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Background: Numerous pertinent investigations have demonstrated a 
correlation between gut microflora (GM) and the occurrence of dementia. 
However, a causal connection between GM and dementia and its subtypes has 
not yet been clarified.

Objective: To explore the causal association between GM and dementia, including 
its subtypes, a two-sample Mendelian randomization (TSMR) analysis was used.

Methods: Our data comes from the Genome-Wide Association Study (GWAS). The 
principal approach employed for the Mendelian randomization study was the inverse-
variance weighted method, supplemented by four methods: MR-Egger, weighted 
median, simple mode, and weighted mode. This was followed by Cochrane’s Q test, 
MR-Egger intercept test, MR-PRESSO global test, and leave-one-out as sensitivity 
analysis validation.

Results: Twenty-one GMs associated with any dementia, Alzheimer’s disease, 
vascular dementia, Lewy body dementia, Parkinson’s disease, and dementia 
under other disease classifications were derived from the analysis, and 21 passed 
sensitivity tests.

Conclusion: We confirmed the causal relationship between GM and dementia 
and its subtypes, derived specific flora associated with increased or decreased 
risk of dementia, and provided new ideas for preventive, diagnostic, and 
therapeutic interventions for dementia mediated by gut microbiota.
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1 Introduction

Dementia is a prevalent neurodegenerative disorder clinically distinguished by cognitive 
impairment and a gradual deterioration in one’s ability to function autonomously (Liu et al., 
2019). According to a WHO report (Cheah et al., 2022), dementia has now become the seventh 
leading cause of death globally, and it is expected that the number of dementia patients 
worldwide will reach 139 million by 2050. At the same time, the prevention and treatment of 
dementia bring a substantial economic and healthcare burden to society and countries, and the 
global investment in dementia will reach 2.8 trillion dollars by 2030 (World Alzheimer Report, 
2015). Alzheimer’s disease represents the prevailing form of dementia, comprising 
approximately 50 to 70% of cases. Other frequently encountered kinds comprise vascular 
dementia, Lewy body dementia, Parkinson’s disease, and dementia in other diseases as classified 
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elsewhere (Aarsland, 2020; Wilbur, 2023). To date, the underlying 
mechanisms leading to dementia have not been clarified, and the 
medical requirements of individuals with dementia are not well met 
(Zagórska et al., 2023). Therefore, clarification of dementia-related risk 
factors, and thus dementia prevention, intervention, and care, can 
significantly help enhance the well-being and survival rates of 
individuals with dementia (Livingston et al., 2020).

Gut microbiota (GM) generally refers to bacteria in the human 
gut. It is involved in regulating a wide range of physiological functions 
in the host organism and protecting the host from pathogenic bacteria 
(Álvarez et al., 2021; Kuziel and Rakoff-Nahoum, 2022). Increasingly, 
GM has been found to fulfill an essential role in the nervous system 
through the brain-gut axis and has even been implicated in 
neurodegenerative diseases (Cryan et al., 2020; Mitrea et al., 2022). 
Studies have demonstrated that GM metabolites, molecules, and 
endotoxins may affect the central nervous system through the 
bloodstream or the vagus nerve, affecting brain function and cognitive 
behavior (Chen et al., 2021). This is undoubtedly a complementary 
approach to diagnosing and treating dementia, and many scholars 
have endeavored to address neurodegenerative illnesses through the 
manipulation of gut microbiota (Möhle et al., 2016; Sasmita, 2019). A 
systematic evaluation based on dementia studies showed that probiotic 
supplements improved memory in patients with dementia, as well as 
elevated levels of brain-derived neurotrophic factor (Ruiz-Gonzalez 
et al., 2021). In addition, some studies have found differences in GM 
composition between healthy people and people with cognitive 
impairment or different types of cognitive impairment, attempting to 
use this information to make a diagnosis of the disease (Guo et al., 
2021; Hung et al., 2022). Therefore, clarifying the influence of different 
flora on dementia is essential for ascertaining new therapeutic targets 
for dementia and diagnosing dementia using microbial profiles (Liu 
et al., 2019; Guo et al., 2021; Cuartero et al., 2023).

Mendelian randomization (MR) is a study method that explores 
causal relationships between exposure factors and outcomes using 
single nucleotide polymorphisms (SNPs) as instrumental variables 
(IVs; Burgess et al., 2017), which is consistent with the principle of 
random allocation of genetic variation during meiosis, avoiding the 
influence of confounding variables and the potential for reverse 
causality (Sekula et al., 2016). This work employed GWAS summary 
statistics of GW taxa associated with dementia and their subtypes for 
MR analysis in order to evaluate the risk relationship between 
genetically determined GW taxa and dementia and its subtypes, which 
provides evidence for existing findings, new research ideas for 
pathogenesis that has not yet been clarified, and new directions for the 
early diagnosis, avoidance, and therapy of all types of dementia.

2 Materials and methods

2.1 Study design

TSMR was employed to analyze the association between GM and 
dementia (any dementia, Alzheimer’s disease, vascular dementia, 
Lewy body dementia, Parkinson’s disease, dementia in other diseases 
classified elsewhere) with regard to causality. The overall design of the 
study is illustrated in Figure 1. In order to carry out a TSMR study, it 
is imperative that three fundamental assumptions are satisfied: (1) 
Strong correlation between IVs and exposure; (2) No correlation 

between IVs and confounders; (3) IVs can only affect outcomes 
through exposure (EPIC-InterAct Consortium et al., 2015). IVs that 
fulfill these three assumptions were included in this MR study 
(Figure  2). This study followed the most updated guidelines 
(STROBE-MR; Skrivankova et al., 2021).

2.2 Sources of data on exposure

The GWAS data for gut microbes were acquired through the 
MiBioGen consortium1 from genomic statistical research by 
Kurilshikov et al. of 18,340 individuals of European ethnicity from 11 
countries (24 cohorts), and the data contained 211 gut microbes with 
122,110 variant loci (Kurilshikov et  al., 2021). From this GWAS, 
we screened IVs of gut bacterial taxa in five ranks.

2.3 Source of data on endings

GWAS statistics for any dementia, Alzheimer’s disease, vascular 
dementia, Parkinson’s disease, and dementia in other diseases classified 
elsewhere were derived from the FinnGen study program.2 GWAS 
statistics for Lewy body dementia were derived from the GWAS Catalog.3 
The diagnostic standards for dementia are according to F03 in the ICD-10 
criteria, where the GWAS dataset has 16,380,466 variant loci from 5,933 
patients and 212,859 controls. The diagnostic standards for Alzheimer’s 
disease are according to G30.901 of the ICD-10 criteria, which contains 
16,380,451 variant loci from 2,191 cases and 209,487 controls. The 
diagnostic standards for Lewy body dementia are according to G31.805 
of the ICD-10 criteria, which contains 7,593,175 variant loci from 2,591 
cases and 4,027 controls. The diagnostic standards for vascular dementia 
are according to F01 of the ICD-10 criteria and contain 16,380,453 variant 
loci from 98 cases and 211,300 controls. The diagnostic standards for 
Parkinson’s disease are according to the G20 of the ICD-10 criteria and 
contain 16,380,459 variant loci from 267 cases and 216,628 controls. The 
diagnostic standards for dementia in other diseases classified elsewhere 
are according to F02.8 of the ICD-10 criteria and contain 16,380,450 
variant loci from 581 cases and 209,487 controls. In addition, three 
datasets related to any dementia were added as three validation groups 
(Table 1).

2.4 Selection of IVs

We screened the relevant IVs according to the following standards: 
(1) a significant threshold (p  < 5 × 10−8) for IVs was associated with 
exposure and outcome, but the quantity of eligible IVs (exposure) was 
low, so a more appropriate threshold (p < 1 × 10−5) was used to acquire a 
larger quantity of IVs (Lv et al., 2021; Zeng et al., 2023); (2) the chain 
imbalance coefficient r2 < 0.001, distance = 10,000 kb was set to remove the 
presence of chain imbalance among IVs; (3) to avoid the effects of 
horizontal pleiotropy, IVs linked to dangerous elements of dementia were 
eliminated by the utilization of PhenoScanner (Kamat et al., 2019); (4) 

1 https://mibiogen.gcc.rug.nl

2 https://r5.finngen.fi/

3 https://www.ebi.ac.uk/gwas/home
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palindromic SNPs were removed from IVs; and (5) to avoid bias from 
weak instrumental variables, we  removed IVs with F  < 10 (Burgess 
et al., 2011).

2.5 Statistical analysis

In TSMR analysis of gut microbes and dementia (any dementia, 
Alzheimer’s disease, vascular dementia, Lewy body dementia, 
Parkinson’s disease, dementia in other diseases classified elsewhere) in 
causality, the fixed-effects IVW method and the random-effects IVW 
method were the main methods (Burgess et  al., 2013). The choice 
between the two is determined by the heterogeneity between IVs, if 
there is heterogeneity in Cochrane’s Q test (p < 0.05), then random-
effects IVW method was used, otherwise fixed-effects IVW method or 
random-effects IVW method was used. Therefore, in this TSMR 

analysis, We chose the random-effects IVW method as the main 
method (Greco et al., 2015). In addition, MR-Egger, weighted median, 
simple mode, and weighted mode can complement IVW (Bowden et al., 
2015, 2016), and ORs and 95% confidence intervals were also obtained. 
A causal relationship between gut microbes and dementia was 
considered likely if the outcome of one TSMR method was remarkable 
(p < 0.05; Jin et al., 2023), and the causal relationship was considered 
reliable if the results of two or more TSMR methods were significant (Ni 
et al., 2021).

Sensitivity analyses took place to verify the robustness of the 
findings, and Cochrane’s Q test was used to test for heterogeneity. The 
IV was considered heterogeneous if p < 0.05. The MR-Egger method’s 
intercept term indicates horizontal multiplicity in the IVs, and if this 
intercept term is significantly different from 0, it indicates the presence 
of horizontal multiplicity (Burgess and Thompson, 2017). MR-PRESSO 
is also commonly used to test for horizontal multiplicity (Verbanck 
et al., 2018). Finally, the validation of the data was conducted using the 
leave-one-out procedure (Xiang et al., 2021). The investigation was 
carried out utilizing R program (version 4.3.0). The “Two SampleMR” 
R package4 and “MRPRESSO” R package5 were used for our MR study.

2.6 Reverse MR analysis

Assuming that there are relevant GMs that can have an effect on 
dementia and its subtypes in the final findings, we will further conduct 
a reverse MR analysis to explore the effect of dementia on GMs, with 

4 https://mrcieu.github.io/TwoSampleMR/

5 https://github.com/rondolab/MR-PRESSO

FIGURE 1

The flowchart of the study.

FIGURE 2

Three assumptions of MR.
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dementia as the exposure and GMs as the outcome to avoid reverse 
causality interfering with the results of this study.

3 Results

3.1 IV details

After screening the above entries, 605 IVs associated with 
dementia were finally obtained, involving 60 GMs. Detailed 
information can be found in Supplementary Table 1. All IVs involved 
had F values greater than 10 (range 16.91–85.37), so there were no 
weak instrumental variables. These IVs were categorized into five 
classes: phylum, class, order, family, and genus, comprising two 
phylum (14 IVs), four classes (40 IVs), nine orders (90 IVs), 13 
families (134 IVs), and 32 genera (327 IVs). Because of the 
inclusionary relationship between gut microbial classifications, there 
may be  a substantial overlap of SNPs and their associated orders 
contained in various types of enterobacteria.

3.2 Results of the TSMR analysis

Causal relationships between the 60 GMs screened and 
dementia were analyzed using five TSMR methods: IVW, 
MR-Egger, weighted median, simple mode, and weighted mode 

(Supplementary Table 2). Potential causal relationships between 
the 60 GMs and dementia were determined using two TSMR 
methods, in which six GMs associated with dementia, four GMs 
associated with Alzheimer’s disease, two GMs associated with 
vascular dementia, three GMs associated with Lewy body 
dementia, two GMs associated with Parkinson’s disease, and four 
GMs associated with other diseases under the classification of 
dementia-associated GMs, and cross-validation was performed 
(Table 2; Figure 3). Our attention was directed toward the 21 causal 
associations that have a relatively steady nature.

Causal relationships were obtained for six related GMs in any 
dementia using the IVW method, and all six relationships were more 
stable under IVW and WM cross-validation. Among them, family 
Desulfovibrionaceae (OR: 1.481, 95% confidence interval (CI): 1.064–
2.062, p = 0.020), family Lactobacillaceae (OR: 1.216. CI: 1.040–1.422, 
p = 0.014), genus Ruminococcusgnavus group (OR: 1.196, CI: 1.033–
1.385, p = 0.016), genus Lactobacillus (OR: 1.304, CI: 1.115–1.525, 
p = 0.001), and order Desulfovibrionales (OR: 1.408, CI: 1.057–1.875, 
p  = 0.019) were related to increased risk of dementia. Genus 
Defluviitaleaceae UCG011 (OR: 0.735, CI: 0.553–0.977, p = 0.034) was 
related to a reduced risk of dementia.

Causal relationships were obtained for nine related GMs in 
Alzheimer’s disease using the IVW method, and four relationships 
were more stable under IVW and WM cross-validation. Among them, 
family Desulfovibrionaceae (OR: 1.682, CI: 1.102–2.568, p = 0.016), 
genus Sellimonas (OR: 1.273, CI: 1.068–1.518, p = 0.007), and order 

TABLE 1 Details of the datasets included in this study.

Trait Year Sex Population Case Control Number 
of SNPs

PMID/URL (Data 
download)

Exposure

Any dementia 2021 Male and female European 5,933 212,859 16,380,463

https://gwas.mrcieu.ac.uk/

datasets/finn-b-KRA_PSY_

DEMENTIA/

Alzheimer’s disease 2021 Male and female European 2,191 209,487 16,380,451

https://gwas.mrcieu.ac.uk/

datasets/finn-b-F5_

ALZHDEMENT/

Vascular dementia 2021 Male and female European 98 211,300 16,380,453
https://gwas.mrcieu.ac.uk/

datasets/finn-b-VD_MX/

Lewy body dementia 2021 Male and female European 2,591 4,027 7,593,175 33,589,841

Parkinson’s disease 2021 Male and female European 267 216,628 16,380,459

https://gwas.mrcieu.ac.uk/

datasets/finn-b-PD_

DEMENTIA/

Dementia in other diseases 

classified elsewhere
2021 Male and female European 581 209,487 16,380,463

https://gwas.mrcieu.ac.uk/

datasets/finn-b-F5_

DEMINOTH/

Outcome Gut microbe 2021 Male and female European - - 122,110 33,462,485

Validation 

group

Any dementia 2021 Male and female European 5,933 166,584 16,380,199

https://gwas.mrcieu.ac.uk/

datasets/finn-b-KRA_PSY_

DEMENTIA_EXMORE/

Any dementia 2021 Male and female European 7,284 209,487 16,380,450

https://gwas.mrcieu.ac.uk/

datasets/finn-b-F5_

DEMENTIA/

Any dementia 2021 Male and female European 7,395 211,397 16,380,465

https://gwas.mrcieu.ac.uk/

datasets/finn-b-F5_

DEMENTIA_INCLAVO/
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Desulfovibrionales (OR: 1.592, CI: 1.011–2.507, p  = 0.045) were 
associated with increased risk of Alzheimer’s disease. Order Bacillales 
(OR: 0.738, CI: 0.608–0.896, p = 0.002) was related to a decreased risk 
of Alzheimer’s disease.

Causal relationships were obtained for 14 relevant GMs in 
vascular dementia using the IVW method, and two relationships 
were more stable under IVW and WM cross-validation. Among 
them, genus Lachnospiraceae NK4A136 group (OR: 0.197, CI: 
0.046–0.851, p  = 0.030) and order Victivallales (OR: 0.350, CI: 
0.125–0.980, p  = 0.030) were related to a reduced risk of 
vascular dementia.

Causal relationships were obtained for nine relevant GMs in Lewy 
body dementia using the IVW method, and three relationships were 
more stable under IVW and WM cross-validation. Among them, class 
Alphaproteobacteria (OR: 1.970, CI: 1.320–2.940, p = 0.001) and order 
Bacillales (OR: 1.378, CI: 1.116–1.703, p = 0.030) were associated with 
increased risk of Lewy body dementia. Genus Ruminococcusgnavus 
group (OR: 0.678, CI: 0.523–0.878, p = 0.003) was related to a reduced 
risk of Lewy body dementia.

Causal relationships were obtained for 10 related GMs in 
Parkinson’s disease using the IVW method, and two relationships 
were more stable under IVW and WM cross-validation. Among them, 
genus Butyricimonas (OR: 0.314, CI: 0.134–0.737, p  = 0.008) and 
phylum Lentisphaerae (OR: 0.500, CI: 0.255–0.980, p = 0.044) were 
related to a reduced risk of Parkinson’s disease.

Causal relationships were obtained for 12 relevant GMs in 
dementia in other diseases classified elsewhere using the IVW 
method, and four relationships were more stable under IVW and WM 
cross-validation. Among them, genus Ruminococcusgnavus group 
(OR: 1.707, CI: 1.125–2.591, p = 0.012) and genus Hungatella (OR: 
1.697, CI: 1.026–2.809, p = 0.040) were associated with an increased 
risk of dementia in other diseases classified elsewhere. Order 
Burkholderiales (OR: 0.500, CI: 0.250–0.998, p = 0.049) and genus 
Oscillibacter (OR: 0.538, CI: 0.344–0.841, p = 0.007) were related to 
decreased risk of dementia in other diseases classified elsewhere.

Finally, we utilized a heat map to causally present the results of the 
study in the form of various types of GMs and any dementia, 
Alzheimer’s disease, vascular dementia, Lewy body dementia, 
Parkinson’s disease, and dementia in other diseases classified 
elsewhere (Figure 4).

3.3 Sensitivity analysis

Cochrane’s Q test showed no heterogeneity among the 20 colonies 
except for the genus Defluviitaleaceae UCG011 (p  = 0.031) in 
dementia, which had a value of p greater than 0.05 
(Supplementary Table  3). Genus Defluviitaleaceae UCG011 had 
p < 0.05 (p = 0.002) in the fixed-effects IVW model, suggesting the 
presence of causality, and also p < 0.05 (p = 0.034), OR: 0.735, CI: 
0.553–0.977  in the random-effects IVW model, and a cause-and-
effect link was also present. The MR-Egger regression intercepts for 
the 21 GMs showed no horizontal pleiotropy, with p-values greater 
than 0.05 (Supplementary Table  4). The MR-PRESSO Global test 
value of p > 0.05 also demonstrated no horizontal pleiotropy 
(Supplementary Table 4). Leave-one-out results showed that phasing 
out any of the SNPs did not affect the overall results, so this MR 
analysis has good robustness (Supplementary Figure S1).

3.4 Reverse MR analysis results

Out of the 211 GMs, a total of 50 GMs affected by dementia and 
its subtypes were finally obtained, including 13 GMs affected by 
overall dementia, eight GMs by Alzheimer’s disease, five GMs by 
vascular dementia, seven GMs by Lewy body dementia, nine GMs by 
Parkinson’s disease, and eight GMs by dementia under the 
classification of other diseases. Five TSMR methods—IVW, MR-Egger, 
weighted median, simple mode, and weighted mode—were used to 
analyze the causal relationships between the different types of 
dementia and the 50 GMs (Supplementary Table 5). Forest plots were 
drawn using IVW and WM cross-validation (Figure  5). Upon 
comparison with the positive MR results, it was found that among the 
21 GMs we focused on for causality with dementia, there was only a 
reverse causality between Lewy body dementia and genus 
Ruminococcusgnavus group (id: 14376), and no reverse causality was 
found between the remaining 20 GMs and dementia. Further 
sensitivity analysis of MR results between Lewy body dementia and 
genus Ruminococcusgnavus group (Table 3) was performed, and the 
test showed no heterogeneity or horizontal pleiotropy in this result.

3.5 Validation group MR analysis results

The first validation dataset obtained 121 IVs of GMs associated 
with dementia involving 10 GMs; the second obtained 77 IVs of GMs 
associated with dementia involving eight GMs; and the third obtained 
82 IVs of GMs associated with dementia involving eight GMs. The MR 
analysis methodology was consistent with the above studies, and 
detailed information on the results can be  found in 
Supplementary Table 6. All results passed sensitivity tests. Similarly, a 
forest plot of the IVW and WM cross-tests was plotted and is shown 
in Figure 6. Compared to the six GMs associated with the formal group 
any dementia, five overlapping GMs were in the first validation group 
and four in the second and third validation groups. Three validation 
groups had four GMs overlapping with the formal group any dementia, 
accounting for 66.7% of the formal any dementia group, 40% of the 
first validation group, and 50% of the second and third validation 
groups. Therefore, the selected formal group dataset is representative.

4 Discussion

In this study, by combining MR analysis and sensitivity analysis, 
21 GMs were identified as being causally associated with dementia 
(any dementia, Alzheimer’s disease, vascular dementia, Lewy body 
dementia, Parkinson’s disease, and dementia in other diseases 
classified elsewhere). Among them, Desulfovibrionaceae, 
Lactobacillaceae, Ruminococcusgnavus group, Lactobacillus, 
Desulfovibrionales, Sellimonas, Bacillales, and Hungatella were 
positively associated with the risk of outcome disease, and therefore, 
there may be  a risk for the corresponding types of dementia. 
Defluviitaleaceae UCG011, Bacillales, Lachnospiraceae NK4A136 
group, Victivallales, Alphaproteobacteria, Ruminococcusgnavus 
group, Butyricimonas, Lentisphaerae, Oscillibacter, and 
Burkholderiales were negatively correlated with the risk of outcome 
disease, and they may be protective against the corresponding types 
of dementia.
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Understanding the pathogenesis of dementia and the role GM 
plays in this process is critical to preventing and intervening in 
dementia. The gut-brain axis is the pathway of communicating 

among the nervous system and the gastrointestinal tract, which 
mainly includes the central nervous system (CNS), enteric nervous 
system (ENS), hypothalamic–pituitary–adrenal axis (HPA), and 

FIGURE 3

Forest plot of causal relationships between 21 GMs and dementia under cross-validation.
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autonomic nervous system (ANS; Cryan et al., 2019). Moreover, it 
has been found that GM can influence the pathophysiological 
processes of diseases such as Alzheimer’s disease and Parkinson’s 

through ENS (Glinert et al., 2022). For example, it activates the 
ENS and uses the vagus nerve as a pathway to communicate with 
the brain (Wang et  al., 2020). In addition, GM triggers the 

TABLE 2 Causal relationship between intestinal flora and dementia and its classified diseases.

Outcome Exposure Method SNPs p-value OR 95%CI

Any dementia

Family Desulfovibrionaceae (id:3169)
WM

8
0.006 1.664 1.159–2.389

IVW 0.02 1.481 1.064–2.062

Family Lactobacillaceae (id:1836)
WM

9
0.06 1.240 0.991–1.550

IVW 0.014 1.216 1.040–1.442

Genus Ruminococcusgnavus group 

(id:14376)

WM
11

0.058 1.194 0.994–1.434

IVW 0.016 1.196 1.033–1.385

Genus Defluviitaleaceae UCG011 (id:11287)
WM

9
0.037 0.731 0.544–0.981

IVW 0.034 0.735 0.553–0.977

Genus Lactobacillus (id:1837)
WM

8
0.013 1.307 1.058–1.615

IVW 0.001 1.304 1.115–1.525

Order Desulfovibrionales (id:3156)
WM

10
0.026 1.469 1.046–2.062

IVW 0.019 1.408 1.057–1.875

Alzheimer’s disease

Family Desulfovibrionaceae (id:3169)
WM

8
0.031 1.057 1.859–3.272

IVW 0.016 1.102 1.682–2.568

Genus Sellimonas (id:14369)
WM

9
0.026 1.031 1.293–1.621

IVW 0.007 1.068 1.273–1.518

Order Bacillales (id:1674)
WM

8
0.003 0.513 0.669–0.874

IVW 0.002 0.608 0.738–0.896

Order Desulfovibrionales (id:3156)
WM

10
0.02 1.110 1.917–3.311

IVW 0.045 1.011 1.592–2.507

Vascular dementia

Genus Lachnospiraceae NK4A136 group 

(id:11319)

WM
15

0.072 0.026 0.171–1.175

IVW 0.03 0.046 0.197–0.851

Order Victivallales (id:2254)
WM

8
0.089 0.083 0.314–1.192

IVW 0.046 0.125 0.350–0.980

Lewy body 

dementia

Class Alphaproteobacteria (id:2379)
WM

7
0.003 1.291 2.140–3.549

IVW 0.001 1.320 1.970–2.940

Genus Ruminococcusgnavus group 

(id:14376)

WM
11

0.02 0.468 0.663–0.937

IVW 0.003 0.523 0.678–0.878

Order Bacillales (id:1674)
WM

9
0.037 1.019 1.343–1.770

IVW 0.003 1.116 1.378–1.703

Parkinson’s disease

Genus Butyricimonas (id:945)
WM

13
0.042 0.102 0.312–0.958

IVW 0.008 0.134 0.314–0.737

Phylum Lentisphaerae (id:2238)
WM

9
0.037 0.183 0.417–0.947

IVW 0.044 0.255 0.500–0.980

Dementia in other 

diseases classified 

elsewhere

Genus Ruminococcusgnavus group 

(id:14376)

WM
11

0.026 1.075 1.850–3.184

IVW 0.012 1.125 1.707–2.591

Genus Hungatella (id:11306)
WM

5
0.061 0.974 1.795–3.308

IVW 0.04 1.026 1.697–2.809

Genus Oscillibacter (id:2063)
WM

13
0.029 0.286 0.516–0.933

IVW 0.007 0.344 0.538–0.841

Order Burkholderiales (id:2874)
WM

10
0.011 0.119 0.3–0.756

IVW 0.049 0.250 0.5–0.998
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progression of a metabolic, inflammatory response that promotes 
neuroinflammation by engaging in processes that disrupt the 
blood–brain barrier (BBB), activating astrocytes and microglia, 
and leading to the deposition of β-amyloid (Aβ), which is now 
recognized as a significant contributing factor in neurodegenerative 
diseases (Cryan et al., 2019; Wei et al., 2020; Mou et al., 2022). 
Relevant scholars have proven that the majority of the variable risk 
factors for dementia are associated with GM alterations by studying 
the different variable risk factors for each type of dementia and the 
different roles of GM for each factor (Cabrera et  al., 2021). 
However, the constitution of GM is subject to the effect of 
numerous causes, and the diversity of GM may vary due to 
inconsistencies in gender, ethnicity, and environment.

In our study, we  found that order Desulfovibrionales (OR: 
1.592, CI: 1.011–2.507, p = 0.045) and family Desulfovibrionaceae 
(OR: 1.682, CI: 1.102–2.568, p = 0.016) were strongly related to a 
high risk of Alzheimer’s disease. The results of related experiments 
showed that Desulfovibrionaceae abundance at the family and 
genus levels was significantly higher in amyloid precursor protein 
transgenic mice than in wild mice (Shen et al., 2017). Abnormal 
production and processing of Aβ and hyperphosphorylation of tau 
proteins are the molecular signatures of Alzheimer’s disease (He 
et al., 2020). GM has been shown to reduce Aβ load in patients 
with Alzheimer’s disease (Li et al., 2019), and related researchers 
have found that brain Aβ accumulation is negatively correlated 
with the family Desulfovibrionaceae (Sheng et al., 2022). Tetragonia 
Tetragonioides Kuntze (TTK) ameliorates memory by decreasing 
Aβ deposition and modulating GM, with more Desulfovibrionales 
in the AD-Control group than AD-TTK (Kim et al., 2020). The 
above studies mentioned the family/order Desulfovibrionales as 
clinically significant for Alzheimer’s disease. However, the results 

of the two studies on Aβ deposition in the brain conflicted. In the 
present study, we found with MR analysis that the family/order 
Desulfovibrionaceae was associated with an increased risk of 
developing dementia and Alzheimer’s disease. A growing body of 
research has been able to demonstrate that altering GMs can 
attenuate microglia-mediated neuroinflammation and reduce Aβ 
deposition in the brain, thereby improving cognition (Abraham 
et al., 2019; Sun et al., 2020; Benichou Haziot and Birak, 2023). 
Supporting the above findings, we propose that the effect of family/
order Desulfovibrionaceae on patients of dementia or Alzheimer’s 
disease might be related to brain Aβ deposition. However, the exact 
mechanism of action has not yet been confirmed. Inhibition of 
patient-specific family/order Desulfovibrionaceae and further 
study of its pathogenesis based on this may become a new way of 
intervention to prevent or delay Alzheimer’s disease.

Probiotics are non-pathogenic microorganisms and are beneficial 
to the organism’s health, with a great capacity to rebuild the microbiota 
and restore health (Den et al., 2020). Notably, probiotic treatment 
attenuates age-related learning and memory deficits by reducing 
microglia activation (Go et al., 2021). Therefore, it has been used as a 
potential treatment to alleviate psychiatric disorders, including 
cognitive impairment (CI; Azad et  al., 2018). Lactobacillales as a 
probiotic has been widely used in various CI-related studies, and a 
study was conducted to induce the expression of brain-derived 
neurotropic factor (BDNF), inhibit NF-κB activation, and regulate 
GM in mice to alleviate CI accompanied by systemic inflammation 
through Lactobacillus griseus (Yun et  al., 2023). A systematic 
evaluation showed increased levels of brain-derived neurotrophic 
factor, improved inflammatory profile, and cellular biomarker 
modulation in patients with dementia taking probiotic Lactobacillus 
(Ruiz-Gonzalez et al., 2021). In addition, the AD-Control group with 

FIGURE 4

Heatmap of GM causally associated with dementia identified by the IVW method. Red represents risk factors, and blue represents protective factors.
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FIGURE 5

Forest plot of causal relationships between dementia and 50 GMs under cross-validation.
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excessive brain Aβ deposition decreased in the order Lactobacillales 
(Lactobacillales) compared to the AD-TTK group (Kim et al., 2020). 
A Mediterranean diet (MeDi) containing very high amounts of 
Lactobacillales has also been highly effective in preventing Alzheimer’s 
disease (Trichopoulou and Lagiou, 1997; Walker, 2000; Alfawaz and 
Aljumah, 2012). It is believed that the evidence that Lactobacillus 
reduces blood ammonia levels not only offers a connection between 
Alzheimer’s disease and the MeDi but also lays the groundwork for 
hyperammonemia and the pharmacology of various neurological 
disorders (Alfawaz and Aljumah, 2012; Jin et al., 2018). The above 
research demonstrated the protective function of Lactobacillales in CI 
from different angles of action. However, our results showed that the 
family Lactobacillaceae and genus Lactobacillus were weakly 
correlated with the increased risk of dementia. The reason may 
be related to sample size, genetics, and research scope.

In addition, our results also showed causal associations with 
outcomes for probiotics, including Defluvititaleaceae UCG011 
associated with dementia, Bacillale associated with Alzheimer’s 
disease, Ruminococcusgnavus group associated with Lewy body 
dementia, Lachnospiraceae NK4A136 group and Victivallales 
strongly associated with vascular dementia, Butyricimonas and 
Lentisphaerae strongly associated with Parkinson’s disease, and 
Oscillibacter and Burkholderiales strongly associated with dementia 
in other diseases classified elsewhere. Some of these results are 
consistent with existing research findings where Bacillussubtilis was 
shown to have a protective effect on neurons and behavior in the 
Caenorhabditis elegans AD model and can help alleviate Alzheimer’s 
disease (Cogliati et al., 2020). Butyricimona has also been shown to 
be  strongly associated with the reduced hippocampal volume 
associated with cognitive disorder. Jang hypothesized that 
acupuncture alleviated inflammation in mice with Parkinson’s disease 
due to an increase in Butyricimonas (Jang et al., 2020; Liang et al., 
2022). Neoagarotetraose (NAT) was shown to modulate GM and 
thereby attenuate brain damage in mice with Alzheimer’s disease, 
with a remarkable rise of intestinal bacterial genera (Lactobacillus, 
Butyricimonas, and Akkermansi) observed after NAT treatment (Li 
et al., 2023). Our study clarified the beneficial bacterial genera for 
dementia, Alzheimer’s disease, Parkinson’s disease, and Lewy body 
dementia. This might be a novel research line for the clinical therapy 
of various types of dementia.

Short-chain fatty acids (SCFAs), which mainly include acetate, 
propionate, and butyrate, are metabolites produced by GM. Butyrate 
in SCFAs has anti-inflammatory effects (Mirzaei et al., 2021) and can 
improve cognitive function by mediating inflammatory responses and 
inducing Aβ phagocytosis in microglia (Xie et al., 2023). It has been 
found that Alzheimer’s disease may occur when butyrate is deficient 
(Tran et al., 2019). Interestingly, propionate induced higher levels of 
microglia activation than butyrate (Hou et  al., 2021), and this 

hyperactivated state may reduce their ability to phagocytose Aβ, which 
may have a differential effect on the disease (Xie et al., 2021). When 
excessive propionate is ingested, there is an increased risk of 
developing Alzheimer’s disease (Killingsworth et  al., 2021). 
Ruminococcaceae can promote the production of SCFAs and can 
be associated with diseases of cognitive dysfunction by affecting the 
expression of proteins involved in neurotransmission (D’Amato et al., 
2020). This study showed that the Ruminococcusgnavus group was 
associated with a risk of dementia, Lewy body dementia, and dementia 
in other diseases classified elsewhere. However, its high and low risk 
of different outcome diseases was inconsistent, and we hypothesized 
that this might be related to the metabolite SCFAs it produces. The 
different types and doses of SCFAs might be the influencing factors. 
In addition, the results of the reverse MR analysis done in this study 
suggested that elevated levels of Ruminococcusgnavus group were 
associated with an increased risk of Lewy body dementia. Therefore, 
the present study provides possible mechanism points of SCFAs for 
dementia at the microbial level, and its specific role and association 
need to be further explored.

In addition, this study found a strong risk association between 
Alphaproteobacteria and Lewy body dementia [OR = 1.97 (95% CI: 
1.320–2.940) p = 0.001]. It has been shown that GM is associated with 
Lewy body dementia, a pathology of dementia characterized by 
aggregation of α-synuclein, in which the microbe-gut-brain axis plays 
a vital role through a variety of potential mechanisms (Ryman et al., 
2023). However, research into the relationship between 
Alphaproteobacteria and Lewy body dementia is scarce; 
Alphaproteobacteria is usually associated with depression, and 
antidepressants can reduce their abundance (Lukić et  al., 2019). 
Therefore, the conclusion of this study provides suggestions for future 
research areas with regard to Alphaproteobacteria for the treatment of 
Lewy body dementia, which may be  the key mechanism of its 
pathogenesis or a potential therapeutic target.

Current research on GM and various types of dementia is both a 
hot topic and a great challenge at the same time. Since there is no 
method of preventing, reversing, or eradicating Alzheimer’s disease, 
medications licensed for the therapy of Alzheimer’s disease have only 
been able to slow progression to improve symptoms (Breijyeh and 
Karaman, 2020). Therefore, in terms of GM and dementia, future 
research should focus on identifying specific GM bacteria with the 
pathogenesis of dementia. On the one hand, different GM taxa may 
have diagnostic value for various types of dementia. On the other 
hand, the risk of dementia can be reduced through the development 
of new drugs, disease prevention, treatment, and other aspects.

The limitations of this study are as follows: (i) since the number of 
IVs satisfying the strict threshold (p  < 5 × 10−8) was minimal, a 
relatively loose threshold (p < 1 × 10−5) was used to screen the IVs; (ii) 
in this study, part of the data for dementia was obtained in 2021 from 

TABLE 3 Sensitivity test of DLB with genus Ruminococcusgnavus group.

Exposure Outcome Method Q Value of 
p

MR-Egger intercept test MR-PRESSO 
global test

Egger-
intercept

SE Value of 
p

RSS 
obs

Value of 
p

Lewy body 

dementia

Genus Ruminococcusgnavus 

group

MR-Egger 14.264 0.506
0.003 0.010 0.792 15.438 0.635

IVW 14.336 0.574
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the FinnGen database version R5, the most recent online data for the 
IEU data. Nevertheless, there are still limitations regarding the 
duration of data collection and the quantity of available data. Further 

supplementation of the results of this study is warranted in the future 
through the ongoing updating of online data; and (iii) the number of 
cases of strictly defined as vascular dementia and Parkinson’s disease 

FIGURE 6

Forest plot of causal relationships between GMs and three validation groups under cross-validation.
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is relatively low, so a more significant amount of GWAS pooled data 
is needed for future analysis.

5 Conclusion

Altogether, we confirmed a causal relationship between GM and 
dementia and its subtypes based on Mendelian randomization, 
including family Desulfovibrionaceae (id: 3169), family Lactobacillaceae 
(id: 1836), genus Ruminococcusgnavus group (id: 14376), genus 
Defluviitaleaceae UCG011 (id: 11287), genus Lactobacillus (id: 1837), 
order Desulfovibrionales (id: 3156), family Desulfovibrionaceae (id: 
3169), genus Sellimonas (id: 14369), order Bacillales (id: 1674), order 
Desulfovibrionales (id: 3156), genus Lachnospiraceae NK4A136 group 
(id:11319), order Victivallales (id: 2254), class Alphaproteobacteria (id: 
2379), genus Ruminococcusgnavus group (id: 14376), order Bacillales 
(id: 1674), genus Butyricimonas (id: 945), phylum Lentisphaerae (id: 
2238), genus Ruminococcusgnavus group (id: 14376), genus Hungatella 
(id: 11306), genus Oscillibacter (id: 2063), and order Burkholderiales 
(id: 2874). These 21 GMs hold promise as novel markers for the future 
diagnosis of dementia and its subtypes, as well as new targets for therapy.
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