transcription. For example, remdesivir is 
nucleotide analogs which can interfere with the action of RdRp and 
arrest the RNA synthesis process by delaying the elongation (Gordon 
et al., 2020a,b). It is the first drugs authorized by FDA for treatment of 
COVID-19.

As a unique and essential enzymatic domain of Nidovirales 
(Lehmann et al., 2015a), the N-terminal NiRAN domain possesses a 
self-nucleotidylating activity, which is important for viral RNA 
replication. It is speculated that the NiRAN might perform multiple 

functions, for example, it may act as an RNA ligase in mRNA capping 
(Yan et  al., 2021), or serve in protein-primed initiation of RNA 
synthesis by transferring a NMP to another viral protein NSP9 (Wang 
B. et al., 2021). These hypotheses have been extensively discussed in a 
study by Lehmann et al. (2015a).

4.4 Helicase

Based on structural and functional characteristics, helicases can 
be  classified into two subfamilies-SF1 (ZmHEL1) and SF2. The 
5′-to-3′ helicase (NSP10 for arteriviruses and NSP13 for 
coronaviruses) belong to SF1 (ZmHEL1). This helicase domain is 
exceptionally located downstream of the RdRp in Nidovirales 
(Gorbalenya et al., 1989), while in other families of positive sense 
single-stranded RNA viruses, it is located upstream of RdRp. As a 
helicase, ZmHEL1 possesses a conserved N-terminal zinc-binding 
domain that is commonly found in nidoviruses and is involved in 
unwinding activity (Seybert et al., 2005; Shi et al., 2020; Tang et al., 
2020; Maio et  al., 2023). The helicase activity combined with 
NTP-binding activity plays the vital role in unwinding RNA molecules 
in the 5′-3′ direction (Seybert et al., 2000a; Ivanov et al., 2004b; Shu 
et al., 2020; Ren et al., 2021; Fang et al., 2023).

4.5 Endoribonuclease (NendoU)

NendoU is a protein that is specific to Nidovirales, including 
NSP11 for arteriviruses and NSP15 for coronaviruses, a conserved 
protein that does not have counterparts in other RNA viruses, thus 
serving as a diagnostic molecular marker for nidovirus (Ivanov et al., 
2004a; Gorbalenya et al., 2006; Deng and Baker, 2018). One of its 
functions of is to cleave the poly (U) sequence which are produced 
during genome replication/transcription and are found in viral −RNA 
intermediates, thereby regulating the ratio of −RNA to +RNA and 
reducing the accumulation of dsRNA. In this way, this protein 
facilitates the genome replication and synthesis of sg mRNA and also 
contributes to the evasion of IFN response by reducing the 
accumulation of dsRNA accumulation (Hackbart et al., 2020; Gao 
et al., 2021).

4.6 Other replicases

In addition to above conserved replicases, several other conserved 
replicases that perform RNA synthesis and processing have been 
identified in some but not all nidoviruses (Posthuma et al., 2017). 
There are two clades of nidoviruses: one with a large genome size 
ranging from 25 to 31.7 kb (Coronaviridae, Torovirinae, and 
Roniviridae), and the other with a small genome size ranging from 
12.7 to 15.7 kb (Arterividae) (Gorbalenya et al., 2006). As a result, the 
replicase polyproteins of large nidoviruses contain two specific 
activities that are not found in Arterividae, namely 3′-5′exoribonuclease 
(ExoN) encoded by NSP14 (Chen Y. et al., 2009; Tahir, 2021) and 
O-MTase encoded by NSP16 (Decroly et al., 2011). ExoN is essential 
for the high fidelity of long RNA synthesis, while O-MTase helps to 
add the cap structure at the 5′-terminus of viral RNA (Posthuma et al., 
2017). The mimicking of host mRNA cap helps the virus to escape the 
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FIGURE 4

Diagram of replication/transcription organelle and RTC. (A) Diagram of CMs/DMVs/DMSs. Nidovirus infection leads to the rearrangement of ER 
membranes and the envelopment of RTC. During this process, the NSPs containing TM are cleaved from pp1a and pp1ab, and then embedded in the 
ER membrane to form a membrane fold and luminal loops. These interactions yield a complex array of CMs, DMSs or DMVs, which are contiguous 
with ER membranes. The replicases cleaved from pp1a and pp1ab interact each other and form RTC in DMV. (B) Model of RTC. The core RTC is 
composed of the RdRp (coronavirus: NSP12; arterivirus: NSP9), processivity factors (coronavirus: NSP7-9; arterivirus: NSP12), ExoN complex 
(coronavirus: NSP10 and NSP14), NendoU (coronavirus: NSP15; arterivirus: NSP11), and helicase (coronavirus: NSP13; arterivirus: NSP10). As shown, for 
coronavirus, the NendoU is the center of the RTC complex, capped on the two sides by NSP14/NSP16/(NSP10)2, which afterwards recruits NSP12/
NSP7/(NSP8)2 to the complex. Helicase is around the ExoN complex. The model is based on the known structure and interactions between the 
proteins (243). (C) The functional domains of RdRp of coronavirus and arterivirus are shown.
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host detection, thereby evading the innate immune responses (Chen 
and Guo, 2016). The importance of NSP16 for coronavirus infection 
and pathogenesis makes it becoming an attractive target for antiviral 
therapeutic treatment (Menachery et al., 2014; Chang and Chen, 2021; 
Tahir, 2021).

The other two RNA-processing domains conserved in 
Coronavidae and Torovirinae are ADP-ribose-1′-phosphatase (ADRP) 
and nucleotide cyclic phosphodiesterase (CPD) respectively (Snijder 
et  al., 2003; Draker et  al., 2006). The ADRP domain encoded by 
ORF1a plays a role in the cellular RNA processing pathway by 
removing the phosphate from the adenosine diphosphate ribose 
1′-phosphate substrate (Michalska et al., 2020). However, the highly 
specific phosphatase activity is not essential for viral replication, 
which has been demonstrated by substitutions of active-site residues 
or complete deletion of the ADRP domain (Putics et al., 2005; Hurst-
Hess et al., 2015). The ADRP domain is found in the similar position 
NSP3 of both families Coronavidae and Torovirinae, indicating that 
this region is inherited from a common ancestor. Whereas, the CPD 
domain is only present in the family Torovirinae and Coronavidae 
MHV. In MHV, the CPD domain is expressed by ORF2 though 
deletion of the CPD-encoding ORF2 does not affect the replication of 
MHV in vivo (Schwarz et al., 1990); however, the other study shows 
that the mutation of MHV ORF2 causes a attenuated form of the virus 
in its natural host (Sperry et al., 2005). Thus, the CPD domain of 
MHV may be  one of the determinants of virus pathogenicity. In 
Torovirinae, this enzyme is encoded by the 3′ end of replicase of 
ORF1a and located immediately upstream of the ORF1a/ORF1b 
junction, which is involved in the processing of viral RNA (Snijder 
et al., 1991).

5 RNA synthesis

5.1 Formation of DMVs

Nidovirales replicates its genome in the ER membrane-associated 
structures known as “replication organelles,” which include a complex 
vesculo-tubular network of CMs, DMVs, and DMSs, partly 
interconnected through their outer membranes. The SARS-CoV 
dsRNA is mainly found inside the DMVs (Knoops et al., 2008), while 
the newly synthesized MHV RNA is located in close proximity to both 
DMVs and CMs (Gosert et al., 2002); furthermore, the viral RNA 
positively correlates with the number of DMVs (Ulasli et al., 2010). 
Above observations suggest that both DMVs and CMs serve as sites 
for the synthesis of viral RNA.

The rearrangement of the host membranes is important to create 
a micro-environment appropriate for the synthesis of viral RNA and 
the recruitment of host factors. The association of viral RNA 
synthesis with membrane structures exhibits several advantages: (1) 
An appropriate environment is created by anchoring the viral 
replicases necessary for replication and transcription; (2) By 
anchoring viral replication complex to membrane structures, the 
environment is created for the diffusion of metabolites and 
macromolecules, so as to facilitate the synthesis process; (3) 
Compartmentalization helps to separate and organize the process of 
replication/transcription, translation, and packaging, which ensures 
that these processes occur in a coordinated manner. It also creates a 
protected environment for viral RNA replication by eluding 

recognition and degradation of RNA in the cytosol; (4) The 
insulation of the RNA replication/transcription intermediates, such 
as dsRNA, could hinder or delay the host’s innate immune response 
(Neufeldt et al., 2016; van der Hoeven et al., 2016).

The DMVs (about 100 nm) of arterivirus was firstly observed in 
the perinuclear region of the cell with the electron microscopy since 
1970s (Wood et al., 1970), as so observed in other members of this 
family later on (Stueckemann et al., 1982; Wada et al., 1995; Weiland 
et al., 1995; Pol et al., 1997; Pedersen et al., 1999). These DMVs are 
connected to reticular regions of CMs between them, and contiguous 
with the membrane donor ER. Additionally, the ribosomes are close 
to the outer membrane of the DMVs (Wood et al., 1970; Stueckemann 
et al., 1982; van der Hoeven et al., 2016).

The expression of EAV NSP2 and NSP3 (contain TM1 and TM2) 
is sufficient to induce the DMVs formation and NSP3 plays a key 
role in the remodeling of membranes (Posthuma et  al., 2008); 
however, the presence of additional NSP5 results in the production 
of DMVs whose size is more homogenous and closer to those 
formed in EAV-infected cells (83 + −21 nm, n = 145) (Figure 4A), 
indicating a regulatory role for NSP5 in regulating the membranes 
curvatures and formation of DMVs (van der Hoeven et al., 2016). 
The NSP2, NSP3 and NSP5 of arterivirus are believed to serve as 
DMVs scaffolding proteins to recruit other components of RTC to 
the replicase site (Pedersen et al., 1999; Posthuma et al., 2008; van 
der Hoeven et al., 2016).

Diverse coronaviruses induce similar membrane structures, 
including DMVs and DMSs (Snijder et al., 2020; Zhang J. et al., 
2020). The DMVs are around twice in the diameter and 8-fold in the 
volume of those arterivirus-induced DMVs. The SARS-CoV induced 
DMVs connect with other DMVs and also connect to the ER 
through their outer membranes (Knoops et al., 2008). 3D electron 
microscopy reconstructions and living cell imaging also show that 
SARS-CoV-2 induced DMVs are tethered to the ER, with alteration 
of the mitochondrial network, remodeling of cytoskeleton elements, 
and recruitment of peroxisomes to DMVs (Cortese et al., 2020). The 
γ-Coronavirus IBV-induced DMVs are either tethered to the 
zippered ER with channel connecting the interior of the DMVs with 
the cytoplasm, or exists as isolated vesicles without DMV-DMV or 
DMV-ER connections (Maier et al., 2013; Doyle et al., 2018). The use 
of H3-uridine to metabolically label the newly synthesized molecules 
enables researcher to reaffirm that DMVs provide an optimal 
environment for virus RNA synthesis (Snijder et al., 2020), which is 
further supported by the use of specific antibodies to bind to the 
target molecules, such as dsRNA and DMVs (Knoops et al., 2008). 
Recent findings from cryotomography reveal the presence of 
membrane-spanning hexameric, crown-shaped pore complex in 
MHV induced DMVs, which makes the viral RNA exporting from 
DMVs possible. The observation of nucleocapsid structure on the 
cytosolic side of the DMVs demonstrates that the RNA is exported 
from DMVs for encapsidation (Wolff et al., 2020).

For coronavirus, the formation of DMVs can be  induced by 
co-expression of NSP3, NSP4, and NSP6 (Angelini et  al., 2013; 
Oudshoorn et  al., 2017), which contain three conserved TMs 
respectively, and are functionally analogous to arterivirus NSP2, 
NSP3, and NSP5 (Gorbalenya et  al., 2006; Figure  4A). The 
co-expression of three SARS-CoV NSPs (namely NSP3, NSP4, and 
NSP6) forms both DMVs and other structures resembling the CMs 
and DMSs presented in SARS-CoV infection (Angelini et al., 2013). 
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Report also shows that MERS-CoV NSP3 and NSP4 can rearrange the 
cellular membranes to generate DMVs where the RTC is assembled 
and anchored (Oudshoorn et  al., 2017). Co-expression of SARS-
CoV-2 NSP3 and NSP4 also generate DMVs, whereas NSP6 zippers 
ER membrane and forms the connectors. NSP6 may act as filter in 
communication between the DMVs and the ER, organizer of DMV 
cluster, or may mediate contact with lipid droplets (Ricciardi et al., 
2022). The co-expression of IBV NSP3, NSP4, NSP6 generates DMVs, 
and NSP4 alone is sufficient to induce membrane pairing, but not fully 
resembles DMVs (Doyle et al., 2018).

In both arteriviruses and coronaviruses, it is likely that the 
proteins containing TM1 and TM2 can induce the formation of 
DMVs, while the protein comprising TM3 may only modulate the 
formation of DMVs. Recently, it has been found that ER proteins 
VMP1 and TMEM41B contribute to DMV formation by facilitating 
NSP3-NSP4 interaction and ER zipping or subsequent closing of 
DMVs; the phosphatidylserine (PA) levels is also important for DMV 
formation (Ji et  al., 2023). More and more evidences show that 
autophagy machinery and ER-associated degradation machinery are 
hijacked by coronavirus for the DMV formation (Prentice et al., 2004; 
Twu et al., 2021; Liang et al., 2022; Tan et al., 2023). It should be further 
investigated whether more host factors are involved in the 
formation of DMV.

5.2 Formation of RTC

For efficient replication, multiple replicases interact each other to 
form RTC and then the RTC attaches to modified intracellular 
membranes, resulting in the formation of a membrane-bound 
complex which is responsible for RNA synthesis (Sawicki et al., 2005). 
The association of RTC with modified intracellular membranes is a 
feature commonly observed in the positive-stranded RNA viruses that 
infect animals. As for coronavirus, a set of replicases (NSP7, NSP8, 
NSP9, NSP10, NSP12, NSP13, NSP14, NSP15, and NSP16) assemble 
into the RTC which is responsible for synthesizing the negative-
stranded intermediates, gRNA, and sg mRNAs (Hagemeijer et al., 
2010; Subissi et al., 2012; Kirchdoerfer and Ward, 2019; Chen et al., 
2020; Hillen et al., 2020; Peng et al., 2020; Wang et al., 2020; Yan et al., 
2020, 2021; Mishchenko and Ivanisenko, 2022). The NSP7-
NSP8-NSP12 complex plays a central role in the replication/
transcription process of coronavirus. NSP12 contains the RdRp 
domain in its C-terminal region, and serves as the key enzyme for 
catalyzing the incorporation of NTPs into the growing RNA chain. In 
collaboration with NSP7 and NSP8, NSP12 forms a holoenzyme RdRp 
(holo-RdRp) to drive the RNA synthesis in primer-dependent manner 
(te Velthuis et al., 2010; Ahn et al., 2012; Kirchdoerfer and Ward, 2019; 
Peng et al., 2020). The primers for the RNA replication/transcription 
are synthesized by NSP8, which bears a noncanonical RdRp activity 
and acts as an RNA primase (Imbert et al., 2006; te Velthuis et al., 
2012; Biswal et al., 2021). Other subunits have supporting roles in the 
RTC. When this complex is working, two subunits of NSP13 are 
positioned above the RTC in which one subunit binds to the 5′ end of 
the RNA template downstream at the NSP12 RdRp active site for 5′-3′ 
nucleic acid unwinding (Perry et al., 2021). As a unique ExoN encoded 
by coronavirus, NSP14 forms an RNA proof reading complex together 
with NSP10 (Denison et al., 2011; Tahir, 2021). The mismatched base 
is directed into the shallow active site of the ExoN domain in which it 

interacts with conserved catalytic residues. Meanwhile, a portion of 
the dsRNA molecule interacts with both the N-terminus of NSP10 
and the residues which are located outside the catalytic site of NSP14-
ExoN (Ferron et  al., 2018). Associated with RTC, the NSP15 is 
responsible for cleaving the −RNA intermediates to adjust the ratio of 
+RNA to −RNA, and reduce the level of dsRNA so as to help the virus 
escape the host innate immune response (Athmer et al., 2017; Deng 
and Baker, 2018; Gao et al., 2021; Perry et al., 2021). NSP16 is located 
in the RTC and responsible for the RNA capping together with NSP10 
(Snijder et al., 2016; Benoni et al., 2021). NSP9 inhibits and controls 
the catalytic activity by inserting into the catalytic center of NSP12 
(Slanina et al., 2021; Yan et al., 2021) (Figure 4B).

Similar to coronavirus, the assembly of RTC in arterivirus also 
requires multiple NSPs to work together. By examining location of 
PRRSV NSPs during infection, Song et al. found that NSP2, NSP4, 
NSP7, NSP8, NSP9, NSP10, NSP11, and NSP12 were colocalized well 
with dsRNA which reveals the virus replication sites, indicating all 
these NSPs are located to viral RTC (Song et al., 2018). Although 
NSP3, NSP5, and NSP6 were not examined due to lack of antibodies, 
the interaction among NSP2, NSP3 and NSP5 suggests that NSP3 and 
NSP5 are associated with RTC. The core components of arterivirus 
RTC are possibly composed of all NSPs encoded by ORF1b, including 
NSP9, NSP10, NSP11, and NSP12 (Snijder et al., 2013). The NSP2, 
NSP3, NSP5 are responsible for the formation of DMVs and interact 
with other NSPs to recruit the RTC core components (Nan et al., 
2018). The C-terminus of NSP9 involves the function of RdRp, while 
the N-terminal of NSP9 has been discovered to contain a  
domain called RdRp-associated NiRAN (Lehmann et  al., 2015a, 
2016) (Figure 4C). NSP10 is the RNA helicase which can unwind the 
secondary structure of RNA (Seybert et al., 2000b; Bautista et al., 
2002; Lehmann et  al., 2015c). Sharing the same/with their own 
homologs across diverse families of nidoviruses, both NSP9 and 
NSP10 serve as the key virulence determinants of PRRSV (Li et al., 
2014). NSP11 is a protein belonging to the NendoU family and its 
catalytic sites are highly conserved in Nidovirales, although its 
function remains poorly defined in the arterivirus life cycle 
(Nedialkova et al., 2009; Zhang et al., 2017). NSP12, a protein that is 
specific to arterivirus and plays an unexpected key interaction role, 
can interact with NSP1β, NSP2, NSP9, NSP10, and NSP11, and 
colocalize well with the DMVs (Lehmann et al., 2015b; Song et al., 
2018). During infection, the NSP7 and NSP8 associate with the RTC, 
and the NSP7 interacts with NSP9; however, their functions in virus 
replication are poorly understood (Li et al., 2012; Chen et al., 2017). 
NSP6 has been shown to interact with NSP12; however, due to the 
unavailability of antibodies and the small size (16 aa), whether NSP6 
is involved in RTC has not been determined yet (Kappes and Faaberg, 
2015; Song et al., 2018). In all, NSP2, NSP3, and NSP5 form the 
scaffold of DMVs for supporting the RTC core components in 
binding to the DMVs, while NSP9 and NSP12 combine together to 
form a central hub (like a substrate pocket) which is connected to 
other replicases, including NSP7, NSP8, NSP10, NSP11(Figures 4A,B) 
(Song et al., 2018).

5.3 Synthesis of RNA

The RNA-dependent RNA synthesis takes place within the 
cytoplasm of the infected cells and is facilitated by a complex called 
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RTC that consists of viral replicases and host factors (Lai and 
Cavanagh, 1997; Enjuanes et al., 2006). During the synthesis process, 
the viral genome is replicated to produce a full-length gRNA which 
can play multiple functions: acting as a template for translation of viral 
replicases (pp1a and pp1ab); serving as a template for synthesis of −
RNA intermediates; and working as the genome that will be packaged 
into new viral particles. Additionally, RTC is also involved in the 
transcription to yield a nested set of sg mRNAs which are responsible 
for expressing the viral structural and accessory proteins.

5.3.1 Replication of viral genome
Similar to other +RNA viruses, the replication of nidovirus 

genome is a continuous process mediated by synthesizing a full-length 
−RNA (Sola et al., 2015). Firstly, the viral genome acts as a template 
to translate the viral replicases (pp1a and pp1ab) which are further 
processed into more than 10 NSPs by internal enzymatic cleavage. The 
newly synthesized hydrophobic NSPs with TM trigger the formation 
of DMVs or DMSs, and further recruit other NSPs to form functional 
RTC. Secondly, the synthesis of −RNA intermetiates begins at the 
3′-terminus of the viral genome and is facilitated by the RTC, under 
the help of the 3′-terminal RNA sequence and the secondary RNA 
structures. Thirdly, under the help of the catalytic RTC enzyme, the 
full-length complementary −RNA is synthesized and in turn serves as 
the template for producing gRNA (Snijder et al., 2016).

5.3.2 Transcription of sg mRNAs
The synthesis of sg mRNAs by discontinuous transcription 

mechanism and the consequent 5′-3′ co-terminal nested sg mRNAs are 
distinctive characteristics of the coronavirus and arterivirus (Makino 
et al., 1988; Jeong and Makino, 1994; van Marle et al., 1999; Miller and 
Koev, 2000; van Vliet et al., 2002; Mateos-Gomez et al., 2013; Sola et al., 
2015). Similar to genome replication, the sg mRNAs synthesis also 
proceeds within the DMVs. However, this process is more complex, 
conserved only in some members of Nidovirales (coronavirus, 
bafinivirus, and arterivirus), but not in others (okavirus). The discovery 
of multiple −sgRNA intermediates in cells infected with TGEV or MHV 
suggests that the process of negative-strand synthesis is discontinuous 
(Sawicki and Sawicki, 1990) (Figure 5B). Increasing evidences support 
the discontinuous transcription mechanism during the synthesis of −
sgRNA intermediates plays a role in the generation of sg mRNAs within 
coronavirus and arterivirus (Sawicki and Sawicki, 1995; Sawicki et al., 
2007). This model includes two central principles: (1) discontinuous 
transcription of −sgRNA intermediates; (2) the process of discontinuous 
transcription is similar to the mechanism of similarity-assisted or high-
frequency copy-choice RNA recombination. The particular mechanical 
process can be viewed as an event that occurs continuously: (1) the 
synthesis of −RNA intermediates is facilitated by RTC at the 3′ end of 
the genome; (2) the extension of newly synthesized −RNA continues 
until the first functional transcription regulatory sequence (TRS-B) 
motif is encountered; RTC has two choices: (3) ignore the existence of 
TRS-B and continue to synthesize until encountering the next TRS-B, 
or continue to synthesize full-length −RNA intermediates; or (4) stop 
synthesizing and switch the template to 5′-leader sequence, with 
homologous leader transcription regulation sequence (TRS-L) to 
continue the synthesis. The mechanism of template switching is initiated 
by the complementarity between the 3′-end TRS-B on the newly 
synthesized −RNA and the TRS-L motif on the gRNA (Figure 5). The 
new −sgRNA intermediates would act as a template for synthesis of sg 

mRNAs (Sawicki and Sawicki, 2005; Pasternak et al., 2006). Transfection 
of in vitro synthesized sg mRNAs into cells suggests that long sg mRNAs 
containing multiple TRSs can also function as templates for synthesizing 
−sgRNA intermediates (Wu and Brian, 2010).

However, research findings on torovirus EToV and GAV have 
indicated that not all nidoviruses produces sg mRNAs with a common 
5′ leader sequence and 3′ co-terminus (Pasternak et al., 2006). The 
EToV produces 4 sg mRNAs with 3′ co-terminus. Among these sg 
mRNAs, only the longest sg mRNA 2 (S gene) carries an 18-nt leader 
sequence derived from 5′ end of the virus genome via discontinuous 
RNA synthesis (Smits et al., 2005). In this case, a TRS is absent; fusion 
of non-continuous sequences appears to be regulated by a specific 
sequence element, which consists of a hairpin structure and 23-nt 3′ 
flanking stretches with sequence similar to a region located at the 5′ 
end of the genome. During the synthesis of −RNA intermediates, it is 
believed that the presence of hairpin structure can cause the 
transcriptase complex to detach, and then trigger a template switching 
mechanism similar to what occurs in arterivirus and coronavirus. The 
mRNA 3 (M), 4 (HE) and 5 (N) do not process a common 5′ leader 
sequence, but are fully colinear with the viral genome at 3′ end. They 
are proceeded by short noncoding regions called “intergenic,” which 
contain the conserved motif with a sequence pattern of 5′-ACN3-

4CUUUAGA-3′. Representing the torovirus TRS equivalent, the motif 
does not act as sites for homology-assisted template-switching. 
Instead, it acts as terminators of transcription during the synthesis of 
−sgRNAs, and also play as promoters during the synthesis of sg 
mRNAs (van Vliet et al., 2002; Smits et al., 2005; Stewart et al., 2018). 
These findings suggest that EToV utilizes both discontinuous and 
non-discontinuous RNA synthesis mechanisms to generate its 
sg mRNAs.

The okavirus (GAV and YHV) produces three mRNA: gRNA1, sg 
mRNA2, and sg mRNA3. These RNAs are all co-terminal at 3′ end, 
and each possesses a 5′ cap structure and poly (A) tail (Sittidilokratna 
et al., 2008; Wijegoonawardane et al., 2008). mRNA2 and mRNA3 do 
not possess a common 5′-leader sequence. Similar to toronavirus 
mRNA 3 to 5, the okavirus mRNA2 and mRNA3, containing a 
5′-GGUCAAUAVAAGGUA-3′ in the intergenic regions (IGRs) 
preceding gene 2 and gene 3, are produced by a “continuous” 
transcription strategy (Cowley et al., 2012). In this process, the IGRs 
serve as a dual function in the genome: whereas, they act as 
terminators during the synthesis of −RNA intermediates and as the 
transcriptional promotors during the production of sg mRNAs.

The presence of the common 5′ leader sequence in the −sgRNA 
intermediates may provide a conserved starting sequence for gRNA 
and all sg mRNAs synthesis; meanwhile, it may act as a recognition 
signal for the viral mRNA capping machinery, though no detailed 
study has been done so far; furthermore, it may enable viral mRNA to 
escape from virus-induced translation shut off, leading to the 
translation of viral mRNA as well as the impairment of host gene 
expression (Banerjee et al., 2020).

6 Regulation of RNA synthesis

Due to the intricate nature of the nidovirus RNA replication and 
transcription, the study on factors regulating RNA synthesis is still on 
the early stage compared to knowledge available for some other +RNA 
viruses. Here, we will provide a summary of the current knowledge 
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regarding the viral and host factors involved in regulating viral 
RNA synthesis.

6.1 Regulation of RNA synthesis by RNA 
sequence

Synthesis of nidovirus RNA involves replication of full-length 
RNA and transcription of sg mRNAs. Many factors are involved in 

regulating RNA synthesis, with the first being the RNA sequence 
within the virus genome. These sequences are mainly located at the 
5’-UTR and 3’-UTR of the genome or near the upstream of the 
encoding gene. The minimal sequences essential for TGEV, MHV, and 
IBV replication have been defined，which include a range of 
nucleotides located at the 5′ end (466 to 649 nt), at the 3′ end (388 to 
493 nt), and at a poly (A) tail. These regions contain secondary and 
higher-order structures, known as cis-acting RNA elements which 
interacts with RNA motifs or replicases to initiate the RNA synthesis 

FIGURE 5

Working model of discontinuous transcription for Nidovirales. (A) TRS contains a conserved 6–7  nt core sequence (CS) flanked by 5′ and 3′ flanking 
sequences. TRS-B precedes each body gene, containing the core sequence (CS-B) and variable 5′ and 3′ flanking sequence. TRS-L is present at the 5′ 
end of the genome in an exposed location, with the leader core sequence (CS-L). (B) Three-step working model: (1) The components of a functional 
RTC including the viral NSPs and host proteins are recruited, and the synthesis of −RNA begins at the 3′ end of gRNA; (2) The extension of new 
synthesis −RNA continues until the first functional TRS motif is encountered. Till now, there are two choices: (3) Ignore the existence of TRS and 
continue to synthesize full-length −RNA; or (4) Stop synthesizing and switch the template to TRS-L to complete −sgRNAs synthesis. The template is 
switched by the complementary binding between the 3′ end of the new synthesis −RNA and the TRS-L motif in the 5′ gRNA and the new −sgRNAs in 
turn acts as a template for the synthesis of sg mRNAs.
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(Mukhopadhyay et al., 2009; Chen and Olsthoorn, 2010; Madhugiri 
et al., 2014).

In coronavirus, the cis-acting RNA elements have a relatively 
conserved stem-loop (SL) structures (Raman et al., 2003; Kang et al., 
2006; Li et al., 2008; Chen and Olsthoorn, 2010; Madhugiri et al., 2014; 
Figure 6A). Previous studies have demonstrated that SL structures 
plays a crucial role in the RNA synthesis through either long-distance 
RNA–RNA or RNA-protein interactions (Li et al., 2008; Yang et al., 
2015). The SL structures at the 5′ end were first identified in BCoV, 
denoted from SL1 to SL6, respectively (Brown et al., 2007; Yang et al., 
2015); however, there are seven SLs (SL1–SL7) in MHV (Guan et al., 
2011). Among them, the SL1-SL4 are mapped within the 5′-UTR, 
while the rest SL structures are mapped into an ORF1a coding 
sequence. For BCoV, the SL5 and SL6 are located at the 5′-terminal 
186 nt of NSP1 coding region (Brown et al., 2007). Compared to the 
two coronaviruses mentioned above, SARS-CoV-2 has one additional 
SL8 located at the 5′-end of the genome (Alhatlani, 2020). The number 
of SLs may vary with different coronaviruses, but SL1 to SL2 are 
conserved among all coronaviruses (Chen and Olsthoorn, 2010; 
Madhugiri et al., 2014). The SL1 is divided into two parts: the upper 
and the lower part, with the upper part participating in the coronavirus 
replication through base pairing. There is a dynamic model proposed 
for SL1 to mediate the interaction between 5′-UTR and 3′-UTR, 
thereby promoting the synthesis of −sgRNA intermediates (Li et al., 

2008). SL2 is the most conserved 5’-UTR cis-acting RNA element that 
adopts a YNMG-type or CUYG-type tetraloop conformation (Liu 
et al., 2009; Lee et al., 2011), and mutation analysis has shown that it 
is essential for the sgRNAs synthesis (Liu et al., 2007). The leader core 
sequence (CS-L) and TRS-L, located within the SL3 or SL2, act as 
receptors for the nascent −RNA during discontinuous transcription 
(Sola et  al., 2011). The conserved TRS-L plays a crucial role in 
regulating sg mRNAs transcription, which will be  detailed in the 
subsequent TRS section. SL4, located downstream of SL3, is a long 
hairpin structure that probably functions as a spacer element in 
controlling the orientation of upstream SLs and TRS, and plays a role 
in directing sg mRNAs transcription (Yang et al., 2011; Vögele et al., 
2021). In α-Coronavirus, SL5 is a higher-order structure with three 
hairpins (SL5a, SL5b, and SL5c) that extends into ORF1a (Chen and 
Olsthoorn, 2010) and it is also partially conserved in β-Coronavirus. 
Whereas, in IBV, SL5 is predicted to adopt a rod-like structure (Dalton 
et al., 2001). The structure phylogenetic analysis indicates that SL5 
may help RNA interact with N protein and participates in genome 
packaging, as evidenced by study on TGEV (Morales et al., 2013). SL6 
and SL7 are not necessary for coronavirus replication, and their role 
in RNA synthesis need to be further investigated (Yang et al., 2015).

There are three higher-order structures identified at the 3′-UTR as 
cis-acting RNA elements, which have been extensively studied in the 
MHV and BCoV. There are two specific RNA structures downstream of 

FIGURE 6

Cis-acting RNA element in MHV and EAV. (A) There are seven SL structures located in the 5′-UTR and three SL structures of BSL, PK, HVR located in the 
3′-UTR within the coronavirus prototype MHV genome. (B) There are 10 SL structures located in the 5′-UTR and two SL structures located in the  
3′-UTR within the arterivirus prototype EAV genome.
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the N gene stop codon, the structurally and functionally conserved 
bulged stem-loop (BSL) of 68 nt and the hairpin RNA pseudoknot (PK) 
that consists of 54 nt and overlaps with the BSL of 5 nt. It has been 
reported that MHV PK loop1 directly interact with the 3′-end of the 
genome，and also with NSP8 and NSP9 (Zust et al., 2008). In most 
β-Coronavirus, BSL and PK are conserved and play crucial roles in viral 
RNA synthesis (Stammler et al., 2011; Zhao et al., 2020); however, in 
SARS-CoV-2 and γ-coronavirus IBV, PK is not observed (Dalton et al., 
2001; Zhao et al., 2020). Downstream of the PK, there is a hypervariable 
region (HVR) that is highly divergent in sequence and structure among 
coronaviruses, but contains a conserved octa-nucleotide sequence 
5′-GGAAGAGG-3′ (Goebel et al., 2007). In MHV, the HVR forms 
multiple SL structures in the last 160 nt of the viral genome, which is not 
essential in genome replication but affects pathogenicity in vivo (Goebel 
et al., 2007; Zust et al., 2008). Finally, the poly(A) tail functions as a 
cis-replication signal via interaction with PABPC1, which has been 
demonstrated in BCoV and MHV (Spagnolo and Hogue, 2000). BCoV 
and MHV-A59 defective interfering (DI) RNAs with truncated poly (A) 
tail consisting of 5A or 10 A residues were replicated at delayed kinetics, 
as compared to (DI) RNAs with wild-type poly (A) tail (>50 A residues; 
Spagnolo and Hogue, 2000, 2001).

In arterivirus, the cis-acting RNA elements at 5′-UTR and 3′-UTR 
also play essential roles in the replication and transcription of viral 
RNA. In EAV and PRRSV, the 5’-UTR cis-acting RNA elements include 
SLA, SLB, SLC, SLD, SLE, SLF, SLG, SLH, SLI, and SLJ (Figure 6B). SLG 
contains a conserved TRS-L, which is capable of base-pairing with 
TRS-B, and this interaction is essential for the −sgRNA intermediates 
synthesis (Pasternak et al., 2003; van den Born et al., 2005). Mutation 
analysis in SLB has indicated that the stem of SLB is essential for the 
synthesis of sg mRNAs during PRRSV infection (Lu et al., 2011); The 
3′-UTR cis-acting RNA elements mainly include two putative hairpin 
structures (SLIV and SLV) and the base-pairing interaction between 
these two structures plays a role in the synthesis of viral genome and sg 
mRNAs (Verheije et al., 2001, 2002; Figure 6B). Mutation analysis in 
SLB has indicated that the stem of SLB is essential for the synthesis of sg 
mRNAs during PRRSV infection (Lu et al., 2011).

6.2 Transcription regulation sequence (TRS)

The TRS is an important cis-acting RNA element that plays a role 
in the transcription of nidovirus RNA. Hereby, the role of TRS in 
regulating RNA synthesis is summarized as following. Previous studies 
have found that the sg mRNAs of coronavirus, arterivirus, and 
bafinivirus carry a short 5′ leader sequence of 55–92 nt, 170–210 nt, and 
42 nt, respectively (King et al., 2012), which is present at the 5′ end of 
the genome. This suggests that the sg mRNAs are synthesized by fusing 
non-contiguous sequence: the leader sequence at the 5′ end of the 
genome and the 5′ end of each gene coding sequence. Base-pairing is a 
key step during this non-contiguous fusion transcription process, which 
has been primarily demonstrated in arterivirus (van Marle et al., 1999; 
Pasternak et al., 2001) and coronavirus (Zúñiga et al., 2004).

Typically, two specific sequences called TRS-L and TRS-B, located at 
the 5′ end and proceeding upstream of each gene respectively, are 
responsible for the base pairing during sg RNA synthesis (Sola et al., 2005; 
Madhugiri et  al., 2016). The TRS in coronavirus and arterivirus sg 
mRNAs were initially identified by sequencing the junction regions 
between the leader and body sequences of the sg mRNAs. The conserved 

sequence of the coronavirus TRS-L and TRS-B is about 7–18 nt, while the 
corresponding arterivirus TRS is usually about 5–8 nt (Gorbalenya et al., 
2006), which is AU-rich. In toronavirus, there is a conserved 12 nt 
sequence element located upstream of ORF3, ORF4, and ORF5 (Di 
et al., 2018).

The TRS contains a conserved core sequence (CS) that is typically 
6–7 nt in length and several flanking sequences. TRS-L includes the 
CS-L, while TRS-B includes the CS-B (Sola et al., 2011) (Figure 5A). 
Since the CS-L downstream of the 5′ leader sequence and all CS-B 
upstream of each body gene are identical in sequence, the CS-L can 
be paired with the complementary CS-B base of the newly synthesized 
−RNA, thus achieving the leader-body connection (Alonso et al., 2002; 
Sola et  al., 2005). The CS-L and CS-B of the Coronaviridae and 
Arterviridae are list in Table 2.

The discontinuous RNA transcription occurs during the synthesis 
of −sg RNA intermediates. Template switching is an important process 
during the transcription of sg RNA by RdRp, which needs the base-
paring of TRS-L and TRS-B (Posthuma et al., 2017). When encountering 
the first TRS-B, RdRp stops the synthesis along with the original 
template and switches to the 5′-leader sequence with homologous 
TRS-L to complete its synthesis (Sola et al., 2015). This long-distance 
RNA–RNA interaction promotes the synthesis of −sgRNA 
intermediates, which in turn serves as a template for sg mRNAs 
synthesis (Mateos-Gomez et al., 2013).

6.3 Regulation of RNA synthesis by cellular 
proteins and viral proteins

The factors involved in viral RNA synthesis were identified by 
studying their binding to viral genome or replicase proteins (Sawicki 
et al., 2005; Shi and Lai, 2005). Several cellular and viral proteins have 
been identified to be involved in regulation of nidovirus RNA replication 
and transcription (van Vliet et al., 2002; Pasternak et al., 2006; Ulferts 
and Ziebuhr, 2011; Posthuma et al., 2017; de Wilde et al., 2018; Yan 
et al., 2020). These factors mainly regulate the formation of RTC and the 
binding of RTC to cis-acting RNA elements through protein-RNA and 
protein–protein interactions. These host and viral proteins are as well as 
their interaction proteins are summarized in Table 3.

6.3.1 Protein-RNA interaction
The protein-RNA interaction regulates the RNA synthesis process 

(Sola et al., 2011). It has been identified that the viral and cellular 
factors bind to RNA genome or replicases so as to drive the RNA 
synthesis (Sawicki et al., 2005; Shi and Lai, 2005; Galan et al., 2009; Xu 
et al., 2010). The common strategies employed to identify the replicase 
components are: genome wide two-hybrid screening, proteomic 
analysis, high-throughput functional assay using host cell mutants or 
siRNA, in vitro translation or transcription systems.

Most of the NSPs encoded by ORF1a and ORF1ab, together with 
N protein and cellular proteins, form the membrane-associated 
RTC. This complex interacts with viral RNA, and plays a crucial role 
in mediating the synthesis of viral genome and sg mRNAs. For 
coronavirus, the enzymes involved in RNA synthesis are the NSP7-
NSP8 primase complex, NSP9 dimers, potential molecular switch 
(NSP10), RdRp (NSP12), helicase (NSP13), ExoN (NSP14), EndoU 
(NSP15), MTase (NSP16), and some unidentified cellular proteins. 
Among them, RdRp, helicase, and N protein are essential components 
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for RTC；other NSPs and cellular proteins also contribute to the 
formation of RTC and regulation of RNA synthesis. The role of the 
replicases encoded by ORF1a and ORF1b in the formation of RTC has 
been reviewed in section 4 and 5. Hereby, we will focus on how N 
protein and cellular proteins interact with viral RNA and play a role 
in the synthesis of viral RNA.

6.3.1.1 N protein
The N protein serves as structural protein within the virion and 

plays a crucial role in viral transcription and replication. It forms 
oligomers and binds to gRNA, resulting the formation of helical 
ribonucleoprotein complexes by wrapping gRNA (Chang et al., 2006; 
Chen et al., 2007; Lo et al., 2013; Cong et al., 2017; Gui et al., 2017). 
These complexes are then incorporated into viral particles by 
interaction with the C-terminus of M proteins (Kuo et al., 2016). In 
addition to protecting gRNA, N protein regulates the replication and 
transcription of viral RNA, acting as a chaperone to promote gRNA 
replication (Almazán et al., 2004; Schelle et al., 2005; Zúñiga et al., 
2010). The interaction with NSP3 enables N protein to be recruited to 
DMVs and associated with RTC (Hurst et al., 2010, 2013; Keane and 
Giedroc, 2013; Tatar and Tok, 2016; Cong et al., 2020). N protein 
might be involved in the discontinuous transcription of sg mRNAs, as 
depletion of N from the replicon reduces the production of sg mRNAs 
rather than gRNA (Zúñiga et  al., 2010). In SARS-CoV-1, the 
N-terminal domain of N protein binds specifically to TRS-L sequence 
and enhances the unwinding of TRS duplexes (Grossoehme et al., 
2009). In addition, N protein possesses RNA chaperone activity to 
facilitate the template switching, which is essential for efficient 
transcription of −sgRNA intermediates (Almazán et al., 2004; Zúñiga 
et al., 2010). The serine and arginine (SR) rich region, which links 
N-terminus and C-terminus of N protein, is modified by 
phosphorylation (Peng et al., 2008; Wu et al., 2009), which results in 

the differentiation between the binding of viral RNA and cellular 
mRNA (Chen et al., 2005; Spencer et al., 2008). In IBV, phosphorylation 
of N protein by GSK-3 also enables the recruitment of cellular RNA 
helicase DDX1 to RTC, which in turn enables the continuous synthesis 
of longer sg mRNAs and gRNA by promoting template read-through 
and transition from discontinuous transcription (Wu et  al., 2009, 
2014). This mechanism guarantees a proper balance among the 
synthesis of gRNA, long sg mRNAs, and short sg mRNAs. GSK-3 has 
been proved to be essential for the phosphorylation of SARS-CoV-2 N 
protein and the synthesis of viral RNA, serving as a promising target 
for developing pharmaceuticals to treat COVID-19 (Wu et al., 2014; 
Liu et al., 2021). A non-redundant dataset containing 495 compounds 
for GSK3α and 3,070 compounds for GSK3β has been applied to 
virtual high-throughput screening and two drugs (selinexor and 
ruboxistaurin) have been selected for further investigation (Pirzada 
et al., 2023). Therefore, interference with the phosphorylation of N 
protein by targeting GSK-3 is a feasible strategy to combat against the 
coronavirus associated diseases.

6.3.1.2 Cellular proteins
Cellular proteins perform their function in viral RNA synthesis 

via binding to 5′-UTR, internal TRS-B, 3′-UTR, or RTC. The proteins 
binding to 5′-UTR or 3′-UTR probably participate in viral RNA 
replication, transcription, translation and stability, while the proteins 
binding to TRS-B might help the discontinuous transcription.

There are two cellular heterogeneous nuclear ribonucleoproteins, 
polypyrimidine-tract binding protein (PTB) and hnRNPA1, which 
participate in the RNA transcription. PTB protein, also known as 
hnRNP I, plays an important role in regulating the alternative splicing 
of pre-mRNAs and translating the mRNA (Kaminski et  al., 1995; 
Svitkin et  al., 1996; Valcarcel and Gebauer, 1997). During MHV 
infection, PTB binds to the TRS-L (with UCUAA pentanucleotide 

TABLE 2 The CS-L and CS-B of the Coronaviridae and Arterviridae.

Family Viruses TRS References

CS-L CS-B

Coronaviridae

TGEV 5′-CUAAAC-3′ 5′-GUUUAG-3′ Mateos-Gómez et al. (2011)

PEDV 5′-AACGTAAA-3′ 5′-UUUACGUU-3′ Yang et al. (2021)

MERS-CoV 5′-AACGAAC-3′ 5′-GUUCGUU-3′ Predicted

HCoV-229E 5′-AACTAAAC-3′ 5′-GUUUSGUU-3′ Predicted

SARS-CoV 5′-ACGAAC-3′ 5′-GUUCGU-3′
Thiel et al. (2003) and Hussain 

et al. (2005)

SARS-CoV-2 5′-AACGAAC-3′ 5′-GUUCGUU-3′ Wang D. et al. (2021)

IBV 5′-CUUAACAA-3′ 5′-UUGUUAAG-3′ Bentley et al. (2013)

PDCoV 5′-ACACCA-3′ 5′-UGGUGU-3′ Fang et al. (2016)

EToV 5′-CUUUAGA-3′ 5′-UVUAAAG-3′ Stewart et al. (2018)

BCoV 5′-UCUAAA-3′ 5′-UUUAGA-3′ Chang et al. (1996)

Arteriviridae

PRRSV 5′-UUAACC-3′ 5′-GGUUAA-3′
van den Born et al. (2005) and 

Sola et al. (2015)

EAV 5′-UCAACC-3′ 5′-GGUUGA-3′ Pasternak et al. (2003)

SHFV 5′-UCCUUAACC-3′ 5′-GGUUAAGGA-3′ Di et al. (2017)
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repeats) which is located in the 5′-UTR (56–112 nt; Li et al., 1999). 
Deletion of these leader sequences in DI RNAs results in the reduced 
RNA transcription, indicating that the binding of PTB to TRS-L might 
regulate the transcription process. Another study has also 
demonstrated that PTB binds to the TRS-L sequence of TGEV 
genome, as identified by the RNA-protein pull-down assay and 
proteomic analysis (Galan et al., 2009). These findings suggest this 
protein might play a general role in coronavirus RNA transcription. 
Interestingly, PTB also interacts with the complementary strand of the 
3′-UTR (c3′-UTR), with a strong binding site between 53 and 149 nt 
and a weak binding site between 270 and 307 nt on the c3′-UTR 
(Huang and Lai, 1999). The binding of PTB to 53–149 nt leads to a 
conformational change in the neighboring RNA region. When partial 
deletion occurs within the PTB-binding sequence, it completely 
abolishes the conformational change induced by PTB, and impairs the 

ability of the −RNA to transcribe mRNAs (Huang and Lai, 1999). 
Thus, the binding of PTB to c3’-UTR may play a crucial role in mRNA 
transcription by changing the c3′-UTR conformation. PTB has been 
found to stimulate the internal ribosome entry site (IRES) mediated 
translation, by interacting with picornavirus IRES elements (Kaminski 
et al., 1995; Niepmann, 1996; Niepmann et al., 1997). It may exert 
influence on the IRES-mediated translation of MHV 5b, and IBV 3c, 
which are ORFs that encode the envelope protein (Thiel and Siddell, 
1994; Lai and Cavanagh, 1997; Jendrach et al., 1999). Meanwhile, the 
interaction between PTB with N protein suggests a potential 
contribution to the formation of RNP complex (Choi et al., 2002). In 
summary, according to research findings, the interaction between PTB 
and MHV RNA leader sequence or sequence complementary to the 
3’-UTR is involved in RNA transcription, and the interaction between 
N protein and PTB also modulates transcription.

TABLE 3 Summary of host and viral proteins regulating RNA synthesis.

Family Protein Interaction 
proteins

References

Coronaviridae

Host

hnRNPA1 TRS, PTB, N protein,
Stohlman et al. (1988), Zhang and Lai (1995), Li et al. (1999), Wang and Zhang 

(1999), Shi et al. (2000), and Huang and Lai (2001)

PTB (hnRNP1)
TRS, hnRNPA1, N 

protein
Huang and Lai (1999, 2001) and Choi et al. (2002)

PABP Poly (A) tail Spagnolo and Hogue (2000)

DDX N protein Wu et al. (2014)

Virus

NSP1 NA
Molenkamp et al. (2000), Tijms et al. (2001), Tijms et al. (2007), Sun et al. (2009), 

and Nedialkova et al. (2010)

NSP3 NSP4, NSP6 Angelini et al. (2013) and Oudshoorn et al. (2017)

NSP4 NSP3, NSP6 Angelini et al. (2013) and Oudshoorn et al. (2017)

NSP9
Single-stranded RNA, 

NSP12

Egloff et al. (2004), Sutton et al. (2004), Ponnusamy et al. (2008), Snijder et al. 

(2016), and Yan et al. (2021)

NSP6 NSP3, NSP4 Angelini et al. (2013) and Oudshoorn et al. (2017)

NSP12 NSP5, NSP8, NSP9 Brockway et al. (2003)

NSP13 DDX15 Chen J.-Y. et al. (2009)

N protein DDX1, TRS, Poly (A)
Grossoehme et al. (2009), Wu et al. (2014), Snijder et al. (2016), Tsai et al. (2018), 

and Yan et al. (2021)

Arteriviridae

Host

Cycliphilin NSP5 de Wilde et al. (2013) and de Wilde et al. (2019)

Cyclin-dependent kinase 9 NA Wang M. D. et al. (2021)

DHX9 N protein, NSP9 Liu et al. (2016)

Nucleotide-binding 

oligomerization domain-

like receptor (NLR) X1

NSP9 Jing et al. (2019)

poly(C) binding protein 

(PCBP)
NSP1β Napthine et al. (2016)

Virus

N protein DHX9 Liu et al. (2016)

NSP1 P100 Tijms and Snijder (2003)

NSP2 NSP3 Snijder et al. (2001)

NSP3 NSP2 Snijder et al. (2001)

NSP5 NSP2, NSP3 Snijder et al. (2013)

NSP9 DHX9, NLRX1, Liu et al. (2016)

NSP10 NA Seybert et al. (2000b) and Lehmann et al. (2015c)

NSP12 NSP11 Song et al. (2018)
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As is widely known, another cellular heterogeneous nuclear 
ribonucleoprotein, hnRNPA1 facilitates the pre-mRNA splicing 
and transport of cellular RNAs in the nucleus (Dreyfuss et  al., 
1993), as well as modulates the mRNA translation and turnover in 
the cytoplasm (Hamilton et al., 1993, 1997; Svitkin et al., 1996). 
HnRNPA1 was initially found to specifically bind to MHV cTRS-L 
and cTRS-B present in the −RNA (Furuya and Lai, 1993; Li et al., 
1997), which suggests that HnRNPA1 is important for the 
discontinuous viral RNA transcription. It has been found that 
mutagenesis of the TRS-B in the DI RNA system will lead to 
reduced transcription, which was correlated with relative binding 
affinity of the cTRS-B sequence to hnRNPA1 (Furuya and Lai, 
1993; Li et al., 1997; Huang and Lai, 2001). According to another 
study, a vital hnRNPA1-binding site has been identified within the 
HRV domain, which is located between 90 and 170 nt from the 3′ 
end of MHV RNA, while a weak binding site has been identified 
between 260 and 350 nt (overlapping with the BSL) from the 3′ end 
(Huang and Lai, 2001). Overexpression of hnRNPA1 results in an 
acceleration of MHV RNA synthesis, and the expression of 
dominant-negative hnRNPA1 mutant leads to a global inhibition 
of viral RNA (Dalton et al., 2001). Additionally, hnRNPA1 interacts 
with N protein of MHV and forms a component of the RTC (Wang 
and Zhang, 1999). It also plays a role in facilitating the formation 
of the RNP complex via binding to the negative-stranded cTRS-L 
and cTRS-B (Zhang et al., 1999). The extent of hnRNPA1 binding 
to the cTRS is directly related to the transcription efficiency in the 
MHV model (Zhang and Lai, 1995). Meanwhile, it has been 
observed that the hnRNPA1 interacts with the 3′ end of the genome 
in the TGEV (Luo et al., 2005). In another study, it has been found 
that hnRNPA1 interacts with N protein of PEDV, and the silenced 
expression of hnRNPA1 impairs viral replication. The interaction 
between hnRNPA1 and N protein has also been found in 
SARS-CoV (Luo et al., 2005), SARS-CoV-2 (Perdikari et al., 2020), 
IBV (Emmott et al., 2013). Whereas, in the hnRNPA1 defective 
mouse erythroleukemia cell line CB3 (Ben-David et al., 1992), it 
has been observed that efficient MHV replication still occurs (Shen 
and Masters, 2001). The interaction of hnRNP A/B, hnRNP A2/B1, 
and hnRNP A3 with the MHV negative-stranded leader RNA 
potentially substitutes for hnRNPA1  in regulating MHV RNA 
replication (Shi et al., 2003).

It is interesting to note that the hnRNPA1 binding sites on 3′ 
end of MHV genome are complementary to the sites on the −RNA 
intermediates that bind to PTB (Huang and Lai, 1999; Li et al., 
1999; Huang and Lai, 2001). Mutations that affect PTB binding to 
the negative strand of the 3’-UTR also hinder hnRNPA1 binding 
on the positive strand, demonstrating that hnRNPA1 and PTB 
work together to mediate potential 5′-3′ cross talks in MHV RNA, 
which plays an important role in RNA replication and transcription.

HnRNP Q, also known as SYNCRIP, is capable of binding to 
the 5′-UTR or to the complementary sequence c5′-UTR of MHV 
(Choi et al., 2004). Meanwhile, it has been shown that hnRNP Q 
bind to TEGV 3′-end genome and positively regulates the synthesis 
of viral RNA (Galan et al., 2009). As elaborated in a recent study, 
another hnRNP family member, hnRNP C, is involved in 
promoting the replication of MERS-CoV and SARS-CoV-2 by 
regulating the expression of a specific subset of circRNAs and 
cognitive mRNAs (Zhang X. et  al., 2022). The positive role of 

hnRNPs in viral RNA replication/transcription renders these 
proteins as broad-spectrum antiviral targets. A hnRNPA2B1 
agonist has been demonstrated to effectively inhibit HBV and 
SARS-CoV-2 omicron in vivo (Zuo et al., 2023).

Poly (A)-binding protein (PABP) is a protein that binds to the 
3′ poly (A) tail on eukaryotic mRNAs, with its main function being 
to promote both mRNA translation initiation and mRNA stability. 
For BCoV, MHV, and TGEV, PABP has been identified as binds to 
the 3’ UTR and poly (A) tail (Lin et al., 1994; Spagnolo and Hogue, 
2000; Galan et al., 2009). It has been found that the binding of 
PABP to 3’-UTR of DI RNA replicons is associated with the 
replication of DI RNA (Yu and Leibowitz, 1995a,b; Liu et al., 1997; 
Huang and Lai, 2001). The interaction between PABP and poly (A) 
tail may have a direct role in coronavirus replication and 
transcription, which can mediate the interaction between the 5′ 
and 3′ ends of coronavirus RNA (Kim et al., 1993; Lin et al., 1994, 
1996; Lai, 1998), or indirectly modulate the synthesis of viral RNA 
by affecting the translation process. Wang et al. have illustrated that 
PABPC1 interacts with the N protein of arterivirus PRRSV and 
involves in viral replication (Wang et al., 2012); whereas, Tsai et al. 
have found that the interplay among PABP, N protein and poly(A) 
tail mainly regulates coronavirus mRNA translation (Tsai 
et al., 2018).

Other cellular proteins associated with coronavirus RTC 
include the cellular DEAD box helicase family. This multifunctional 
protein family is involved in various steps of RNA life cycle, such 
as transcription, mRNA splicing, RNA transport, translation, RNA 
decay. The specific interaction between DDX5 and SARS-CoV 
NSP13 (helicase) is involved in viral RNA synthesis (Chen 
J.-Y. et al., 2009); and the interaction between DDX1 with IBV and 
SARS-CoV NSP14 also enhances virus replication (Xu et al., 2010). 
Interestingly, when the N protein is phosphorylated, it recruits the 
RNA helicase DDX1 to the phosphorylated-N-containing complex, 
which in turn facilitates the process of template readthrough and 
enables the synthesis of longer sg mRNAs; afterwards, the 
transition from discontinuous to continuous transcription 
guarantees the balance between sg mRNAs and full-length gRNA 
(Wu et al., 2014). The N protein of SARS-CoV-2 has been found to 
interact with several RNA helicases, including DDX1, DDX3, 
DDX5, DDX6, DDX21, and DDX10; among them, DDX1, DDX5, 
and DDX6 are essential for virus replication, while DDX21 and 
DDX10 restrict the viral infection (Ariumi, 2022). All the above 
studies reveal that the hijacking of host cellular DDX helicases for 
viral replication and transcription is a general strategy 
among coronaviruses.

During PRRSV infection, DDX18 redistributes from nucleus 
to cytoplasm and interacts with NSP2 and NSP10, to promote virus 
replication (Jin et  al., 2017). DDX21 is also translocated from 
nucleus to cytoplasm and then positively regulates the PRRSV 
replication by stabilizing the expression of PRRSV NSP1α, NSP1β, 
and N protein (Li et  al., 2022). It has been found that DDX21 
interacts with NSP1β, which enhances the expression of DDX21. 
Another DDX family member, DDX5, has been found to interact 
with NSP9, the RdRp, thereby positively regulating the replication 
of PRRSV (Zhao et  al., 2015). Moreover, PRRSV infection 
promotes the DDX10 to translocate from the nucleus to the 
cytoplasm for macroautophagic/autophagic degradation. 
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Additionally, the viral E protein interacts with and promotes the 
selective autophagic degradation of DDX10, to antagonize the 
antiviral effect of this protein (Li et al., 2023).

6.3.2 Protein–protein interaction
The NSP12 (RdRp), NSP13 (helicase), and N protein are crucial 

for the replication and transcription of coronavirus RNA. In addition, 
other viral proteins also contribute to the regulation of RNA synthesis. 
For example, NSP3, NSP4, and NSP6 are responsible for the formation 
of DMVs, while NSP3 and NSP5 have the activity to process pp1a and 
pp1ab so as to produce mature replicases. In MHV, NSP12 (RdRp) has 
been shown to interact with 3CLpro, NSP8, and NSP9 to perform the 
RNA synthesis (Brockway et al., 2003). It has been shown that NSP9 
forms dimers and binds to single-stranded RNA in a non-sequence-
specific manner (Egloff et al., 2004; Sutton et al., 2004; Ponnusamy 
et al., 2008). Recently, it has been shown that the N terminus of NSP9 
inserts into the catalytic center of NiRAN domain of NSP12, which in 
turn inhibits the activity of NSP12 (Snijder et  al., 2016; Yan 
et al., 2021).

In arterivirus, NSP9 (RdRp), NSP10 (helicase), and N protein play 
crucial roles in the processes of replication and transcription. NSP2, 
NSP3, and NSP5 contain TM responsible for remodeling intracellular 
membranes and recruiting other viral replicases to RTC (Snijder et al., 
1994; van der Meer et al., 1998; Snijder et al., 2001; Posthuma et al., 
2008). The ability of arterivirus RTC to synthesize RNA in vitro is 
dependent on a host factor (van Hemert et al., 2008).

As a multifunctional protein during EAV infection that contains 
two papain-like cysteine protease (PCPα and PCPβ) and a zinc-finger 
motif, NSP1 plays an important role in regulating the viral RNA 
synthesis and virion biogenesis, as well as in controlling the balance 
between genome replication and sg mRNAs synthesis (Molenkamp 
et  al., 2000; Tijms et  al., 2001, 2007; Nedialkova et  al., 2010). In 
addition, the Zinc-finger motif, located in the N-terminal region of 
PRRSV NSP1, was involved in regulating sg RNA synthesis (Sun et al., 
2009). Therefore, NSP1 protein in arterivirus is a multifunctional 
protein involved in proteolytic maturation of the replicase and the 
regulation of RNA transcription.

Paraoxonase-1(PON1), an esterase with specifical paraoxonase 
activity, interacts with PRRSV RdRp (NSP9) and plays a role in 
facilitating the NSP9 function in PRRSV replication; moreover, it has 
been proved to reduce the type I  IFN signaling during PRRSV 
infection (Zhang L. et al., 2022). RBM39, a nuclear protein involved 
in transcriptional activation and precursor mRNA splicing, relocates 
from nucleus to cytoplasm to bind with viral RNA, thereby prompting 
the PRRSV replication (Song et al., 2021).

7 Conclusion

Since the first in-depth analysis on the replication and 
transcription of Nidovirales in 1980 (Evans and Simpson, 1980), 
significant progress has been made in the understanding of 
mechanisms and regulation of sg mRNAs generation, and the accurate 
synthesis mechanism has been determined. During nidovirus 
infection, a nested set of sg mRNAs were produced, all sharing a 
common 5′ leader sequence and 3′ co-terminus. It has been 
demonstrated that the nested −sgRNA intermediates are produced 

through the discontinuous synthesis mechanism from the gRNA 
template. Afterwards, these −sgRNA intermediates serve as templates 
for the synthesis of sg mRNAs. In this process, viral and cellular 
factors are known to form the RTC and regulate the activities of 
replicases, such as the N protein, replicases, host cellular hnRNP, PTB, 
and DDX. In addition, the interactions among RNA–RNA, 
protein-RNA, and protein–protein play a role in regulating the 
replication and transcription. The viral transcription and replication 
machinery represents an attractive target for developing antiviral 
drugs. For example, the lead compounds, remdesivir and nirmatrelvir, 
specifically targeting at SARS-CoV-2 RdRp and Mpro respectively, 
have already been approved for COVID-19 treatment (Gao et al., 
2020; Lamb, 2020; Lee et al., 2022; Amani and Amani, 2023; Harris, 
2023). Thus, detailed insights provide new opportunities for designing 
structure-based antiviral drugs, which target at multiple aspects of the 
RNA synthesis processes.
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