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The reduced pathogenicity of the omicron BA.1 sub-lineage compared to earlier 
variants is well described, although whether such attenuation is retained for 
later variants like BA.5 and XBB remains controversial. We  show that BA.5 and 
XBB isolates were significantly more pathogenic in K18-hACE2 mice than a BA.1 
isolate, showing increased neurotropic potential, resulting in fulminant brain 
infection and mortality, similar to that seen for original ancestral isolates. BA.5 
also infected human cortical brain organoids to a greater extent than the BA.1 
and original ancestral isolates. In the brains of mice, neurons were the main target 
of infection, and in human organoids neuronal progenitor cells and immature 
neurons were infected. The results herein suggest that evolving omicron variants 
may have increasing neurotropic potential.
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Introduction

The SARS-CoV-2 omicron lineage diverged considerably from earlier variants of concern, 
with the evolutionary origins remaining unclear, with the closest genetic common ancestor 
dating back to mid-2020 (Du et al., 2022; Mallapaty, 2022). Omicron viruses have spread faster 
globally than any previous variants. The BA.5 sub-lineage became the dominant SARS-CoV-2 
virus in many countries (Tanne, 2022), with XBB now spreading rapidly (Yue et al., 2023). Long-
COVID is now well described for many variants of concern (Davis et al., 2023), and also occurs 
after infection with BA.5 (Qasmieh et al., 2023). Neurological and psychiatric manifestations 
represent a major component of COVID-19 and long-COVID (Islam et al., 2022; Monje and 
Iwasaki, 2022; Xu et al., 2022; Davis et al., 2023; Proal et al., 2023; Shuai et al., 2023) and these 
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remain for patients infected with omicron viruses (Chen et al., 2022; 
Cloete et al., 2022; Ludvigsson, 2022; Taquet et al., 2022), although 
extensive data specifically for BA.5 or XBB neurological manifestations 
have not yet emerged. The large number of changes in spike for 
omicron and omicron sub-lineages has rendered vaccination (Branche 
et al., 2022; Surie et al., 2022; Hansen et al., 2023) many monoclonal 
antibody treatments (Takashita et al., 2022), and prior exposure with 
other variants (Suryawanshi et al., 2022) less protective.

There is increasing evidence for brain abnormalities in COVID-19 
patients (Douaud et al., 2022; Graham et al., 2022; Karpiel et al., 2022; 
Ledford, 2022; Pelizzari et  al., 2022; Sanabria-Diaz et  al., 2022). 
Encephalitis is well documented, usually in hospitalized COVID-19 
patients with severe disease, with encephalitis predisposing to poor 
outcomes and a higher risk of mortality (Siow et al., 2021; Altmayer 
et al., 2022; Chakraborty and Basu, 2022; Islam et al., 2022; Ong et al., 
2023). The mechanism(s) whereby brain pathology/immunopathology 
and/or neuropathology might manifest in COVID-19 patients 
remains to be fully characterized, with the systemic cytokine storm 
likely involved, but direct brain infection also implicated in some 
COVID-19 and long-COVID patients (Zhang et al., 2020; Burks et al., 
2021; Andrews et al., 2022; Aschman et al., 2022; Douaud et al., 2022; 
Fernandez-Castaneda et  al., 2022; Rutkai et  al., 2022; Samudyata 
Oliveira et al., 2022; Bauer et al., 2022a; Proal et al., 2023; Shuai et al., 
2023; Silva et al., 2023). A range of studies have now shown brain 
infection in COVID-19 patients (see Supplementary Table S1 for a full 
list and summary of findings). For instance, viral RNA or protein was 
detected in the brains of 20–38% of patients that died of COVID-19 
(Matschke et al., 2020; Serrano et al., 2022). A number of groups have 
also reported detection of viral RNA in cerebrospinal fluid of 
COVID-19 patients (Supplementary Table S1), including patients 
infected with omicron virus strains (Dang et  al., 2022). Finally, 
COVID-19-associated damage to the brain is also likely to 
be associated with neurological manifestations of long-COVID (Davis 
et al., 2023; De Paula et al., 2023; Ferrucci et al., 2023; Rothstein, 
2023), and such damage may also contribute to the continuing excess 
deaths arising from the COVID-19 pandemic (De Hert et al., 2021; Li 
et al., 2021; Msemburi et al., 2023).

Controversy surrounds the issue of whether BA.5 has altered 
pathogenicity compared with earlier omicron variants. Some hamster 
and K18-hACE2 mouse studies have suggested increased lung 
infection/pathology for BA.5 (Kimura et al., 2022; Imbiakha et al., 
2023; Ong et al., 2023), whereas other studies using these models 
argued that the reduced pathogenicity seen for the early omicron 
variants (Shuai et al., 2022) was retained by BA.5 (Rizvi et al., 2022; 
Uraki et al., 2022) and XBB (Tamura et al., 2023). Similarly, while 
some human studies report increased pathogenicity for BA.5 
(Kouamen et al., 2022; Hansen et al., 2023; Kang et al., 2023; Russell 
et al., 2023), others report no significant changes (Wolter et al., 2022; 
Davies et  al., 2023). XBB variants appear to have increased 
transmission potential (Islam et  al., 2023), as well as enhanced 
receptor binding affinity, although the implications for pathogenicity 
remain to be  established (Yue et  al., 2023). Assessments of 
pathogenicity of new variants in human populations are complicated 
by the overall rising levels of protective immunity due to vaccinations 
and/or past infections, which would tend to reduce the clinical 
severity for later COVID-19 waves (Sigal, 2022; Wolter et al., 2022). 
Perhaps also pertinent for any such assessments is the diversifying 
pattern of COVID-19 and long-COVID disease manifestations 

(Kouamen et al., 2022; Proal et al., 2023; Shuai et al., 2023), with 
involvement of non-pulmonary organs/systems increasingly being 
recognized (Nchioua et al., 2022; Davis et al., 2023; El-Kassas et al., 
2023; Normandin et al., 2023; Proal et al., 2023; Shuai et al., 2023).

The K18-hACE2 mouse model represents a model of severe 
COVID-19 that significantly recapitulates the lung pathology and 
inflammatory pathways seen in humans, and has been widely used for 
assessing new interventions and for studying SARS-CoV-2 biology 
(Yinda et al., 2021; Bishop et al., 2022; Dong et al., 2022; Da Silva 
Santos et  al., 2023). Infection of K18-hACE2 mice with original 
ancestral isolates via intranasal inoculation, usually results in 
fulminant and lethal brain infections, with virus likely entering the 
brain via the olfactory epithelium, across the cribriform plate and into 
the olfactory bulb (Carossino et  al., 2022; Dumenil et  al., 2022; 
Olivarria Gema et al., 2022; Rothan et al., 2022; Vidal et al., 2022; 
Morgan et  al., 2023). This route of entry into the brain has been 
implicated in a non-human primate study (Jiao et al., 2021), hamsters 
(De Melo et  al., 2023) and may also be  relevant for COVID-19 
patients, although the fulminant brain infection seen in K18-hACE2 
mice is not a feature of COVID-19 in humans (Bulfamante et al., 2020; 
Matschke et al., 2020; Awogbindin et al., 2021; Meinhardt et al., 2021; 
Beckman et al., 2022; Serrano et al., 2022). Neurons represent a target 
of SARS-CoV-2 infection in brains of K18-hACE2 mice (Rothan et al., 
2022; Seehusen et al., 2022; Morgan et al., 2023), non-human primates 
(Beckman et al., 2022), and hamsters (De Melo et al., 2023), with 
infection of neurons also observed in COVID-19 patients (Song et al., 
2021; Shen et al., 2022; Emmi et al., 2023). Reduced brain infection 
and the ensuing reduction in mortality after infection of K18-hACE2 
mice with omicron BA.1 (Halfmann et al., 2022; Shuai et al., 2022; 
Tarres-Freixas et al., 2022) has been viewed as evidence that these 
viruses are less pathogenic (Shrestha et al., 2022; Sigal, 2022).

Herein we characterize BA.5 and XBB infection in model systems 
that allow robust investigation of neurotropic potential. We illustrate 
and characterize the increased levels of brain infection, pathology and 
mortality for BA.5 and XBB versus BA.1 infected K18-hACE2 mice. 
Infection of brain organoid systems with SARS-CoV-2 is well 
described (Song et al., 2021; Hou et al., 2022; Mesci et al., 2022), and 
we show herein that BA.5 productively infected human cortical brain 
organoids significantly better than BA.1. These results indicate that 
BA.5 and XBB may have increased neurotropic potential over BA.1.

Methods

Ethics statements and regulatory 
compliance

All mouse work was conducted in accordance with the Australian 
code for the care and use of animals for scientific purposes (National 
Health and Medical Research Council, Australia). Mouse work was 
approved by the QIMR Berghofer MRI Animal Ethics Committee 
(P3600). All infectious SARS-CoV-2 work was conducted in the 
BioSafety Level 3 (PC3) facility at the QIMR Berghofer MRI 
(Department of Agriculture, Fisheries and Forestry, certification 
Q2326 and Office of the Gene Technology Regulator certification 
3,445). Breeding and use of GM mice was approved under a Notifiable 
Low Risk Dealing (NLRD) Identifier: NLRD_Suhrbier_Oct2020: 
NLRD 1.1(a). Mice were euthanized using carbon dioxide.
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Collection of nasal swabs from consented COVID-19 patients was 
approved by the QIMR Berghofer Medical Research Institute Human 
Research Ethics Committee (P3600) and by the University of 
Queensland HREC (2022/HE001492).

SARS-CoV-2 isolates

An original ancestral (Wuhan) strain isolate, SARS-CoV-2QLD02 
(hCoV-19/Australia/QLD02/2020) (GISAID accession EPI_
ISL_407896) was kindly provided by Dr. Alyssa Pyke and Fredrick 
Moore (Queensland Health Forensic & Scientific Services, Queensland 
Department of Health, Brisbane, Australia; Rawle et al., 2021). BA.1 
and BA.5 omicron isolates were obtained at QIMR Berghofer MRI 
from nasal swabs from consented COVID-19 patients (Yan et al., 
2022; Morgan et al., 2023) that were seeded onto Vero E6 cells (ATCC 
C1008). Infected Vero E6 cells analyzed by RNA-Seq and viral 
genomes de novo assembled using Trinity v 2.8.4. The omicron BA.1 
isolate, SARS-CoV-2QIMR01 (SARS-CoV-2/human/AUS/
QIMR01/2022), belongs to the BA.1.17 lineage (GenBank: ON819429 
and GISAID EPI_ISL_13414183; Yan et al., 2022; Morgan et al., 2023). 
The omicron BA.5 isolate, SARS-CoV-2QIMR03 (SARS-CoV-2/human/
AUS/QIMR03/2022) belongs to the BE.1 sublineage (GenBank: 
OP604184.1). The XBB isolate (SARS-CoV-2UQ01) was obtained from 
nasopharyngeal aspirates of consented COVID-19 patient at the 
University of Queensland using Vero E6-TMPRSS2 cells (Amarilla 
et al., 2021). The isolate (deposited as hCoV-19/Australia/UQ01/2023; 
GISAID EPI_ISL_17784860) is XBB.1.9.2.1.4 (Pango EG.1.4) a 
recombinant of BA.2.10.1 and BA.2.75.

Virus stocks were propagated in Vero E6 cells, viral stocks and 
tissue culture supernatants were checked for endotoxin (Johnson 
et al., 2005) and mycoplasma (MycoAlert, Lonza; La Linn et al., 1995). 
Viruses were tittered using CCID50 assays (Yan et al., 2021).

Mouse infection and monitoring

K18-hACE2 mice (strain B6.Cg-Tg(K18-ACE2)2Prlmn/J, JAX 
Stock No: 034860) were purchased from The Jackson Laboratory 
(2023), United States, and were maintained in-house as heterozygotes 
by backcrossing to C57BL/6 J mice (Animal Resources Center, 
Canning Vale WA, Australia) as described (Bishop et  al., 2022). 
Heterozygotes were inter-crossed to generate a homozygous 
K18-hACE2 transgenic mouse line. Genotyping was undertaken by 
PCR and sequencing across a SNP that associates with the hACE2 
transgene to distinguish heterozygotes [TTTG(A/C)AAAC] from 
homozygotes (TTTGCAAAC). The mice were held under standard 
animal house conditions [for details see (Yan et  al., 2022)] and 
female mice (≈10–20 weeks of age) received intrapulmonary 
infections delivered via the intranasal route with 5 × 104 CCID50 of 
virus in 50 μL RPMI 1640 while under light anesthesia as described 
(Dumenil et al., 2022). Each group of mice within an experiment had 
a similar age range and distribution, with the mean age for each 
group not differing by more than 1 week. Mice were weighed and 
overt disease symptoms scored as described (Dumenil et al., 2022). 
Mice were euthanized using CO2, and tissue titers determined using 
CCID50 assays and Vero E6 cells as described (Rawle et al., 2021; 
Dumenil et al., 2022).

Maintenance and expansion of human 
induced pluripotent stem cells

The human-induced pluripotent cells (hiPSCs) used in this study 
were reprogrammed from adult dermal fibroblasts (HDFa, Gibco, 
C0135C) using the CytoTune-iPS 2.0 Sendai Reprogramming Kit 
(Invitrogen, A16518; Oikari et  al., 2020). They were cultured on 
human recombinant vitronectin (Thermo Fisher Scientific) coated 
plates in StemFlex medium (Thermo Fisher Scientific) according to 
the manufacturer’s guidelines.

Generation of human cortical organoids

On day 0 of organoid culture, hiPSCs (less than passage 50) were 
dissociated with StemPro Accutase (Thermo Fisher Scientific) to 
generate a cell suspension. Cells were plated 5,000/well into an ultra-
low-binding 96-well plate (Corning) in StemFlex media supplemented 
with 10 μM ROCK inhibitor Y-27632 (STEMCELL Technologies, 
Vancouver, Canada). From days 1–5, media was changed daily with 
StemFlex medium supplemented with 2 μM Dorsomorphine (Abcam) 
and 10 μM SB-431542 (Stemcell technologies). On day 5, the medium 
was replaced with a Neuro-induction medium consisting of DMEM/
F12 (Thermo Fisher Scientific), 1% N2 Supplement (Thermo Fisher 
Scientific), 10 μg/mL heparin (STEMCELL Technologies), 1% 
penicillin/streptomycin (Thermo Fisher Scientific), 1% Non-essential 
Amino Acids (Thermo Fisher Scientific), 1% glutamax (Thermo 
Fisher Scientific) and 10 ng/mL FGF2 (Stemcell Technologies). On day 
7, organoids were embedded in Matrigel (Corning), transferred to an 
ultra-low-binding 24-well plate (Corning) (one organoid per well), 
and continued to grow in Neuro-induction medium for three more 
days. On day 10, organoids were supplemented with differentiation 
medium, consisting of Neurobasal medium, 1% N2, 2% B27 
supplements (Thermo Fisher Scientific), 0.5% Penicillin/Streptomycin, 
1% Glutamax, 1% Non-essential Amino Acids, 50 μM of 
2-mercaptoethanol (Merck), 2.5 μg/mL Insulin (Merck), 1% Knockout 
Serum Replacement (Thermo Fisher Scientific), 10 ng/mL FGF2, 1 μM 
CHIR99021 (Stemcell Technologies) and placed in a CelVivo Clinostar 
incubator (Invitro Technologies) (24 organoids per Clinoreactor) 
spinning at 20 rpm. All media changes from 10 days onwards were 
performed every other day.

Infection of cortical brain organoids

Organoids (30 days old) were transferred from each Clinoreactor 
into an ultra-low-binding 24-well plate (one organoid per well), 
infected with various SARS-CoV-2 strains at a multiplicity of 
infection (MOI) of 1 and placed within a humidified tissue culture 
incubator at 37C, 5% CO2 for 2 h. Organoids were then washed twice 
with media, transferred into 50 mm LUMOX gas exchange dishes 
(SARSTEDT) (4 organoids per dish) containing 7 mL of 
differentiation media, and placed within a humidified tissue culture 
incubator at 37°C, 5% CO2 for 4 days. Supernatants were collected 
at the indicated days and titers measured by CCID50 assays as 
described above. At 4 dpi organoids were harvested and formalin 
fixed for histology and immunohistochemistry, or processed for 
RNA-Seq.
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Histology and immunohistochemistry

H&E staining of formalin fixed paraffin wax embedded tissue 
sections was undertaken as described (Amarilla et al., 2021; Rawle 
et al., 2021). Immunohistochemistry was undertaken as described 
using the in-house developed anti-spike monoclonal antibody, 
SCV-1E8 (Morgan et al., 2023).

Dual labeling fluorescence 
immunohistochemistry

Paraffin embedded K18-hACE2 mouse brains were sectioned on 
a rotary microtome into 10 μm sagittal sections. Sections were 
dewaxed and antigen retrieval was performed in Antigen Recovery 
Solution (citrate buffer solution consisting of 10 mM sodium citrate, 
0.05% SDS 0.01%, pH 6.0) at 90°C for 10 min in a BioCare decloaker. 
Slides were blocked with blocking buffer; 0.5% BSA, 0.05% Saponin, 
0.01% Triton X-100, 0.05% Sodium Azide in 0.1 M Phosphate Buffered 
Saline (PBS), for 30 min at room temperature and subsequently 
incubated in primary antibody diluted in blocking buffer at room 
temperature for 3 days in a humidity chamber using anti-S-protein 
(mouse, 1:100, in-house antibody SCV-1E8 (Morgan et al., 2023)) in 
conjunction with either anti-NeuN (chicken, 1:3000, Merck, ABN91), 
anti-Iba1 (rabbit, 1:1000, Wako, #019–19,741), or anti-GFAP (rabbit, 
1:1000, Abcam, ab7260). Slides were washed 4 times in PBS for 
15 min. Slides were further incubated in blocking buffer for 5 min 
prior to adding the species-specific secondary antibody at room 
temperature overnight in a light-proof humidity chamber: Alexa 
fluor-546 anti-mouse (1,1,000, Invitrogen, A11030), Alexa fluor-647 
anti-rabbit (1,1,000, Invitrogen, A32733), or Alexa fluor-488 anti-
chicken (1,1,000, Invitrogen, A11039). Slides were washed once in PBS 
and incubated in DAPI diluted (1 μg/ ml, Merck) in saline for 5 min. 
Slides were washed 3x in PBS for 15 min and were mounted with 
DABCO mounting media.

Sections were imaged using an Olympus UPLXAPO 10x/0.4 NA 
air objective, 20x/0.8 NA air objective and an UPLXAPO 60x/1.42 NA 
oil-immersion objective mounted on a spinning disk confocal 
microscope (SpinSR10; Olympus, Japan) built on an Olympus IX3 
body equipped with two ORCA-Fusion BT sCMOS cameras 
(Hamamatsu Photonics K.K., Japan) and controlled by Olympus 
cellSens software. Images were acquired as 3D Z-stack tile images and 
were deconvolved using Huygens Professional Deconvolution 
Software (Scientific Volume Imaging, Netherlands).

RNA-Seq and bioinformatics

RNA-Seq was undertaken as described using Illumina 
Nextseq 550 platform generating 75 bp paired end reads (Rawle et al., 
2021; Bishop et al., 2022). The per base sequence quality for >90% 
bases was above Q30 for all samples. Mouse RNA-Seq reads were 
aligned to a combined mouse (GRCm39, version M27) and SARS-
CoV-2 (Wuhan, NC_045512.2) reference genome using STAR aligner. 
Organoid RNA-Seq reads were aligned in the same manner except 
that the human (GRCh38, version 38) reference genome was used. 
Read counts for host genes and SARS-CoV-2 genomes were generated 
using RSEM v1.3.1, and differentially expressed genes were 

determined using EdgeR v3.36.0. To avoid missing type I IFN genes, 
which have low read counts (Wilson et al., 2017), a low filter of row 
sum normalized read count >1 was used.

DEGs in direct and indirect interactions were analyzed using 
Ingenuity Pathway Analysis (IPA, v84978992) (QIAGEN) using the 
Canonical pathways, Up-Stream Regulators (USR) and Diseases and 
Functions features as described (Rawle et  al., 2022b). Gene Set 
Enrichment Analysis (GSEAs) were undertaken using GSEA v4.1.0 
with gene sets provided in MSigDB (≈ 50,000 gene sets) and in Blood 
Transcription Modules and log2 fold-change-ranked gene lists 
generated using DESeq2 v1.34.0 as described (Dumenil et al., 2022; 
Rawle et al., 2022a). Relative abundances of immune cell types in 
BA.5-infected mouse brains were estimated from RSEM ‘expected 
counts’ using SpatialDecon v1.4.3 (Danaher et  al., 2022) with the 
‘ImmuneAtlas_ImmGen_cellFamily’ profile matrix and Pheatmap 
v1.0.12 in R v4.1.0.

IPA USR cytokine signatures obtained from BA.5-infected 
K18-hACE2 mouse brains were compared to gene expression data 
from two studies on COVID-19 patient brains (Fullard et al., 2021; 
Yang et al., 2021). For the Yang and Fullard studies there were 20 and 
45 gene expression data sets, respectively, for the different tissues and 
cell-types. DEGs sets (n = 20 and 45) were derived by applying a 
q < 0.05 filter. These DEG sets were then concatenated to generate a 
single DEG list for each of the two studies. When a gene was present 
in more than one DEG set, the mean of the fold changes was used for 
the concatenated DEG list. IPA USR analysis was then performed as 
described above.

Statistics

Statistical analyzes of experimental data were performed using 
IBM SPSS Statistics for Windows, Version 19.0 (IBM Corp., Armonk, 
NY, United  States). The t-test was used when the difference in 
variances was <4, skewness was > − 2 and kurtosis was <2. For 
non-parametric data the Kolmogorov–Smirnov test was used.

Results

Omicron BA.5 and XBB are lethal in 
K18-hACE2 mice

Infection of K18-hACE2 mice with original ancestral isolates of 
SARS-CoV-2 is well described and results in weight loss and mortality 
by ≈ 5 days post infection (dpi) (Amarilla et al., 2021; Kumari et al., 
2021; Zheng et al., 2021; Carossino et al., 2022; Dumenil et al., 2022; 
Yu et  al., 2022). We  re-illustrate this phenomena herein using an 
original ancestral isolate (SARS-CoV-2QLD02) and K18-hACE2 mice, 
with the ethically defined end-point of >20% weight loss reached by 
4–5 dpi (Figure 1A, Original). An omicron BA.1 isolate (SARS-CoV-
2QIMR01) was substantially less virulent, with only 20% of mice showing 
weight loss >20% requiring euthanasia by 9/10 dpi (Figure  1A, 
Omicron BA.1; Supplementary Figure S1A). The reduced lethality of 
BA.1 isolates in K18-hACE2 mice is consistent with previous reports 
(Halfmann et al., 2022; Shuai et al., 2022; Tarres-Freixas et al., 2022; 
Chen et al., 2023). In contrast, infection of K18-hACE2 mice with an 
omicron BA.5 isolate (SARS-CoV-2QIMR03) or an omicron XBB isolate 
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(SARS-CoV-2UQ01) resulted in severe weight loss requiring euthanasia 
in nearly all mice by 4–7 dpi (Figure 1A, BA.5, XBB).

BA.5 and XBB infected mice also showed more overt disease 
symptoms than BA.1, with XBB showing disease score comparable 
with an original strain isolate (Figure 1B). Consistent with previous 
reports (Seehusen et al., 2022; Bauer et al., 2022b), the majority of 
BA.1 infected mice showed no symptoms.

Kaplan Meier plots illustrate a highly significant difference 
between BA.1 vs. BA.5 and BA.1 vs. XBB, with no significant difference 
between BA.5 and XBB (Figure 1C). Mortality from BA.5 and XBB 
was delayed when compared with the original ancestral isolate, 
although the mean delay was ≤2 days (Figure 1C). The results for BA.5 

contrast with a recent publication reporting that the reduced 
pathogenicity of early omicron sub lineages was retained for BA.5 
(Uraki et al., 2022).

The brain tissue titers were determined for all mice that reach 
ethically defined disease endpoints for euthanasia (Figure  1D); 
there are only 3 data points for BA.1 as 80% of these mice did not 
reach ethically defined endpoints for euthanasia (Figure 1C), with 
surviving mice showing no detectable brain infections 
(Supplementary Figure S1C). Virus was detected in all brain samples, 
with two exceptions (Figure 1D, indicated by *). Of these, the BA.5-
infected mouse brain was subsequently found to be positive by IHC 
(the XBB-infected mouse was not tested). The brain titers in mice 

FIGURE 1

K18-hACE2 mice infected with an original ancestral isolate, omicron BA.1, BA.5 and XBB isolates. (A) Percent weight change after intranasal infection 
with four SARS-CoV-2 isolates dose (5×104 CCID50). Original ancestral isolate (n  =  5–12 mice measured per time point), means and SEs are plotted for 
all mice (data from 3 independent experiments). BA.1, three mice showed weight loss >20% (requiring euthanasia, †) and are graphed individually; 
means and SE are plotted for the surviving mice (n  =  4–15 mice measured per time point). BA.5 (n  =  6) graphed individually. XBB (n  =  6) graphed 
individually. † mice reached ethically defined end points for euthanasia. (B) Disease scores for the indicated overt disease symptoms for animals 
described in “A”. For BA.1 no overt symptoms were seen except in a single animal on 9 dpi, with this animal one of the 3 that required euthanasia due 
to weight loss. For BA.5 the remaining mouse (n  =  1) on 6 dpi showed a Posture score of 2. For XBB the one surviving mouse recovered after 7 dpi. 
(C) Kaplan Meyer plot showing percent survival; n  =  12 for original, n  =  12 for XBB, n  =  18 for BA.5 and n  =  24 for BA.1 (data from 2 to 3 independent 
experiments). Statistics by log-rank tests comparing survival rates. (D) Viral tissue titers in brains of mice that had reached ethically defined end points 
for euthanasia (note that this was at a range of different dpi, see Supplementary Figure S1C). All mice with weight loss requiring euthanasia had 
detectable viral titers in brain (determined by CCID50 assays), with two exceptions (*); although the BA.5 infected mouse emerged to be IHC positive 
(the XBB infected mice was not tested). Statistics by Kolmogorov–Smirnov tests; titers for the 3 omicron variants were not significantly different from 
each other. ND – not detected (limit of detection ≈ 2 log10CCID50/g). (Data from 5 independent experiments).
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infected with the original strain isolate were significantly higher by ≈ 
2 logs than the brain titers in mice infected with the omicron isolates 
(Figure 1D). Lung titers are shown in Supplementary Figure S1B and 
are lower in omicron infected mice compared to the original strain 
isolate, consistent with previous reports (Armando et  al., 2022; 
Natekar et al., 2022; Lee et al., 2023; Ying et al., 2023).

Lethality (generally associated with weight loss requiring 
euthanasia) in the K18-hACE2 model was previously associated with 
brain infections (Carossino et al., 2022; Fumagalli et al., 2022), an 
observation that would thus appear to remain largely true for omicron 
isolates (Figure 1D). Mice with no detectable brain titers did not reach 
ethically defined end points for euthanasia (Supplementary Figure S1C). 
However, our observations are in direct contrast to a previous report 
showing lethal BA.5 infections in K18-hACE2 mice in the absence of 
brain infection (Imbiakha et al., 2023). It is perhaps worth noting that 
in our hands C57BL/6 J mice infected with BA.1, BA.5 or XBB (Shuai 
et al., 2023) show 100% survival (Supplementary Figure S1D), despite 
robust lung infections (Shuai et al., 2023). We have not observed overt 
brain infection in these mice, arguing that C57BL/6 J do not provide 
a robust neuroinvasion model. Although age has been associated with 
lethal BA.5 infection in K18-hACE, we saw no significant correlation 
between age of mouse and lethality (Supplementary Figure S1E).

Immunohistochemistry of BA.5 and XBB 
brain infection in K18-hACE2 mice

Given the robust neuroinvasion seen for BA.5 and XBB that was 
not evident for BA.1 in K18-hACE2 mice, we sought comprehensively 
to characterize the brain infection and pathology for these emerging 
variants in this mouse model. The fulminant brain infection seen after 
infection of K18-hACE2 mice with original ancestral isolates is well 
described, with widespread infection of neurons in various brain 
regions, including the cortex (Carossino et al., 2022; Rothan et al., 
2022; Seehusen et al., 2022; Vidal et al., 2022; Morgan et al., 2023). A 
similar pattern of brain infection was observed using our K18-hACE2 
mice and an original ancestral isolate, with immunohistochemistry 
(IHC) undertaken using a recently developed anti-spike monoclonal 
antibody (SCV2-1E8) (Morgan et al., 2023; Supplementary Figure S2A).

IHC staining of brains of K18-hACE2 mice infected with BA.5 or 
XBB also showed widespread infection of cells in the cortex, as well as 
the hippocampus and the hypothalamus (Figures 2A–C). Viral RNA and 
protein have been detected in the cortex (Song et al., 2021; Shen et al., 
2022) and hypothalamus (Stein et al., 2022) of post-mortem COVID-
patients. Viral protein has also been identified in the hippocampus of 
such patients (Emmi et al., 2023), with disruption of the hippocampus 
also reported (Douaud et al., 2022; Radhakrishnan and Kandasamy, 
2022). In the hippocampus of K18-hACE2 infected mice, viral antigen 
could also be  clearly seen in dendrites and axons (likely neural) 
(Figures 2B,C, right hand panels), with viral antigen staining in neurites 
previously shown in human brain organoids (Bullen et al., 2020).

As described above, brain infection was generally associated with 
weight loss and mortality in the K18-hACE2 model. Perhaps of note, 
even the low level of IHC-detectable SARS-CoV-2 infection 
(Supplementary Figure S2B) seen in one BA.5-infected mouse 
(Figure  1D, *BA.5) was associated with weight loss that required 
euthanasia, suggesting that fatal outcomes may not always require a 
fulminant brain infection.

Ba.5 infects neurons in K18-hACE2 mice

To confirm infection of neurons by BA.5, the cortex of infected 
K18-hACE2 mice were co-stained with the anti-spike monoclonal 
antibody and anti-NeuN, a neuronal nuclear antigen marker. 
Extensive co-localization within the same cells was observed (Figure 3, 
Neurons) illustrating that neurons are a primary target of BA.5 
infection in K18-hACE2 mouse brains. Co-staining with anti-spike 
and anti-Iba1, a pan-microglia marker, showed minimal overlap with 
anti-spike (Figure 3, Microglia), arguing that microglia are not a major 
target of infection. Occasional overlap (yellow) may be  due to 
phagocytosis of debris from virus-infected cells (Martínez-Mármol 
et al., 2023). Despite being surrounded by infected neurons, most 
microglia retained their ramified morphology, although some cells 
with bushy and amoeboid morphology were present (Figure  3, 
Microglia) indicating activation-associated retraction of processes 
(Pinto and Fernandes, 2020). Microglia activation was also indicated 
by histology and RNA-Seq (see below). Although occasionally seen 
(Supplementary Figure S3A), anti-GFAP staining was minimal around 
infected neurons (Figure  3, Reactive astrocytes), arguing that 
astrocytes are largely not being activated. RNA-Seq also did not 
identify GFAP as a significantly up-regulated gene, nor did 
bioinformatics identify an astrocyte activation signature (see below; 
Supplementary Table S2). The apparent lack of astrocyte activation 
despite a fulminant SARS-CoV-2 brain infection (at least in mice), 
with their antiviral and neuroprotective activities thus presumably 
largely absent, is perhaps perplexing, but is consistent with SARS-
CoV-1 studies (Netland et al., 2008).

Brain lesions identified by H&E in BA.5 and 
XBB infected K18-hACE2 mice

The brains of BA.5 and XBB infected K18-hACE2 mice showed a 
number of histological lesions. Neuron vacuolation (hydropic 
degeneration) was clearly evident (Figure 4A), and has been reported 
previously for infection of K18-hACE2 mice with an original ancestral 
isolate (Vidal et al., 2022), and was also observed in a non-human 
primate (NHP) model of SARS-CoV-2 infection (Rutkai et al., 2022). 
The presence of viral antigen in the cortex was associated with 
apoptosis (Supplementary Figure S3B) and a high intensity of 
H&E-detectable lesions (primarily vacuolation), but was not 
associated with local immune cell infiltrates (Supplementary Figure S4). 
The lack of infiltrates around areas of infection has also been noted in 
COVID-19 patients (Song et  al., 2021). Perivascular cuffing 
(Figure 4B) is well described in histological examinations of brains 
from deceased COVID-19 patients (Matschke et al., 2020; Awogbindin 
et al., 2021; Schwabenland et al., 2021; Rosu et al., 2022; Serrano et al., 
2022). Other lesions observed in the BA.5-infected K18-hACE2 
mouse brains, that have also been described in post-mortem 
COVID-19 patients, include perivascular edema (Figure 4C; Maiese 
et al., 2021; Pajo et al., 2021; Martin et al., 2022), occasional microglial 
nodules (Figure 4D; Al-Dalahmah et al., 2020; Matschke et al., 2020; 
Awogbindin et al., 2021; Schwabenland et al., 2021), and occasional 
small hemorrhagic lesions (Figure 4E; Mukerji and Solomon, 2021; 
Rosu et al., 2022). XBB infected mouse brains showed very similar 
lesions (Figure  4F, microgliosis, perivascular cuffing, perivascular 
edema). Chromatolysis, indicative of injury, was also evident in 
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hippocampal neurons (Figure 4G, dashed box) in the IHC positive 
region identified in Figure 2C. Despite fulminant brain infection not 
being a feature of human COVID-19, some histological lesions seen 
in COVID-19 patient brains are shared with K18-hACE2 mice, 
although it remains unclear which lesions require direct 
brain infection.

RNA-Seq of BA.5-infected K18-hACE2 
mouse brains

Mice were infected as in Figure 1 (BA.5) and euthanized when 
weight loss reached the ethically defined endpoint of 20% 
(Supplementary Figure S5A). Control mice received the same 
inoculation of UV-inactivated BA.5. Brains were examined by 
RNA-Seq (BioProject ID: PRJNA911424), with the PCA plot shown 

in Supplementary Figure S5B and viral RNA levels in 
Supplementary Figure S5C. Differentially expressed genes (DEGs) 
(q < 0.05, n = 437) were analyzed by Ingenuity Pathway Analysis (IPA) 
(Bishop et al., 2022; Dumenil et al., 2022; Supplementary Table S2). 
Selected representative IPA annotations, grouped by themes, are 
shown in Figure 5A. The dominant annotations illustrate a cytokine 
storm, with the top cytokine Up Stream Regulators (USRs) including 
interferons both type II (IFNγ) and type I (IFNα2, IFNλ1 IFNβ1), as 
well as TNF, IL-1 and IL-6, all previously well described for SARS-
CoV-2 infections (Bishop et al., 2022). The concordance for cytokine 
USRs for brain and lung infection, and for the three virus isolates, was 
high (Supplementary Figure S5D), arguing that inflammatory 
responses are generally very similar for brain and lungs and for the 
different SARS-CoV-2 variants.

A large series of annotations were associated with leukocyte 
migration and activation (Supplementary Table S2), with the top two 

FIGURE 2

Immunohistochemistry of brains of BA.5 and XBB infected K18-hACE2 mice using an anti-spike monoclonal antibody. (A) Brain of BA.5-infected K18-
hACE2 mouse 6 dpi showing IHC staining in the cortex and hypothalamus. Insert enlargements on the right. (B) As for “a” showing staining of the 
hippocampus 7 dpi. Far right shows staining of the axons (arrowheads). (C) XBB-infected K18-hACE2 mouse showing IHC staining in the cortex and 
hypothalamus, 6 dpi. Staining of the hippocampus for a mouse euthanized 7 dpi.
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overarching annotations shown (Figure 5A, Leukocyte migration, 
Activation of leukocytes). These annotations are consistent with the 
perivascular cuffing seen by H&E (Figure 4B). An additional series of 
neuropathology-associated annotations were also identified with high 
z-scores and significance (Figure 5A, Neuropathology). Activation of 
microglia and vascular lesions (Figure 5A) were consistent with the 
histological findings (Figures  4B–D). Apoptosis of neurons was 
reported in the NHP model (Rutkai et al., 2022), with pyroptosis in 
the CNS of COVID-19 patients also proposed (Sepehrinezhad et al., 
2021). Gene Set Enrichment Analyzes (GSEAs) using gene sets 
provided in MSigDB (≈ 50,000 gene sets) and in Blood Transcription 
Modules, generated broadly comparable results to those obtained 
from IPA (Supplementary Table S2). In addition, a significant negative 

enrichment (negative NES) for olfactory neuroepithelium genes 
(MSigDB) (Durante et  al., 2020) was also identified (Figure  5A), 
suggesting loss of cells in this tissue in BA.5-infected mouse brains. 
Infection of the olfactory epithelium likely provides the entry route 
into the brain in this model (Dumenil et  al., 2022; Fumagalli 
et al., 2022).

To provide insights into the nature of the leukocyte infiltrates, cell 
type abundance estimates were obtained from the RNA-Seq expression 
data using SpatialDecon (Danaher et  al., 2022; Figure  5B). The 
inflammatory infiltrate appeared primarily to comprise immature 
CD4 T cells (Hosseinzadeh and Goldschneider, 1993), macrophages, 
neutrophils, dendritic cells, CD8 T cells and NKT cells, with increased 
cell abundance scores seen with increasing viral RNA levels (Figure 5B, 

FIGURE 3

Dual labeling fluorescence immunohistochemistry of BA.5 infected brains from K18-hACE2 mice. (A) Sections from formalin fixed and paraffin 
embedded brains from BA.5 infected K18-hACE2 mouse brains (5 dpi) were analyzed by immunofluorescence. Sections were stained by indirect 
immunofluorescence with the anti-spike monoclonal antibody (red), and antibodies specific for a neuronal nuclear marker - NeuN (green). Dashed 
white box (left) indicate cells enlarged in the three inserts (top right). (B) As for “a” but costaining with the pan-microglial marker–Iba1 (green). Anti-Iba1 
(middle panel); an enlargement of the dashed box (middle panel) is shown in the insert (bottom right), and indicates a microglial cell with amoeboid 
morphology. Another microglial cell with amoeboid morphology is indicated with a white unfilled arrowhead. White filled arrowhead indicates a 
microglial cell with bushy morphology. Merged plus DAPI (right panel); an enlargement of the dashed box is shown top right, with arrow indicating 
yellow (red green overlap), possibly associated with phagocytosis of infected cell debris. (C) As for “a” but costaining with a reactive astrocyte maker–
GFAP (green).
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FIGURE 4

Histological lesions in brains of BA.5 and XBB infected K18-hACE2 mice. H&E staining of brains from BA.5 (A–E) and XBB (F,G) infected K18-hACE2 
mice. (A) Neuron vacuolation (hydropic degeneration) of neurons (arrowheads) in the cortex 4 dpi. A control brain from mice inoculated with UV-
inactivated BA.5 is shown on the right. (B) Perivascular cuffing. A venule (red blood cells in the center) is surrounded by leukocytes (two leukocytes are 
indicated by arrowheads), 7 dpi. A control venule is shown on the right. (C) Focal vasogenic edema; fluid filled perivascular space (arrowheads), 6 dpi. A 
control is shown on the right, with arrowheads showing normal perivascular spaces. (D) Microglial nodule; accumulation of microgliocytes (some 
typical microgliocytes indicated with arrowheads), 6 dpi. (E) Small hemorrhagic lesion, 7 dpi (arrowheads indicate some extravascular red blood cells). 
(F) Lesion in the cortex (from the IHC positive region in Figure 2C, left panel) showing perivascular cuffing (arrow), microgliosis (arrowheads) and 
vasogenic edema (as in “c”), 6 dpi. (G) Loss of hematoxylin staining of neurons in the hippocampus (chromatolysis) in the anti-spike positive region 
shown by IHC in Figure 2C (right panel). An IHC spike negative region from the hippocampus of the same mouse is shown as a control (bottom 
image).
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FIGURE 5

Transcriptome signatures in brains of K18-hACE2 mice infected with BA.5. (A) RNA-Seq of BA.5 infected brains (n  = 6) compared with brains of 
mice inoculated with UV-inactivated BA.5 (n  = 5) identified 437 DEGs. The DEGs were analyzed by Ingenuity Pathway Analysis (IPA) and GSEAs 
using the Molecular Signatures Data Base (MSigDB), with a representative sample of annotations shown and grouped by theme (a full list is 
provided in Supplementary Table S1). (B) The RNA-Seq expression data from brains of BA.5 infected K18-hACE2 mice were analyzed by 
SpatialDecon to provide estimates of cell type abundances. The BA.5 infected samples were ranked by viral RNA levels (highest to lowest). Cell 
types were clustered using the complete-linkage of Euclidean distance. (C) Relative cell type abundances for Microglia correlates with viral RNA 
levels. Statistics by Pearson correlation. (D) IPA cytokine USRs obtained from brains of BA.5 infected K18-hACE2 mice were compared with IPA 
cytokine USRs obtained using two DEG lists generated from publically available single-cell RNA-Seq data of selected brain tissues from deceased 
COVID-19 patients. Where a cytokine USR is identified in human but not mouse (or vice-versa), a z-score of zero is given to the latter. (E) Venn 
diagram showing overlaps between the cytokine USRs from the two human (Fullard and Yang) and the BA.5 infected K18-hACE2 mouse study 
(RNA-Seq data of brain tissues).
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TPM - transcripts per million; Supplementary Figure S5E). Although 
not substantial, increased cell abundance scores also increased with 
viral RNA levels for microglia (Figure 5C).

In summary, the bioinformatic analyses illustrate that the 
inflammatory responses in BA.5-infected K18-hACE2 mouse 
brains are largely innate (4–6 dpi) and typical of acute SARS-
CoV-2 infections, with many annotations consistent with 
histological findings.

Some concordance in cytokine gene 
expression patterns between brains of 
severe COVID-19 patients and brains from 
SARS-CoV-2 infected K18-hACE2 mice

We previously illustrated that inflammatory pathways identified 
by RNA-Seq of lungs from COVID-19 patients showed highly 
significant concordances with SARS-CoV-2 infected lungs from 
K18-hACE2 mice (Bishop et al., 2022). Two single-cell RNA-Seq data 
sets are publically available for selected human brain tissues (choroid 
plexus, medulla oblongata, and pre-frontal cortex) from deceased 
COVID-19 patients (Fullard et al., 2021; Yang et al., 2021). DEG sets 
from each tissue and cell-type were concatenated to create one 
overall DEG list for each of the two human studies. These DEG lists 
were analyzed by IPA as above, and the cytokine USR z-scores 
compared with those obtained from brains of BA.5-infected 
K18-hACE2 mice. Significant correlations emerged for both human 
studies (Figure 5D), with many of the prominent cytokines associated 
with SARS-CoV-2 infections (Bishop et al., 2022) identified in both 
species (Figure 5D, cytokines shown in red text). Overall, 80% of the 
cytokine USRs identified in humans also identified in K18-hACE2 
mice (Figure 5E). However, the fulminant lethal brain infection likely 
explains the higher number of USRs identified for brains of 
K18-hACE2 mice (65 out of 97) that are not seen in COVID-19 
patient brains (Figure 5E).

Gene Set Enrichment Analyzes (GSEAs) also illustrated that 
DEGs up-regulated in brains of COVID-19 patients (log2 fold change 
>1) (Fullard et al., 2021; Yang et al., 2021), were significantly enriched 
in the ranked gene list from brains of BA.5-infected K18-hACE2 mice 
(Supplementary Figure S6).

Thus both at the pathway level and the gene expression level, a 
level of concordance was apparent between cytokine mRNA 
expression data from (i) brain tissues of severe COVID-19 patients 
and (ii) brains of BA.5-infected K18-hACE2 mice.

Infection of human cortical brain 
organoids

Human, induced pluripotent cells (hiPSCs), derived from a 
primary dermal fibroblast line (HDFa) from a normal human adult, 
were used to generate approximately spherical, ≈ 2–3 mm diameter, 
“mini-brains” using a rotating incubator (Supplementary Figure S7A). 
RNA-Seq and IHC illustrated that 30 day old organoids were 
comprised primarily of neural progenitor cells (expressing SOX2 and 
nestin) and immature neurons expressing MAP2 (Microtubule-
Associated Protein 2) and TUBB3 (tubulin beta 3; 
Supplementary Figures S7B,C). Such organoids were infected with the 

XBB, BA.5, BA.1 and the original ancestral isolate (MOI ≈ 1) and were 
cultured for 4 days. Dual labeling fluorescent IHC illustrated that BA.5 
infected MAP2-negative cells, and some MAP2-positive cells 
(Supplementary Figure S8). The BA.5 virus infected substantially 
more cells in the organoids than the original ancestral (Figure 6A) or 
the BA.1 viruses (Supplementary Figure S9A). XBB also infected 
slightly more cells than BA.1 (Supplementary Figure S9B). The small 
area infected with the original ancestral isolate (Figure 6A, Original, 
insert) corresponded to an area of the organoid with IHC-detectable 
anti-hACE2 staining (Supplementary Figure S9C). The overall 
expression of hACE2 mRNA was low, with transmembrane protease 
serine 2 (TMPRSS2) mRNA often undetectable 
(Supplementary Figure S9D). Viral titers in the supernatants of the 
organoid cultures increased over the 4 day period, with BA.5 titers 
significantly higher than BA.1 titers by 1–2 logs (Figure 6B, p = 0.007, 
2, 3 and 4 dpi). XBB titers were also up to ≈1 log higher, which 
reached significance if data from 4 and 5 dpi were combined 
(Figure 6B, p = 0.009, 4 & 5 dpi). RNA-Seq of organoids harvested 4 
dpi also illustrated that viral RNA levels were ≈ 25 fold higher for 
organoids infected with BA.5 than those infected with an original 
ancestral isolate (Figure 6C).

RNA-Seq of BA.5 infected human cortical brain organoids (4 dpi) 
compared with uninfected organoids provided 2,390 DEGs (q < 0.001), 
of which 575 were up-regulated genes (Supplementary Table S3). 
RNA-Seq of original ancestral isolate-infected organoids provided 252 
DEGs (q < 0.001), of which 132 were up-regulated 
(Supplementary Table S3). Of the 132 up-regulated DEGs, 118 were 
also identified in the BA.5 infected organoids (Figure 6D), arguing 
that the original ancestral isolate is not inducing fundamentally 
different response in these organoids, and that the increased number 
of DEGs for BA.5 is likely due to more robust infection.

The 2,390 DEGs for BA.5 were analyzed by IPA 
(Supplementary Table S3), with “Coronavirus Pathogenesis 
Pathway” identified as a top canonical pathway (Figure 6E). The 
top USRs were (i) PTPRR (a protein tyrosine phosphatase 
receptor), which was recently identified in a study of brains from 
SARS-CoV-2 infected hamsters and is associated with depression 
in humans (Serafini et al., 2022), (ii) COPS5 (COP9 signalosome 
subunit 5), whose mRNA is bound by SARS-CoV-2 NSP9, perhaps 
resulting in suppression of host responses (Banerjee et al., 2020), 
(iii) LARP1, a translational repressor that binds SARS-CoV-2 RNA 
(Schmidt et al., 2021), (iv) ESR1 (nuclear estrogen receptor), which 
is important for ACE2 expression (Oner et al., 2022), (v) EGLN1, 
oxygen sensors that target HIF α subunits for degradation, with 
HIF-1α promoting SARS-CoV-2 infection and inflammation (Tian 
et al., 2021). IPA Diseases and Functions feature identified a series 
of neuropathology-associated annotations, including a motor 
dysfunction signature, with motor deficits documented for severe 
COVID-19 patients (Graham et al., 2022). Consistent with the IHC 
data, a series of signatures describe disruption and death of 
neurons (Figure  6E). No significant up-regulation of classical 
inflammation or IFN signatures were identified, with the possible 
exception of oncostatin M (OSM) (Figure  6E). Serum 
concentrations of this IL-6 family pleiotropic cytokine show a 
strong positive correlation with COVID-19 severity (Arunachalam 
et al., 2020). However, OSM can also be secreted by neural cells, 
but in the brain it is thought often to play a neuroprotective role 
(Houben et al., 2019).
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Discussion

We illustrate herein that the BA.5 and XBB variants show greater 
propensities to enter the brain and infect neurons in K18-hACE2 mice 
when compared to BA.1. In addition, BA.5 showed an increased 
capacity to infect human brain organoids. Taken together these results 
argue that these two more recent omicron variants of concern may 

have enhanced neurotropic properties when compared to an earlier 
omicron variant in these models.

The increased infection of brains by BA.5 and XBB over BA.1 in 
K18-hACE2 mice may be associated with the enhanced fusion activity 
of the later omicron variants (Tamura et al., 2023; Tang et al., 2023), 
which is usually associated with an enhanced ability to utilize 
TMPRSS2 and/or increased binding affinity for ACE2 (Aggarwal 

FIGURE 6

Infection of cortical brain organoids with original ancestral, BA. 1, BA.5 and XBB. (A) IHC of brain organoids 4 dpi with original ancestral and BA.5 using 
an anti-spike monoclonal antibody. IHC staining for BA.1 and XBB infected organoids is shown in Supplementary Figures S9A,B. (B) Viral titers in the 
supernatant of the organoid cultures sampled at the indicated dpi. Data is derived from two independent experiments. Titers for BA.5 (n  =  8) vs. BA.1 
(n  =  7) were significantly different (p  =  0.007) on days 2, 3 and 4. Titers for XBB (n  =  4) vs. BA.1 (n  =  7) were significantly different (p  =  0.009) when the 
data for 3 and 4 dpi were combined. Statistics by Kolmogorov–Smirnov tests. (C) RNA-Seq-derived viral reads counts for infected organoids, 4 dpi. 
(D) Venn diagram showing overlap of up-regulated DEGs for organoids infected with BA.5 and original ancestral. (E) DEGs (n  =  2,390, q  <  0.001) 
generated from RNA-Seq of BA.5 infected organoids (n  =  4) 4 dpi vs. uninfected organoids (n  =  4) were analyzed by IPA. Selected and representative 
annotations are shown (for full data set see Supplementary Table S3).
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et al., 2022; Tamura et al., 2023). TMPRSS2 utilization is associated 
with virulence (Abbasi et al., 2021), even for omicron variants (Iwata-
Yoshikawa et  al., 2022), and is involved in neurotropism in 
K18-hACE2 mice (Li et al., 2021). An increased ability to infect, not 
just the TMPRSS2-positive sustentacular cells, but also TMPRSS2-low 
cells in the murine olfactory epithelium (Fodoulian et al., 2020), may 
thus promote entry of BA.5 and XBB into the brains of K18-hACE2 
mice when compared with BA.1. In contrast to early omicron variants 
(Meng et al., 2022; Zhao et al., 2022; Qu et al., 2023), original ancestral 
isolates show a preference for TMPRSS2 utilization, and rapid 
fulminant infection of K18-hACE2 brains by such viruses is well 
described (Rothan et al., 2022; Seehusen et al., 2022). Interestingly, 
viral sequences from the brains of K18-hACE2 mice and hamsters 
infected with original ancestral isolates show loss of functional furin 
cleavage sites (Supplementary Figure S10). TMPRSS2 mRNA 
expression levels in K18-hACE2 mouse brains are very low 
(Supplementary Table S2), so TMPRSS2-independent infection (Qu 
et al., 2023) would likely be selected as the virus spreads within the 
brains. Such furin cleavage site deletions were not seen in BA.1 or 
BA.5 sequences from brains of K18-hACE2 mice, likely because 
omicron viruses can already effectively use the endosomal pathway 
(Meng et al., 2022; Zhao et al., 2022; Qu et al., 2023). In summary, 
more efficient use of TMPRSS2-dependent infection by BA.5 and XBB 
(and original ancestral isolates) compared to BA.1, may promote entry 
into the brain of K18-hACE2 mice via the olfactory epithelium. Once 
in the brain, utilization of the endosomal pathway by omicron viruses 
(and original ancestral isolates with non-functional furin cleavage 
sites) allows a spreading infection in TMPRSS2-low brain cells 
(Figure 1D, Brains).

Infection of brain organoids represents a measure of 
neurovirulence, rather than neuroinvasiveness, as access to cells in this 
in vitro system clearly does not require transit across the cribriform 
plate (Jiao et al., 2021; Dumenil et al., 2022; De Melo et al., 2023). 
TMPRSS2 mRNA expression was even lower in the organoids 
(Supplementary Figure S9D) than in K18-hACE2 brains, with 
infection of human neurons shown to be  TMPRSS2-independent 
(Kettunen et al., 2023). This is consistent with the poor infection of 
organoids by the original ancestral isolate (Figures 6A–C). BA.5 would 
thus appear to have an increased capacity for infection of brain 
organoids via a TMPRSS2-independent mechanism. This is not due 
to acquisition of hACE2-independent infection capabilities (Yan et al., 
2022; Supplementary Figure S11). Nor is this likely due to an increased 
ability of BA.5 to counter type I IFN activities (Guo et al., 2022), as 
such responses were not detected (Figure 6E). hACE2 expression is 
low in the organoids, suggesting an increased affinity for hACE2 
might promote BA.5 infection, with barely detectable levels of hACE2 
able to support infection (Rawle et al., 2021). There are a number of 
differences in the spike protein between the BA.1 and BA.5 isolates 
including 9 amino acid changes in the receptor binding domain 
(Supplementary Figure S12), with BA.5 affinity for hACE2 reported 
as slightly higher in two studies (Tuekprakhon et al., 2022; Wang et al., 
2022), but unchanged in a third (Cao et al., 2022). More efficient use 
by BA.5/XBB of co-receptors such as neuropilin (Cantuti-Castelvetri 
et  al., 2020; Kong et  al., 2022) or heparin sulphate proteoglycans 
(Guimond et al., 2022) might also be involved. Non-spike changes 
may also play a role (Chen et al., 2023).

To what extent are the observations herein relevant to human 
disease? Controversy remains regarding how useful the 

K18-hACE2 mouse models is for understanding human disease, 
although a considerable body of literature argues that many 
aspects of respiratory COVID-19 are recapitulated in this model 
(Yinda et al., 2021; Zheng et al., 2021; Bishop et al., 2022; Park 
et al., 2022; Ye et al., 2023). The fulminant lethal brain infection 
in K18-hACE2 mice is clearly not a feature of COVID-19. 
However, low level brain infections have been reported in hamster 
(Zhang et  al., 2021; De Melo et  al., 2023) and primate models 
(Beckman et al., 2022; Rutkai et al., 2022; Hailong et al., 2023), as 
well as in a range of human studies, including studies on long-
COVID patients (Proal et al., 2023; Supplementary Table S1). The 
data herein also illustrates that certain features of the infected 
K18-hACE2 brains are also observed in some patients with severe 
COVID-19. As confirmed herein for BA.5 and XBB isolates, 
human neurons can be readily infected in vitro (Bullen et al., 2020; 
Ramani et al., 2020; Song et al., 2021; Hou et al., 2022; Mesci et al., 
2022; Shen et al., 2022), with infection of neurons also seen in 
some COVID-19 patients (Song et  al., 2021; Shen et  al., 2022; 
Emmi et al., 2023), in a hamster model (De Melo et al., 2023) and 
in K18-hACE2 mice (Rothan et al., 2022; Seehusen et al., 2022), 
with BA.5 infection of neurons shown in Figure 3. A well described 
neurological manifestation of COVID-19 is anosmia, with 
infection of the olfactory epithelium implicated in humans 
(Khurana and Singh, 2022; Ziuzia-Januszewska and Januszewski, 
2022), hamsters (De Melo et al., 2023) and in K18-hACE2 mice 
(Zheng et al., 2021). The olfactory epithelium may also provide 
access of virus to the brain (Fodoulian et al., 2020; Jiao et al., 2021; 
Dumenil et  al., 2022), with a recent hamster study suggesting 
SARS-CoV-2 can travel along axons into the olfactory bulb (De 
Melo et al., 2023). SARS-CoV-2 may also access the brain via a 
breach in the blood brain barrier (Zhang et al., 2021); however, the 
lack of viremia (Yinda et al., 2021), and the ability to avoid brain 
infection by aerosolized delivery of virus into lungs, argues against 
this route of entry in the K18-hACE2 model (Dumenil et al., 2022; 
Fumagalli et al., 2022).

Brain infection is not a common feature of COVID-19, but low 
level infection does appear to manifest in a small group of COVID-19 
and long-COVID patients (Supplementary Table S1; Proal et  al., 
2023). What comorbidities, injuries and/or other factors predispose 
to brain infection remain unclear. Perhaps of note, anosmia was 
recently closely linked to long-lasting cognitive problems in 
COVID-19 patients (RADC, 2022), with anosmia also predicting 
memory impairment in post-COVID-19 syndrome patients in a 
separate study (Ruggeri et al., 2023). A higher proportion of patients 
infected with BA.5 develop anosmia, when compared with BA.1 
(Hansen et  al., 2023) perhaps due to more rapid and fulminant 
infection of the upper respiratory tract (Carabelli et al., 2023). Taken 
together with the data presented herein, BA.5 and XBB may thus show 
increased risk of acute and long-term neurological complications over 
earlier omicron variants (Okrzeja et al., 2023).
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