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The oceans cover over 70% of our planet, hosting a biodiversity of tremendous

wealth. Sponges are one of the major ecosystem engineers on the seafloor,

providing a habitat for a wide variety of species to be considered a good

source of bioactive compounds. In this study, a metataxonomic approach was

employed to describe the bacterial communities of the sponges collected from

Faro Lake (Sicily) and Porto Paone (Gulf of Naples). Morphological analysis

and amplification of the conserved molecular markers, including 18S and 28S

(RNA ribosomal genes), CO1 (mitochondrial cytochrome oxidase subunit 1),

and ITS (internal transcribed spacer), allowed the identification of four sponges.

Metataxonomic analysis of sponges revealed a large number of amplicon

sequence variants (ASVs) belonging to the phyla Proteobacteria, Cloroflexi,

Dadabacteria, and Poribacteria. In particular, Myxilla (Myxilla) rosacea and

Clathria (Clathria) toxivaria displayed several classes such as Alphaproteobacteria,

Dehalococcoidia, Gammaproteobacteria, Cyanobacteria, and Bacteroidia. On

the other hand, the sponges Ircinia oros and Cacospongia mollior hosted

bacteria belonging to the classes Dadabacteriia, Anaerolineae, Acidimicrobiia,

Nitrospiria, and Poribacteria. Moreover, for the first time, the presence of

Rhizobiaceae bacteria was revealed in the spongeM. (Myxilla) rosacea, whichwas

mainly associated with soil and plants and involved in biological nitrogen fixation.

KEYWORDS

bacteria, metataxonomic analysis, molecular identification, morphological

identification, sponges

1 Introduction

The Mediterranean Sea is considered very significant in terms of biodiversity, as it

hosts 7% of the world’s marine biodiversity (with only 0.82% of the oceans’ surface),

including a large number of endemic species, which are also subject to anthropogenic

stress destined to increase in the future (Coll et al., 2010). Among marine organisms,

marine sponges emerged on the earth more than 600 million years ago (the Cambrian

Age) and represented one of the most important components of benthic fauna.
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They are extensively distributed from polar to tropical waters

and from intertidal regions to waters thousands of meters

deep (Fusetani, 1996), representing dominant taxon in marine

communities in terms of species biomass, richness, and spatial

coverage (Corriero et al., 2000). A miscellaneous of archaea,

heterotrophic bacteria, cyanobacteria, green algae, red algae,

cryptophytes, dinoflagellates, and diatoms have been found

together with sponges (Larkum et al., 1987; Santavy et al.,

1990; Duglas, 1994). Their microbial community is very diverse,

with species composition showing temporal and geographical

differences (Webster and Hill, 2001). A sponge can be associated

with diverse organisms, such as Theonella swinhoei, which hosted

unicellular bacteria and cyanobacteria at the same time (Bewley

et al., 1996). Additionally, a sponge belonging to the Aplysina

genus included heterogeneous bacteria Micrococcus sp., Bacillus

sp., Arthrobacter sp., Pseudoalteromonas sp., Vibrio sp., and

others (Hentschel et al., 2001). The surfaces or internal sides

of marine sponges are richer in nutrients than seawater and

sediments; therefore, sponges offer both a feeding source and

a secure habitat for their microorganisms (Bultel-Poncé et al.,

1999). On the other hand, symbiotic microorganisms contribute

to the nutritional process through intracellular digestion and/or

translocation of metabolites, such as nitrogen fixation, nitrification,

and photosynthesis (Wilkinson and Fay, 1979; Wilkinson and

Garrone, 1980). Microorganisms also stabilize the skeleton of

sponges (Wilkinson et al., 1981) and participate in the host

chemical defense system against hunters and biofouling (Bakus

et al., 1986; Paul, 1992; Proksch, 1994; Unson et al., 1994). Sponges

and associated microorganisms represent very useful organisms as

sources of bioactive compounds for marine biotechnology (Cooper

and Yao, 2010; Karuppiah and Li, 2015; Thompson et al., 2017;

Cerrano et al., 2022). In fact, one of the first peptides with

antibacterial activity was isolated by the gram-negative bacterium

Vibrio sp. associated with the sponge Hyatella sp. (Oclarit et al.,

1994). Starting from this, several studies showed pharmacological

applications of natural products from marine sponges and their

associated biota (Newman and Cragg, 2020; Zhang et al., 2020;

Amelia et al., 2022).

In the present study, we deeply explored the bacterial

communities associated with four sponges collected in the

Mediterranean Sea. These species were collected in Italy in two

different areas: Faro Lake (Sicily) and Porto Paone (Gulf of

TABLE 1 Sample IDs, taxonomy, sampling depth (m), sites, geographical coordinates, and type of substrate of sponge specimens.

Sample
IDs

Sponge taxonomy Sampling
depth (m)

Sampling site Coordinates Substrate

S23 Clathria (Clathria) toxivaria 2–3 Faro Lake 38◦16′N, 15◦38′E Rocks, coralligenous concretions, caves,

and epibiotic on other organisms

S25 Myxilla (Myxilla) rosacea 2–3 Faro Lake 38◦16′N, 15◦38′E Rocks, coralligenous concretions, caves,

and epibiotic on other organisms

S36 Ircinia oros 15–17 Porto Paone 40◦47′N, 14◦9′E Sand, mud, rocks, coralligenous

concretions, and cave

S39 Cacospongia mollior 15–17 Porto Paone 40◦47′N, 14◦9′E Sand, mud, rocks, coralligenous

concretions, cave, and epibiotic on other

organisms

Naples). Species were characterized by skeletal morphological

observation and amplification of several conserved molecular

markers, represented by RNA ribosomal genes (18S and 28S

rRNA), mitochondrial cytochrome oxidase subunit 1 (CO1), and

internal transcribed spacer (ITS). To analyze the biodiversity

of symbiotic communities between the two sampling sites, we

performed metataxonomic analysis of sponge samples using the

Illumina MiSeq platform. More than 1,000 bacterial isolates from

four samples were phylogenetically identified to understand if they

are host-specific and/or location-specific. Subsequently, the ASV

analysis was also applied to reveal the level of variability in the

host-specific microbial communities, which were then discussed to

assess the biotechnological potential of the sponges under analysis.

2 Materials and methods

2.1 Sponge sampling

Two sponge samples (indicated as S36 and S39) were collected

in the Gulf of Naples by scuba divers from the Stazione Zoologica

Anton Dohrn. The sampling site was Porto Paone (40◦47′N,

14◦9′E), and the specimens were collected at depths between 15

and 17m. The other two sponges (indicated as S23 and S25) were

collected at the Faro Lake in Messina, Sicily (38◦16′N, 15◦38′E) at

depths between 2 and 3m (Ruocco et al., 2021, see Table 1). This

sampling site is located in the Natural Reserve of “Capo Peloro.”

The Faro Lake has the shape of a funnel, and due toits maximum

depth of 29m, which more or less coincides with the center of the

lake, it is considered the deepest coastal lake in Italy. The Faro Lake

is a salty lake connected by two channels to the Strait ofMessina and

the Tyrrhenian Sea (northern and northeastern side). The abiotic

lake parameters of the lake include a salinity range of 26–36 PSU,

pH levels ranging from 7.0 to 8.6, and temperature ranging from 10

to 30◦C (Saccà et al., 2008; Marra et al., 2016).

2.2 Morphological identification of the
sponges

The taxonomic analysis was conducted by examining the

skeletal architecture and spicule complement of each sponge
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specimen according to the protocols already published (Núñez-

Pons et al., 2022). The taxonomic identification was made at species

level as described in the World Porifera Database (WPD; Van Soest

et al., 2023).

2.3 Molecular identification of sponges

The DNA extraction was performed starting from 10mg of

sponge tissue and employingQIAamp
R©
DNAMicro kit (QIAGEN,

Germany), according to the manufacturer’s protocol. The DNA

(ng/µL) was quantified using NanoDrop spectrophotometer. The

C1000 Touch Thermal Cycler (Biorad) was used for PCR reaction

processes in a 30 µL final volume of master mix with ∼50–100 ng

of genomic DNA. The reaction mixture was prepared using 6 µL of

5X Buffer GL (GeneSpin Srl, Milan, Italy), 3 µL of dNTPs (2mM

each), 2 µL each of forward and reverse primers (25 pmol/µL), and

0.5 µL of Xtra Taq Polymerase (5 U/µL, GeneSpin Srl, Milan, Italy)

as follows:

i For 18S and 28S, the amplification conditions were 95◦C for

2min followed by 35 cycles of 95◦C for 1min, 60◦C (A/B)

and 55◦C (18S-AF/18S-BR, NL4F/NL4R) for 1min, and 72◦C

for 2min, with a final extension step at 72◦C for 10min

(Chombard et al., 1998; Manuel et al., 2003);

ii ITS primers (RA2/ITS2.2), with initial denaturation at 95◦C

for 2min. This was followed by 35 cycles of 95◦C for 1min,

67◦C for 1min, and 72◦C for 2min, with a final extension step

at 72◦C for 10min (Worheide et al., 2002; Schmitt et al., 2005);

iii CO1 primers (dgLCO1490/dgHCO2198), with initial

denaturation at 94◦C for 3min, 35 cycles of denaturation at

94◦C for 30 s, 45◦C for 30 s, and a final step of elongation of

72◦C for 1min (Meyer et al., 2005).

The gel of agarose (1.5% electrophoresis in 40mM Tris–

acetate, 1mM EDTA, pH 8.0, TAE buffer) was used to separate

PCR products; the amplified fragments were identified using

a DNA ladder of 100 bp (GeneSpin Srl, Milan, Italy). The

QIAquick Gel Extraction Kit (Qiagen) was used to extract

the fragments from the gel following the instructions of the

manufacturer. The NanoDrop spectrophotometer evaluated the

DNA quantity (ng/µL). Applied Biosystems (Life Technologies)

3730 Analyzer (48 capillaries) sequenced both strands of the

obtained amplicons. All the sequences from PCR products

were then aligned to GeneBank using BLAST (Basic Local

Alignment Search Tool) to reach for high similarity sequences.

Then, Multialign was used to confirm the alignment with

high similarity sequences (http://multalin.toulouse.inra.fr/

multalin/).

2.4 Metagenomic DNA extraction, illumina
miseq sequencing, and diversity analysis

The DNeasy R© PowerSoil R© Pro Kit (QIAGEN) was used for

the extraction of DNA following the protocol described by the

manufacturer. For this extraction, a piece of the tissue weighing

about 250mg was used. Using the NanoDrop spectrophotometer

it was possible to evaluate DNA quantity (ng/µL) and quality

(A260/280, A260/230). To check for DNA integrity, the samples

were loaded on 0.8% agarose gel electrophoresis immersed in

TAE buffer. For metataxonomic analysis performed by Bio-Fab

Research (Roma, Italy), a final concentration of 30 ng/µL of

DNA was used. Illumina adapter overhang nucleotide sequences

were added to the gene-specific primer pairs targeting the V3-V4

region (S-DBact-0341-b-S-17/S-D-Bact-0785-a-A-2), according to

Klindworth et al. (2013). 16S PCR amplification was performed

in a final volume of 25 µL, which was set up using the following

quantities: 5 µL of microbial genomic DNA (10 ng/µL in 10mM

Tris pH 8.5), 1x PCRBIO HiFi Buffer (PCR BIOSYSTEMS, USA)

composed by 1mM of dNTPs and 3mM of MgCl2, 0.5 units

of PCRBIO HiFi Polymerase (PCR BIOSYSTEMS, USA), and

0.2µM of each primer. Cycling conditions followed an initial

denaturation at 95◦C for 3min, 25 cycles of 95◦C for 30 s, 55◦C

for 30 s, 72◦C for 30 s and a final extension step at 72◦C for 5min,

hold at 4◦C. After the amplification of the 16S, a PCR clean-

up was done to purify the V3-V4 amplicon from free primers

and primer dimers. After that, a limited-cycle amplification step

using Nextera XT Index Kit was carried out to add multiplexing

indices and illumine sequencing adapters. In addition, a further

clean-up step was performed, followed by a normalization of the

libraries and their pooling by denoizing processes. The sequencing

on Illumina MiSeq Platform with 2×300 bp paired-end reads

took place only after these steps were completed. Taxonomy

assignments were done using a “home-made” Naive Bayesian

Classifier trained on V3-V4 16S sequences of the SILVA 138.1

release database (Quast et al., 2013). The sample frequencies per

feature and per sample are indicated in Supplementary Figures 1, 2.

The metataxonomic analysis from raw DNA sequencing data was

conducted on the Quantitative Insights Into Microbial Ecology

(QIIME 2, Version: 2022.2) platform (Bolyen et al., 2019) by

demultiplexing, quality filtering, chimera removal, taxonomic

assignment, and both alpha and beta diversity analyses. With

the use of R version 4.1.1 (Li, 2021) and Cairo graphics library

(Urbanek and Horner, 2020), the taxonomy barplot was generated.

To evaluate the species diversity, three different indices were

took into account: Chao 1 index (Chao, 1984) is a qualitative

species-based method (species richness in the sample that is the

number of ASV) and Shannon (1948), Shannon and Weaver

(1949), and Simpson (1949) indexes estimated the quantitative

species-based measures, which indicated the community diversity

as species richness and evenness. The estimation was made at

three taxa levels (Level 5 = Family, Level 6 = Genus, Level

7 = Species). Statistically significant differences for alpha and

beta diversities were explored using the Kruskal–Wallis test and

pairwise PERMANOVA analysis, respectively. The distance matrix

between each pair of sample (independently from environmental

variables) was calculated using Bray–Curtis and “un-, weighted”

UniFrac metrics.

The data were deposited in the SRA

database (submission ID: SUB14019148; BioProject

ID: PRJNA1049642).
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FIGURE 1

Taxonomy barplot comparing the most abundant bacterial phyla at the genus level in sponges C. mollior, C. (C.) toxivaria, I. oros, and M. (M.) rosacea.

Data were normalized in each sample by median sequencing depth, filtered to low abundance and to sum rows >500.

3 Results

3.1 Morphological and molecular
characterization

All the sponges were characterized by morphological and

molecular approaches. Concerning the morphological analysis, all

the analyzed sponges belonged to the class Demospongiae (see

Table 1) and usually live in the Mediterranean Sea. Concerning C.

(Clathria) toxivaria, collected in the Faro Lake (Sicily), molecular

tool for characterization of this species identified by morphological

analysis was not available in GenBank. The second sponge collected

in the Faro Lake was identified by morphological analysis as M.

(Myxilla) rosacea. In the case of the two sponge samples collected

in “Porto Paone” (Gulf of Naples), CO1 was the best molecular

marker with 98.5% identity, characterizing the sponge S36 as Ircinia

oroswith 98.5% identity. For Sample S39, this species was identified

by ITS as Cacospongia mollior, reporting a percentage of sequence

similarity of 99%.

3.2 Metataxonomic profile

As indicated by the ASVs analysis, most microbial species

had a confidence percentage ≥75%. The complete taxonomy

classification of bacterial communities of sponge samples is

presented in Supplementary Tables 1–4. In Porto Paone, two

sponges (Gulf of Naples) were found: (i) M. (M.) rosacea

showed the largest number of features (519), especially

Alphaproteobacteria, Dehalococcoidia, Gammaproteobacteria,

and Cyanobacteria (Figure 1) and (ii) 250 ASVs in C. (C.)

toxivaria, with a greater abundance of Alphaproteobacteria,

Gammaproteobacteria, and Bacteroidia (Figure 1). In sponges

I. oros and C. mollior, both collected in the Faro Lake (Sicily),

156 and 204 ASVs were detected, respectively. The most

abundant bacterial classes in I. oros were Dadabacteriia,

Anaerolineae, and Acidimicrobiia, while the bacterial community

of C. mollior was dominated by Nitrospiria, Anaerolineae,

Dadabacteriia, and Poribacteria (Figure 1). In particular, the

taxonomic composition revealed an abundance of Proteobacteria

present in C. toxivaria (36%) and M. (M.) rosacea (35%;

Figure 1). In contrast, a low percentage (2%) of Proteobacteria

was detected in two sponges collected from the Faro Lake

(Sicily). In addition, C. toxivaria revealed 1% of Bacteroidia

class. The sponge M. (M.) rosacea revealed low percentages

of Cyanobacteria and Dehalococcoidia (1–0.9%, respectively;

Figure 1). Interestingly, this sponge was the only species revealing

a certain abundance of Rhizobiaceae, belonging to the phylum

Proteobacteria (75.6 %; Figure 1). Concerning the sponges I.

oros and C. mollior, low percentages of Dadabacteria (1%)

and Poribacteria (0.9%) were present, respectively (Figure 1).

As reported above, the sponges C. (C.) toxivaria and M. (M.)

rosacea revealed a comparable composition in the distribution

of microbial species. In fact, a great plethora of Proteobacteria

was observed in these species (Figure 1). Similarly, the sponges

I. oros and C. mollior showed the same distribution of bacteria

and archaea.

3.3 Principal coordinates analyses (PCoA)
of bacterial communities

PCoA based on the relative abundance of genera revealed

a significant separation in bacterial community composition
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FIGURE 2

Principal coordinates analysis (PCoA) biplot between Group A and Group B for identifying features that contribute the most in terms of separating the

samples in a PCoA plot.

between Group A (sponges collected in the Faro Lake) and

Group B (sponges collected in Porto Paone), using both principal

component scores of PC1 and PC2 (68.7 and 29.9%, respectively;

Figure 2 and Table 2). Alpha diversity was used to analyze

the samples, and three diversity indices (Chao1, Shannon, and

Simpson) were used to determine whether each sample was

sequenced at sufficient depth or not. As shown in Figure 3, the

Chao index of Group B, including sponges collected in Porto

Paone, was lower than that of the sponges collected in the Faro

Lake (Group A). The results showed that the species richness of

Group B was significantly lower than that of Group A. Moreover,

Shannon and Simpson indexes of the Group B were higher than

that of the Group A, demonstrating that the two groups had the

same trend.

4 Discussion

This study builds upon previous investigations where we

analyzed themicrobial diversity bymetataxonomic analysis of eight

sponge samples from four sites:Oceanapia cf. perforate (Sarà 1960),

Sarcotragus spinosulus (Schmidt 1862) and Erylus discophorus

(Schmidt 1862) from Faro Lake in Sicily; Tethya aurantium (Pallas

1766) and Axinella damicornis (Esper 1794) from “Porto Paone”

(Gulf of Naples); Geodia cydonium (Jamenson 1811) from “Secca

delle fumose” (Gulf of Naples); Agelas oroides (Schmidt 1864) and

Acanthella acuta (Schmidt 1862) from “Punta San Pancrazio” (Gulf

of Naples). In fact, here we explored the sponge biodiversity, in

terms of microorganisms, in the Mediterranean Sea, analyzing

other species from the Strait of Messina and the Gulf of Naples.
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TABLE 2 Bacteria clustered with C. toxivaria,M. rosacea, I. oros, and C. mollior identified at genus, family, and order levels.

C. toxivaria (Axis 1
1.25528583537352 and
Axis 2
0.441014958183311)

M. rosacea (Axis 1
−1.04618839398916
and Axis 2
0.634895116498213)

I. oros (Axis 1
−0.0380512968287544
and Axis 2
−0.55442518705781)

C. mollior (Axis 1
−0.171355948499607
and Axis 2
−0.521374123467597)

Genus DEV007 Albidovulu A4b AncK6

Endozoicomonas AT-s3-44 bacteriap25 Aquimarina

Entotheonellaceae Constrictibacter BD2-11_terrestrial_group Blastocatella

Filomicrobium Cyanobium_PCC-6307 Candidatus_Tenderia Candidatus_Kaiserbacteria

JTB255_marine_benthic_group EF100-94H03 EC94 Candidatus_Nitrosopumilus

Limibaculum JG30-KF-CM66 Exiguobacterium FS142-36B-02

NS5_marinegroup Nitrospira HOC36 Ga0077536

Pseudohongiella PAUC43f_marine_benthic_group NS4_marine_group NB1-j

Roseibacillus Poribacteria Planctomicrobium PAUC26f

Subgroup_11 pltb-vmat-80 Rhodopirellula

Vibrio Ruegeria Saccharimonadales

Shewanella Subgroup_9

Genus Thalassotalea Subgroup_21

Turneriella TK17

UBA10353_marine_group TK30

Woeseia

Family Clostridiaceae Kiloniellaceae Bacteriovoraceceae Magnetospiraceae

Spirochaetacea Rhizobiaceae Rhodobacteracea

Rhodothermacea Thiotrichaceae

Order Caldilineales

Defluviicoccales

Vicinamibacterales

We first identified four sponges, combining the identification

by morphological features with a molecular approach, based on

the sequences of 28S and 18S rDNA, ITS, and CO1. According

to the literature, there is no single marker for all sponge species,

and each primer pair displayed its own constraints and strengths

(Yang et al., 2017; Ruocco et al., 2021). The difficulty in identifying

them is also related to absent or incomplete sequences annotated

in the database, thus limiting the phylogenetically based taxonomic

methods used for species identification. For this reason, amolecular

approach with multi-loci should be employed to ensure reliable

sponge identification.

This represents the first record of metataxonomic analysis for

the sponges, such as C. (C.) toxivaria,M. (M.) rosacea, Ircinia oros,

and Cacospongia mollior.

An important finding concerning the species analyzed in

this study concerned the fact that the sponges M. (M.) rosacea

and C. (C.) toxivaria collected in the Faro Lake were already

recorded in this lake in 2013 suggesting, their presence as persistent

(Marra et al., 2016). The sponges collected in the Gulf of Naples

are typical species in the Mediterranean Sea. In addition, we

investigated the bacterial diversity of the Mediterranean sponges

by performing the metataxonomic analysis. Our results revealed

that the analyzed sponges hosted various bacterial communities

according the sampling site. Interestingly, as reported in Ruocco

et al. (2021), sponges collected in the Faro Lake had a more diverse

phyla composition than sponges collected in the Gulf of Naples

(Figure 4). In addition, PCA analysis revealed interesting results for

the sponges collected in Faro Lake. In fact, M. (M.) rosacea is the

only sponge with a significant presence of Rhizobiaceae bacteria.

The community structure seems to be closely related to the order

to which they belong, as demonstrated in the Krona plot and heat

map. In fact, I. oros and C. mollior, belonging to Dictyoceratida

order, were recorded as high microbial abundance (HMA) species,

while M. (M.) rosacea and C. (C.) toxivaria, belonging to the

Poecilosclerida order, were low microbial abundance (LMA)

species. HMA sponges harbor amore diverse symbiotic community

than LMA, which were found to be extremely stable at seasonal and

interannual scales.

This taxonomic analysis was useful for us, being strongly

interested in the biotechnological potential of these sponges. In

fact, as reported in the introduction, sponges in general are

among the marine organisms richest in bioactive compounds

of biotechnological interest. There is a strong debate in the

literature whether the bioactive compounds isolated from sponges
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FIGURE 3

Alpha diversity plot with separate variable A and B.

are produced by the sponges themselves, by the organisms

associated with them, or by the interaction between sponges

and microorganisms. The fact is that the microorganisms

associated with sponges play a fundamental role in their

production. Many studies reported that sponge-associated bacteria

are good candidates for isolating natural compounds with their

application in pharmacological, nutraceutical, and cosmeceutical

fields. In this context, our study represents an important step

in this field, representing one of the first assessments of

the biotechnological potential of mentioned sponge-associated

bacteria. In all species of sponges are present Alphaproteobacteria

and Gammaproteobacteria, which showed antimicrobial activity

making them suitable tools for pharmacological purposes (Thiel

and Imhoff, 2003; Thakur et al., 2005; Taylor et al., 2007;

Werner, 2010; Haber and Ilan, 2014; Brinkmann et al., 2017;

Bibi et al., 2020). The phylum Cloreflexi (classes Anaerolineae

and Dehaloccoidia) is typical of both collection sites, being in

all sponge samples. However, no data had been reported so

far for marine biotechnology applications for class Anaerolineae.

Despite playing an important role in biochemical cycles in

various environments, they are manifestly difficult to cultivate

due to slow growth (Nakahara et al., 2019; De Castro-Fernández

et al., 2023). On the contrary, the anaerobic Dehalococcoides

showed an interesting capability to transform various chlorinated

organics, which are normally released through industrial and

agricultural activities (Bedard et al., 2007; Taş et al., 2010). In

the case of the sponge M. (M.) rosacea, Rhizobiaceae was the

most abundant family (order Alphaproteobacteria) among other

bacteria isolated. These bacteria are generally associated with soil

and plant hosts and are involved in the process of biological

nitrogen fixation (Carrareto-Alves et al., 2015). Therefore, the

family Rhizobiaceae, described in this study, was found associated
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FIGURE 4

Krona plot represents the most abundant phyla for all sponges. Sample code: M.ros, M. (M.) rosacea; I.oro, I. oros; C.mol., C. mollior; C.tox., C. (C.)

toxivaria.

with the sponge M. (M.) rosacea for the first time. Potentially,

these bacteria can be used for bioremediation of heavy metals

and biodegradation of toxic compounds due to their metabolic

capabilities and ecological roles (Aoki et al., 2022). However,

their role in marine environments remain unclear because of the

limited availability of cultured marine isolates and their sequenced

genomes (Kimes et al., 2015). In summary, our data drew attention

to the biodiversity of species in the Mediterranean Sea and the

16S rRNA sequence dataset, allowing the detection of several

resident microbiomes featured. The sponges and their associated

microorganisms revealed good source to identify new compounds

for biotechnological applications, and further analyses will be

needed to investigate the potential role of the bacteria associated to

these sponges. In the meantime, we analyzed the biotechnological

potential of these sponges by bioassay-guided fractionation on

several human cancer lines, and first results showed specific

antimitotic activity against some cancers. We also tried identifying

the chemical structure of the compounds responsible for this

activity. We also performed metagenomic and transcriptomic

analyses on these sponges, which could help us identify the

gene/enzyme responsible for the production of the bioactive

compounds. These –omic techniques represent an environmental-

friendly approachmainly for organisms, such as the sponges, which

cannot be cultivated and are difficult to keep in the laboratory to

increase biomass.
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