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Synechococcus are widely distributed in the global ocean, from the pelagic 
zone to coastal waters. However, little is known about Synechococcus in coastal 
seawater due to limitations in isolation and culture conditions. In this study, a 
combination of metagenomic sequencing technology, flow cytometry sorting, 
and multiple displacement amplification was used to investigate Synechococcus 
in the coastal seawater of Xiamen Island. The results revealed 18 clades of 
Synechococcus and diverse metabolic genes that appear to contribute to their 
adaptation to the coastal environment. Intriguingly, some metabolic genes 
related to the metabolism of carbohydrates, energy, nucleotides, and amino acids 
were found in 89 prophage regions that were detected in 16,258 Synechococcus 
sequences. The detected metabolic genes can enable prophages to contribute 
to the adaptation of Synechococcus hosts to the coastal marine environment. 
The detection of prophages also suggests that the cyanophages have infected 
Synechococcus. On the other hand, the identification of 773 genes associated with 
antiviral defense systems indicates that Synechococcus in Xiamen have evolved 
genetic traits in response to cyanophage infection. Studying the community 
diversity and functional genes of Synechococcus provides insights into their role 
in environmental adaptation and marine ecosystems.
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Introduction

Synechococcus are a type of cyanobacteria found throughout the global oceans, from polar 
to temperate to tropical waters. They are estimated to be most abundant in nutrient-rich tropical 
and subtropical surface waters, such as the Indian Ocean and western Pacific, where their 
abundance can reach 3.4 × 104 and 4.0 × 104 cells mL−1, respectively (Flombaum et al., 2013). In 
contrast, their abundance in the Arctic and Southern Oceans is lower, at ~103 cells mL−1 
(Flombaum et al., 2013). Synechococcus are most abundant in shallow waters at a depth of 50 m 
(Fu et al., 2007), and they occupy a wide range of ecological niches and exhibit significant 
diversity in habitat, physiology, morphology, and metabolic capabilities. Based on phylogenetic 
relationship using 16S rRNA genes, marine Synechococcus have been classified into three major 
subgroups, designated 5.1, 5.2, and 5.3 (Scanlan et al., 2009).
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Synechococcus play an important role in the regulation of global 
biogeochemical cycles and carbon fixation (Zehr, 2011; Cabello-Yeves 
et al., 2017). They contribute approximately 21% of the ocean primary 
productivity and are expected to continue to increase, with a projected 
increase of 14% in the tropics over the next 100 years (Flombaum 
et al., 2013). Synechococcus also serve as a food source for various 
eukaryotes, such as ciliates and flagellates (Coutinho et al., 2016), 
which are important in driving the circulation of matter and energy 
flow in the environment and maintaining the stability of Earth’s 
ecosystem (Falkowski et al., 2008). Synechococcus exhibit tremendous 
metabolic diversity, and previous studies have shown that these 
organisms have evolved unique strategies to adapt to their 
environment. These strategies include aspects of their metabolism and 
physiology, such as nutrient uptake and utilization, regulatory systems, 
and motility.

Cyanophages are known to have a significant impact on the 
population dynamics and evolution of Synechococcus. Synechococcus 
are frequently exposed to phage infections, which affect their 
population by killing a fraction of them daily (~0.005–30% daily) 
(Fedida and Lindell, 2017). Lysogeny of temperate cyanophages 
occurs in marine Synechococcus populations, for example, those 
situated in Tampa Bay, Florida (McDaniel et al., 2002). This suggests 
that Synechococcus in coastal areas have been infected by temperate 
cyanophages and harbor prophages in their chromosomes. Temperate 
phages can increase the size of the Synechococcus genome and 
contribute to host metabolism. As a result, cyanophages are expected 
to have a significant impact on the function and evolution of their 
cyanobacterial hosts. On the other hand, there is evidence indicating 
the widespread presence of the clustered regularly interspaced short 
palindromic repeat (CRIPSR)–CRISPR-associated protein (Cas) 
system in cyanobacteria (Cai et  al., 2013), which suggests that 
Synechococcus have developed anti-cyanophage defense systems to 
protect against viral infection. Furthermore, the discovery of 
additional defense systems, such as the restriction-modification 
system (RM) (Ershova et  al., 2015), the defense island system 
associated with restriction-modification (DISARM) of innate 
immunity (Ofir et al., 2018), and the bacteriophage exclusion system 
(BREX) (Goldfarb et  al., 2015), provides further opportunities to 
explore potential defense mechanisms in Synechococcus.

The Xiamen Coastal Sea is located in the subtropical region 
bounded by the Taiwan Strait in the southeast and the Jiulong River 
in the southwest, which allows suspended matter and nutrients 
from nearby waters to enter the Xiamen Sea (Yu et al., 2015; Wang 
et al., 2019). The hydrological environment of the area is highly 
dynamic and influenced by various factors, such as freshwater from 
the Jiulong River, seawater from the South China Sea, and human 
activities. These factors may affect the diversity of Synechococcus 
communities in the area, and contribute to their distinct genetic 
characteristics. Although coastal Synechococcus bacteria have not 
been extensively studied due to limited isolation and culture 
conditions, analysis of their genomic information is crucial to 
understanding their roles in marine environments. The aims of this 
study were to sequence the metagenomes of Synechococcus clades 
from three stations (S03, S07, and S12) located in the coastal areas 
of Xiamen to improve our understanding of their composition and 
phylogeny, and to explore the molecular mechanisms of 
environmental adaptation, including metabolism and defense 
against viral infections.

Materials and methods

Sample collection

Seawater from each station (S03, S07, and S12) was initially 
prefiltered through a 20 μm mesh. Subsequently, 2 liters of the 
prefiltered seawater was further filtered using a 0.22 μm polycarbonate 
membrane (47 mm, Millipore, United  States). The filtered 
polycarbonate membranes were preserved and immediately stored at 
−80°C for subsequent community structure analysis and metagenome 
sequencing. Concurrently, 2–4 mL of the prefiltered seawater was 
transferred to a sterile cryotube, and glycerol was added as a 
cryoprotectant to achieve a final concentration of 10% v/v. The 
samples were quickly frozen in liquid nitrogen and stored at −80°C 
for cell sorting.

Total DNA extraction and metagenome 
sequencing

Total DNA of microorganisms on the filtered polycarbonate 
membranes of three stations (designated M8-S03, M8-S07, and 
M8-S12) was extracted using the HiPure Soil DNA 96 Kit (Magen, 
Guangzhou, China). All procedures were performed in accordance 
with the manufacturer’s guidelines. A library with an insert size of 
approximately 350 bp was constructed and sequenced on the Illumina 
HiSeq platform to generate 2 × 150 bp paired-end (PE) reads (Illumina, 
San Diego, CA, United States).

Community structure analysis

To assess the community composition of microorganisms at 
each station, the 16S-23S rRNA internal transcribed spacers 
(ITSs) of Synechococcus genomes were amplified and sequenced. 
The 16S-23S rRNA ITS region was amplified through PCR using 
the 16S primer (5’-TGGATCACCTCCTAACAGGG-3′) and the 
23S primer (5’-CCTTCATCGCCTcTGTGCC-3′) as previously 
detailed (Cai et  al., 2010). The PCR was conducted in a final 
volume of 25 μL, which included 2.5 μL of TransStart Buffer, 2 μL 
of dNTPs, 1 μL of each primer, 0.5 μL of TransStart Taq DNA 
polymerase, and 20 ng of template DNA. The thermal profile for 
amplification was as follows: initial denaturation at 94°C for 
5 min, then 25 cycles of denaturation at 94°C for 0.5 min, 
annealing at 56°C for 0.5 min, and extension at 72°C for 0.5 min, 
with a final extension at 72°C for 5 min. Subsequently, the 
amplicons were subjected to electrophoresis on a 1.5% agarose gel, 
and their concentration was determined using a multifunctional 
microplate reader (Tecan, Infinite M200 Pro, Switzerland). Then, 
the PCR products were sequenced using the PacBio third-
generation sequencing platform.

Cell sorting and mini-metagenomic 
sequencing of Synechococcus

Mini-metagenomics, which integrates the advantages of both 
shotgun and single-cell metagenomic analyses (Yu et al., 2017), was 
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used to capture additional genomic signals from Synechococcus. 
We sorted 1,000 Synechococcus cells from each sample collected at 
three stations (S03: 3-S03, 6-S03, 8-S03, 12-S03; S07: 3-S07, 6-S07, 
8-S07, 12-S07; S12: 3-S12, 6-S12, 8-S12, 12-S12) using a FACSAria 
flow cytometer (BD Biosciences). The cytometer was equipped with a 
solid-state laser providing 13 mW at 488 nm and was set to purity 
mode with a standard filter set-up. We extracted and amplified the 
genomic DNA of Synechococcus using the Discover-sc™ Single Cell 
Kit (Vazyme, China). All procedures were executed following the 
manufacturer’s guidelines. To ensure sterility, we placed the kit and 
consumables on a sterile operating table sterilized with 75% alcohol 
and ultraviolet light for 1 h before sorting. We assessed the quality and 
concentration of the DNA libraries using a QSEP100 bioanalyzer and 
Qubit 3.0, respectively. Then, we  mixed the DNA libraries and 
subjected them to 2 × 150 bp PE sequencing using an Illumina HiSeq 
(Illumina, San Diego, CA, United States) instrument according to the 
manufacturer’s instructions.

Metagenome assembly, binning, and 
annotation

The raw reads were trimmed by Trimmomatic version 0.36 with 
custom parameters (ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:40) 
(Bolger et  al., 2014). Then, trimmed reads of metagenomes of 
microorganisms without sorting were assembled using metaSPAdes 
version 3.11.1 with default parameters (Bankevich et al., 2012). The 
trimmed reads of metagenomes of sorted microorganisms were 
assembled using SPAdes version 3.11.1 with custom parameters 
(−-sc, −-careful) (Bankevich et  al., 2012). Each assembled 
metagenome was individually imported into MetaWRAP with 
custom settings: --metabat2, −-maxbin2, −-concoct, bin_refining. 
The assessment of metagenome-assembled genomes (MAGs) for 
contamination and completeness was conducted using CheckM 
(Parks et  al., 2015). High-quality MAGs (≥50% completeness, 
≤10% contamination, sequences ≥1 kb) were retained for 
subsequent analysis. The high-quality MAGs were taxonomically 
annotated with the BAT against the NCBI-nr database1 using 
default parameters (von Meijenfeldt et al., 2019), retaining genome 
bins of Synechococcus. Five Synechococcus genome bins were input 
into Anvi’o52 to perform the average nucleotide identity analysis for 
genomic comparison with custom parameters (anvi-script-FASTA-
to-contigs-db, anvi-run-ncbi-cogs, anvi-gen-genomes-storage, 
anvi-pan-genome, anvi-compute-ani, anvi-display-pan). Taxonomic 
classification of Synechococcus genome bins was based on single-
copy genes identified by GTDB-Tk v0.3.1 with the parameter 
classify_wf (Parks et al., 2018). In addition, unbinned metagenomic 
sequences (≥1 kb) were taxonomically annotated using CAT against 
the NCBI-nr database (see Footnote 1) with the default parameters 
(von Meijenfeldt et al., 2019). Sequences classified as belonging to 
Synechococcus (scaffolds ≥1 kb) were retained and deduplicated for 
the following analysis.

1 http://blast.ncbi.nlm.nih.gov/database

2 http://merenlab.org/software/#anvio

Community composition and phylogeny of 
Synechococcus based on its sequences

Raw sequencing data from PacBio were processed using Cutadapt 
(v1.9.1) (Martin, 2011) to retain high-quality sequences between 1.3 
and 1.6 kb in length. Then, the sequences were clustered into 
operational taxonomic units (OTUs) with Vsearch (v1.9.6) (Rognes 
et al., 2016) and QIIME (v1.9.1) (Caporaso et al., 2010) at a cutoff of 
97% identity. The ITS sequences obtained from previous studies were 
utilized to classify the representative sequences of OTUs. Taxonomy 
was assigned to the OTUs using the Bayesian algorithm of  
RDP Classifier. Additionally, a BLASTN search was conducted to 
assess the similarity between the representative sequences and 
reference sequences.

For the construction of the phylogenetic tree, OTUs that 
contained a minimum of 10 sequences were chosen. Among these 
OTUs, representative sequences that exhibited less than 97% similarity 
to reference sequences were defined as unclassified sequences. A total 
of 163 unclassified representative sequences were selected and aligned 
with reference sequences using the MAFFT (v7.508) L-INS-I 
algorithm (Katoh and Standley, 2013). The alignments were then 
manually corrected using MEGA X (Kumar et al., 2018; Stecher et al., 
2020). After alignment and manual correction, a total of 1,388 
positions, including tRNAs, remained. To infer the maximum 
likelihood (ML) trees, RAxML-NG (v1.1) (Kozlov et al., 2019) was 
utilized, employing a heuristic search strategy. The ML trees were 
subjected to a bootstrap test with 1,000 replicates. Bayesian inference 
was performed using MrBayes (v3.2.7) (Huelsenbeck and Ronquist, 
2001; Altekar et al., 2004). The analysis involved running two million 
generations with 2 Markov chains, and the standard deviation of split 
frequencies was maintained below 0.05. Additionally, the neighbor-
joining (NJ) method was employed for distance analysis in PHYLIP 
(v3.697) (Felsenstein, 1989). Synechococcus sp. WH 5701 was 
employed as the outgroup for all three phylogenetic tree construction 
methods described earlier. The ML analysis and Bayesian inference 
yielded nearly identical tree topologies, while slight variations were 
observed in the NJ tree (refer to Figure 1).

Identification of prophages in 
Synechococcus genome sequences

CheckV v0.7.0 (end_to_end) was used to predict prophages that 
were integrated into host genomes based on the ratio of virus-specific 
to microbe-specific genes (Nayfach et  al., 2020). Synechococcus 
genome sequences with hits to primarily viral databases [VOGDB,3 
IMG/VR (Paez-Espino et al., 2019), RVDB (Goodacre et al., 2018)] or 
mapping to viral feature genes (e.g., capsid, terminase) from other 
databases [KEGG Orthology (Kanehisa and Goto, 2000), Pfam A 
(El-Gebali et al., 2019), Pfam B (Finn et al., 2010), and TIGRFAM 
(Haft et  al., 2013)] were considered to be  virus-specific region-
containing sequences. Flanking host regions were removed, and 
prophage genomes were exclusively retained.

3 http://vogdb.org
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FIGURE 1

Phylogenetic tree of Synechococcus, based on the ITS sequence alignment of 1,388 positions, including tRNAs, showing the phylogenetic 
relationships among Synechococcus genotypes. The two clades identified in this study are depicted in purple. The unclassified representative 
sequences from our study are indicated in boldface, while some sequences obtained in this study are not shown (represented by triangles). The 
numbers at the nodes of the tree represent the bootstrap values for maximum likelihood (ML) analyses, posterior probabilities for Bayesian inference 
(BI), and bootstrap values for the neighbor-joining (NJ) method, respectively.
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Identification of viral defense-related 
genes in Synechococcus genome 
sequences

Antiviral defense-related genes of Synechococcus were identified 
with BLASTp (more sensitive mode, identity ≥30%, E-value <10−10) 
in the DIAMOND program (Buchfink et  al., 2015) by searching 
against the PADS Arsenal database (Zhang et al., 2020). Genes with 
hits to the PADS database were then imported into HMMScan in the 
HMMER 3.3 tool suite (Mistry et  al., 2013) against PFAM 32.0 
(El-Gebali et al., 2019) (E-value <10−3, bit score ≥ 30) to check that the 
identified genes contain conserved domains that have been 
demonstrated to be involved in prokaryotic defense against phage 
attack (Doron et al., 2018). Sequences containing conserved domains 
were retained. The completeness of a defense system was predicted 
according to the presence of gene components of the system in a 
sequence as described previously (Dy et al., 2014; Shmakov et al., 
2017; Bernheim and Sorek, 2019; Kamruzzaman and Iredell, 2019).

Results and discussion

Community composition and phylogeny of 
Synechococcus

Through high-throughput sequencing, we identified a total of 18 
clades belonging to three marine Synechococcus subclusters 
[Subclusters 5.1, 5.2, 5.3 (Scanlan et al., 2009)] and three freshwater 
clusters in our study. In particular, Subclusters 5.1 and 5.2 (referred to 
as S5.1 and S5.2, respectively) were found to dominate in the coastal 
waters of Xiamen (Figure 2). S5.1 encompassed 16,371 OTUs (85,376 
sequences), while S5.2 included 9,875 OTUs (37,727 sequences). In 
contrast, Subcluster 5.3 and freshwater Synechococcus had lower 
representation, with only 48 OTUs (137 sequences) and 74 OTUs (388 
sequences), respectively. Our analysis of geographical position, salinity, 
and nitrogen data from the three stations (S03, S07, and S12) suggested 
that the environmental conditions at each station were distinct 
(Supplementary Figures S1, S2). Station S03, affected by the input of 
freshwater from the Jiulong River, is a typical brackish water region that 
exhibits lower salinity and reduced water transparency (Maskaoui 
et al., 2002; Xue et al., 2004). At this station, Synechococcus shows high 
abundance and genetic diversity, and two novel clades, XM1 and XM2, 
were identified, which were not fully recognized previously. On the 
other hand, station S07, located close to the offshore environment, has 
oceanic-like environmental conditions and harbors a greater presence 
(25,724 sequences of 7,448 OTUs) of Subcluster 5.1. Station S12 is 
located within the semienclosed Tong’an Bay, where a total of 14,055 
sequences of 3,961 OTUs were assigned to S5.2, indicating both high 
species diversity and high abundance of S5.2. These findings suggest 
that the Synechococcus community is sensitive to environmental 
changes in the coastal water of Xiamen Island.

In our study, over half of the sequences were classified into S5.1, 
with a major presence in clades II, IX, and CB2. Clade II, known for 
its wide ecological distribution across the global ocean, emerged as the 
dominant group of marine Synechococcus (Fuller et  al., 2003; 
Zwirglmaier et  al., 2008; Ahlgren and Rocap, 2012). Clade CB2, 
initially identified in Chesapeake Bay in 2006, exhibited a widespread 
distribution in the East China Sea (Chen et al., 2006; Choi and Noh, 
2009). Notably, our study area showed a high abundance of clade IX, 

indicating a potentially greater prevalence in estuarine waters than 
previously anticipated, consistent with the findings of earlier 
investigations (Fuller et al., 2003; Zwirglmaier et al., 2008; Ahlgren 
and Rocap, 2012).

Based on previous studies (Cai et al., 2010; Ahlgren and Rocap, 
2012), Synechococcus S5.2 is primarily composed of two clades, 
namely CB4 and CB5. These clades have been found to dominate in 
freshwater, estuarine, and brackish waters (Chen et al., 2004). Their 
dominance in marine habitats may be attributed to unique salinity 
adaptation mechanisms and pigment types, specifically PC-rich 
pigments (Xia et al., 2023). However, in our study, we identified 851 
and 1,042 OTUs within S5.2, forming two distinct lineages (Figure 1) 
named clades XM1 and XM2, which have not been previously defined. 
A reference strain of Synechococcus (Suigetsu-CG4) belonging to clade 
XM1 was isolated from the hypoxic boundary zone of Lake Suigetsu 
in Japan (35°35’N, 135°52′E) (Ohki et  al., 2012). This strain is 
characterized by the absence of phycoerythrobilin and a preference 
for growth in environments with low light and low salinity. A cultured 
strain of Synechococcus CB0103, which was previously isolated from 
Chesapeake Bay (Chen et al., 2006), clustered together with at least 
three OTUs identified in our study. These sequences formed the clade 
XM2, which exhibited dominance in S03. Building upon previous 
studies on CB0103 (Murrell and Lores, 2004), Synechococcus 
communities appear to be highly responsive to environmental changes 
including the influence of freshwater input and fluctuations in salinity, 
nutrient levels, and other environmental factors. Their influence may 
significantly impact the ecological distribution of Synechococcus. 
Furthermore, our findings suggest that some potential clades within 
S5.2 may not be fully characterized, and the complex habitat implies 
that S5.2 is more genetically diverse.

Metabolic pathways of Synechococcus

In this study, we detected 101 Synechococcus species with genomic 
taxonomic annotation information (Supplementary Table S1) and 
annotated a total of 226 different functional genes using the KEGG 
database (Figure  3). Among these genes, those related to 
photosynthesis [PATH: KO00195] had the highest count at all three 
sites. Additionally, we observed that genes related to ABC transport, 
porphyrin, and chlorophyll metabolism also had relatively high gene 
numbers across all three sites. These results suggest that 
photosynthesis, substance synthesis, and transport are likely to be key 
biological processes in Synechococcus and provide a potential 
molecular basis for understanding their photosynthetic capability.

By comparing genomic data with 343 known Synechococcus 
genomes, several unmatched ORF sequences, were discovered 
(Supplementary Tables S2, S3). These unmatched sequences are likely to 
be unique coding genes of Synechococcus in the Xiamen region and may 
be linked to its adaptability to the environment. For instance, the most 
abundant genes related to amino sugar and nucleotide sugar metabolism 
aid in the synthesis of sugar complexes required for cell walls, providing 
more protection to Synechococcus in complex coastal waters.

Additionally, we detected genes related to photosynthesis in the 
Synechococcus strain, with a total of 284 genes present in five genome 
bins. Some of these genes are shown in Supplementary Figure S3. 
We  also detected 12 phycobilisome-related genes in the five 
Synechococcus genomes, derived from four classes of genes: APCF 
(phycobilisome core component), APCC (phycobilisome core 
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FIGURE 2

Distribution of the species of Synechococcus in Xiamen coastal waters. Map of the sampling station (A). Venn diagram of the species number of 
Synechococcus (B). Community composition of Synechococcus in Xiamen coastal waters (C).

FIGURE 3

Top 20 metabolic pathways of Synechococcus.
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connexin), cPCG (core-linked protein), and APCE (core-membrane-
linked protein). Notably, no cpcD gene was found in these 
Synechococcus species, which may indicate that the cpcD gene was 
deleted during evolution. This is consistent with previous reports that 
cpcD is absent in many Synechococcus strains, such as Synechococcus 
RCC307 and Synechococcus CC9902 (Six et al., 2007). We found that 
photosystem II is associated with more Psb-coding genes, including 
psbU and psbV. However, Prochlorococcus, a close relative of 
Synechococcus, has evolved to have smaller genomes, resulting in the 
lack of genes encoding photosystem II foreign proteins, including 
PsbU, PsbV, and PsbQ. psbU, psbV, and psbQ encode proteins 
associated with the oxidative complex of photosystem II, and their 
absence may affect the stability of photosystem II and increase its 
sensitivity to various stresses. Nevertheless, we  found that 
Synechococcus possess numerous related genes and lack only the psbQ 
gene, which may make them less sensitive to light stress.

We also detected a total of 348 genes associated with carbohydrate 
metabolism, which are involved in 15 different carbon metabolic 
pathways. Interestingly, we found that almost all the genes required 
for core carbon metabolic pathways were present in M-S12-8_bin36, 
providing the potential for efficient carbohydrate metabolism in 
Synechococcus in Xiamen, as illustrated in Supplementary Figure S4. 
Furthermore, we discovered the presence of a nitrogen metabolism 
gene, ntcA, in Synechococcus. This gene was detected in M8-S12, 
M8-S07, and M8-S03, suggesting its potential significance in marine 
Synechococcus in Xiamen. These findings suggest that Synechococcus 
can efficiently absorb carbon and nitrogen from the environment for 
the synthesis of other compounds, which may contribute to their 
adaptation to the local environment.

Benefits from metabolic genes in 
prophages

Based on the identification of phage-specific and host-specific 
genes, we  detected 89 incomplete prophage regions in the 
Synechococcus genomes (Supplementary Table S4). All these prophage 

fragments contained at least one viral gene with hits against viral 
databases; for example, VOG03402 was located on scaffold 3-S07_
NODE_68 (Figure 4). According to functional annotation, 23 prophage 
genes were likely to be  involved in host metabolism of various 
substances, including carbohydrates, energy, nucleotides, and amino 
acids (Supplementary Table S5). Specifically, these metabolic phage 
genes were related to nine pathways, namely, photosynthesis, glycolysis/
gluconeogenesis, purine metabolism, cysteine and methionine 
metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, 
aminoacyl-tRNA biosynthesis, ABC transporters, homologous 
recombination, and peroxisomes. For example, for photosynthesis, 
prophage-encoded psbA for the photosystem II P680 reaction center 
D1 protein was detected near VOG03494 of Synechococcus phages  
on scaffold 3-S07_NODE_802 (Figure  4). In the metabolism of 
nucleotides, the ribonucleotide reductase nrdJ was identified in 3-S12_
NODE_88, which contained the viral gene VOG00526 (Figure 4).

The identification of incomplete prophages in Synechococcus 
bacteria of Xiamen seawater is consistent with the evidence of phage 
remnants in the genomes of marine unicellular Synechococcus isolates 
(Flores-Uribe et  al., 2019). The incomplete prophages might 
be trapped phage elements resulting from host genome recombination 
in their evolutionary history (Canchaya et al., 2003) and finally lost 
their ability to switch to a lytic cycle and become cryptic prophages 
(Wang et al., 2010). However, cryptic prophages can express their 
genes and benefit their hosts, for example, in terms of stress resistance, 
which demonstrates the function of prophages, even though they are 
not intact (Wang et al., 2010). According to the evidence, genes in the 
predicted prophages in Synechococcus of Xiamen seawater are 
proposed to be functional and can contribute to host metabolism. For 
instance, given the expression of prophage-encoded psbA on scaffold 
3-S07_NODE_802 of Synechococcus, prophages can participate in the 
photosystem II P680 reaction to facilitate photosynthesis. Genes 
related to many other pathways, such as cysteine and methionine 
metabolism, can allow prophages to play a role in nutrient biosynthesis 
to enhance host fitness. Additionally, Synechococcus prophages carry 
genes for general L-amino acid transport system permease proteins 
that are components of ABC transporter systems, indicating that 

FIGURE 4

Representatives of putative prophages in Synechococcus genomes.
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prophages also play a role in the transport of synthesized organic 
matter, such as amino acids, and metals. The presence of copper-zinc 
superoxide dismutase (SOD1 protein) aligns with the prior finding 
that superoxide dismutase exists in a coastal cyanobacterium, 
Synechococcus sp. strain CC9311 (Palenik et al., 2006). This implies 
that prophages may play a role in metal metabolism, enabling them to 
detect and react to variations in the coastal environment. Overall, 
various genes carried by prophages can contribute to Synechococcus 
hosts in terms of fitness to accommodate the coastal 
marine environment.

Defense-related genes against phage 
attack

A total of 773 genes harbored in the 16,258 Synechococcus 
sequences were detected to be associated with diverse antiviral defense 
systems (Supplementary Table S6). These systems include Zorya, 
DISARM, Hachiman, toxin–antitoxin (TA), Septu, RM, Gabija, Brex, 
Lamassu, Thoeris, and abortive infection (Figure 5A). Among these 
systems, Zorya, DISARM, Hachiman, and TA accounted for a large 
proportion of genes (more than 450 genes). Additionally, the systems 

FIGURE 5

Count of antiviral defense-related genes in Synechococcus genomes (A) and antiviral defense systems in Synechococcus genomes (B).
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of Zorya and TA, along with the less abundant RM, were found to 
be complete. The complete system types with all the required gene 
components included Type II Zorya, Type II/IV TA, and Type I RM 
(Figure 5B). Type II Zorya was composed of ZorE genes for HNH 
endonucleases (Pfam accession: PF01844), for example, on scaffold 
M8 − S03_Bin85_NODE_13249 of Synechococcus bin M8 − S03_Bin85. 
The Type II TA was constituted by multiple toxin–antitoxin gene pairs 
such as genes for ParE toxin and Phd_YefM antitoxin on the scaffold 
12 − S07_NODE_698, HEPN and nucleotidyltransferase domains on 
3 − S12_NODE_360, nucleotidyltransferase substrate binding protein-
like toxin and nucleotidyltransferase on 8 − S03_NODE_540, and PIN 
and Phd_YefM on M8 − S03_Bin85_NODE_102684 (Figure 5B). Type 
IV TA is a system consisting of the nucleotidyl transferase AbiEii toxin 
gene, as evidenced by the genome structure of the scaffold M8 − S03_
Bin85_NODE_73326. The Type I RM, which is a foreign DNA-targeting 
RM system, encodes a gene pair, for example, located on 3 − S12_
NODE_187, for a methyltransferase for methylation and a restriction 
enzyme for DNA cleavage.

Targeting invading DNA, reducing cell activity, and conducting 
programmed cell death are common ways to prevent phage infection and 
avoid population decimation (Rostøl and Marraffini, 2019). To target 
external DNA, bacteria can depend on innate immunity, including the 
systems of RM (Ershova et al., 2015) and DISARM (Ofir et al., 2018). 
Bacteria can also use the TA (Yamaguchi et  al., 2011) and abortive 
infection (Chopin et al., 2005) systems to reduce cell activity, thereby 
preventing phage replication. Additionally, bacteria may depend on 
more systems, for example, Zorya, Hachiman, Gabija, Septu, Thoeris, 
and Lamassu, to fight invading phages (Doron et al., 2018). In seawater, 
cyanophages are plentiful and can infect and lyse approximately 20–40% 
of cyanobacteria in the ocean daily (Proctor and Fuhrman, 1990). 
Moreover, phages isolated from Xiamen seawater demonstrate a robust 
lytic capability with a significant burst size (Ma et al., 2021). This evidence 
highlights the substantial threat posed by viruses to the Synechococcus 
community. However, our metagenomic exploration showed that 
Synechococcus of Xiamen seawater contained hundreds of genes related 
to 11 defense systems against phage infection. The presence of multiple 
systems suggests that Synechococcus in Xiamen seawater may have 
evolved multiple complementary defense lines (Dupuis et al., 2013), 
which can enhance the bacterial ability to prevent phage DNA injection 
and replication (Rostøl and Marraffini, 2019). For example, when 
cyanophages inject their DNA into Synechoccocus cells, RM systems such 
as Type I RM located on the scaffold 3 − S12_NODE_187 (Figure 5B) 
can activate the expression of genes encoding restriction endonucleases 
to cleave injected DNA. Simultaneously, TA systems such as Type II TA 
located on scaffold 3 − S12_NODE_360 (Figure  5B) can induce the 
dormancy of Synechococcus cells to inhibit the expression of invaded 
phage genes. For other systems newly discovered with unknown 
mechanisms, for instance, Zorya and Hachiman, we assume that they 
have different functional roles in the prevention of phage infection. 
Overall, the presence of abundant and various defense systems suggests 
a potential deployment of multiple defense lines and reflects the 
adaptation of Synechococcus to the environment of Xiamen seawater 
where heterogeneous phage predators may co-occur.

Conclusion

In this study, we identified a diverse array of Synechococcus 
clades inhabiting the coastal waters of Xiamen. These clades are 

categorized into three marine subclusters and three freshwater 
clusters. Through our analysis, we  unveiled a rich set of 
Synechococcus species, comprising over 25,000 OTUs. Our 
taxonomic annotations provided insights into the presence of 
more than 100 distinct Synechococcus species. Furthermore, 
we  delved into the functional annotation of their genomes, 
uncovering a multitude of functional genes associated with 
various pathways. These pathways encompass critical processes 
such as photosynthesis, ABC transport, porphyrin metabolism, 
and chlorophyll metabolism. In the exploration of these genomes, 
we  identified specific genes associated with phages and host 
interactions, which led to the discovery of incomplete prophage 
regions integrated into the Synechococcus genomes. These 
prophage regions harbored metabolic genes involved in diverse 
processes, including carbohydrate metabolism, energy production, 
nucleotide synthesis, metal transport, and amino acid metabolism. 
This implies that prophages participate in a wide range of host 
metabolic activities, enhancing the adaptability of their 
Synechococcus hosts to the ever-changing coastal marine 
environment. Moreover, our analysis revealed a substantial 
number of genes linked to antiviral defense systems within the 
Synechococcus genomes. These defense systems encompass a 
range of mechanisms, including innate and adaptive immunity 
systems, such as the RM system. Additionally, we  identified 
several previously unknown defense mechanisms, such as Gabija, 
Brex, Lamassu, and Thoeris, which may play a crucial role in 
bolstering the defense capabilities against viral threats. The 
presence of these abundant and diverse defense systems indicates 
the deployment of multiple layers of defense strategies, 
underscoring the adaptability of Synechococcus to the dynamic 
environment of Xiamen seawater, where a heterogeneous 
community of phage predators may be present.
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