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Human cytomegalovirus (HCMV) is one of the main causes of serious 
complications in immunocompromised patients and after congenital infection. 
There are currently drugs available to treat HCMV infection, targeting viral 
polymerase, whose use is complicated by toxicity and the emergence of 
resistance. Maribavir and letermovir are the latest antivirals to have been 
developed with other targets. The approval of letermovir represents an important 
innovation for CMV prevention in hematopoietic stem cell transplant recipients, 
whereas maribavir allowed improving the management of refractory or resistant 
infections in transplant recipients. However, in case of multidrug resistance or for 
the prevention and treatment of congenital CMV infection, finding new antivirals 
or molecules able to inhibit CMV replication with the lowest toxicity remains a 
critical need. This review presents a range of molecules known to be effective 
against HCMV. Molecules with a direct action against HCMV include brincidofovir, 
cyclopropavir and anti-terminase benzimidazole analogs. Artemisinin derivatives, 
quercetin and baicalein, and anti-cyclooxygenase-2 are derived from natural 
molecules and are generally used for different indications. Although they have 
demonstrated indirect anti-CMV activity, few clinical studies were performed 
with these compounds. Immunomodulating molecules such as leflunomide and 
everolimus have also demonstrated indirect antiviral activity against HCMV and 
could be an interesting complement to antiviral therapy. The efficacy of anti-CMV 
immunoglobulins are discussed in CMV congenital infection and in association 
with direct antiviral therapy in heart transplanted patients. All molecules are 
described, with their mode of action against HCMV, preclinical tests, clinical 
studies and possible resistance. All these molecules have shown anti-HCMV 
potential as monotherapy or in combination with others. These new approaches 
could be interesting to validate in clinical trials.
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1 Introduction

Human cytomegalovirus (CMV) is an opportunistic pathogen in the immunocompromised 
host. Not only in transplant recipients, but also in AIDS patients or highly immunocompromised 
patients with congenital immunodeficiency or immunosuppressive biotherapies. Such infections 
can lead to graft rejection and organ damages (Kotton et al., 2018; Ljungman et al., 2019). Due 
to the use of preventive strategies, either preemptive treatment or prophylaxis, CMV disease 
frequency has decreased. But in solid organ recipients, late disease may occur in up to 18% of 
patients after stopping prophylaxis (Kotton et al., 2018). In stem cell recipients, it decreased from 
10–40% to 2–3% in randomized trials but 5–10% in real life cohorts despite efficient preemptive 
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treatment (Ljungman et al., 2019). Currently, available antivirals are 
limited to virostatic polymerase inhibitors (ganciclovir, its oral 
prodrug valganciclovir, cidofovir and foscarnet). Neutropenia limits 
efficacy of ganciclovir or valganciclovir and this hematological toxicity 
prevents its use as a prophylaxis in the stem cell recipients. Cidofovir 
and foscarnet are highly nephrotoxic and restricted to second line 
treatment. The second limitation of these molecules is the emergence 
of resistance, favored by prolonged treatments in highly 
immunocompromised hosts, and use of lower doses due to renal 
impairment (Razonable et al., 2019).

Congenital CMV infection (cCMV) is also a leading cause of 
hearing loss and neurological sequelae in children. During pregnancy, 
the prevalence of primary CMV infection ranges from 1 to 2% in the 
United States and Western Europe (Hyde et al., 2010; Leruez-Ville 
et  al., 2020), with an average cCMV birth prevalence of 0.65% 
(Kenneson and Cannon, 2007). If the primary maternal infection 
occurs during pregnancy, especially during the first trimester, more 
severe sequelae, including complete hearing loss, are to be feared. The 
risk of maternal transmission occurs in 30–40% of case with CMV 
primary infection. Thus, during the first trimester of pregnancy, it is 
essential to prevent viral transmission to the fetus to avoid neurological 
disability in newborns (Ornoy and Diav-Citrin, 2006; Ross et al., 2006; 
Chatzakis et al., 2020). Among infected neonates, 12.7% will have 
symptoms at birth and 40 to 58% develop permanent sequelae. As a 
whole, long-term sequelae from sensorineural hearing loss to 
neurodevelopmental disabilities may occur in 17 to 19% of infected 
newborns, 51 to 57% of them following maternal primary infection 
(Dollard et al., 2007; Leruez-Ville and Ville, 2020). Ganciclovir (GCV) 
and its prodrug valganciclovir (VGCV), foscarnet (FOS) and cidofovir 
(CDV), are proscribed during pregnancy, due to their toxicity (e.g., 
neutropenia, nephrotoxicity). Although a randomized study has 
demonstrated the efficacy of a high dose (8 g per day) of valaciclovir 
(VACV), a prodrug of acyclovir, in preventing transmission, only 50% 
of periconceptional or 1st trimester primary infection transmissions 
were avoided, and more efficient anti-CMV drugs are thus needed 
(Shahar-Nissan et al., 2020). Treatment of symptomatic newborns for 
6 weeks GCV or 6 months with VGCV was shown to improve hearing 
skills, and is now recommended, although 49 to 63% of the treated 
neonates developed grade 3 or 4 neutropenia with treatment 
(Kimberlin et al., 2015).

The burden of long-term therapies for immunocompromised 
patients, and the emergence of new resistance mechanisms (Chou, 
2020), the unmet need for low toxic treatments to prevent or cure 
cCMV, make it essential to find new antiviral targets and to develop 
new therapies, in order to treat CMV infections more efficiently while 
reducing side effects.

Recently, two antiviral drugs with new targets, high specificity 
and low toxicity, reached clinical development: letermovir targets the 
highly virus-specific terminase complex (UL56, UL98 and UL51) and 
maribavir inhibits the UL97 viral kinase. Letermovir (LMV) was 
approved in 2017 by the Food and Drug Administration (FDA) for 
the prophylaxis of CMV infection in hematopoietic stem cell 
transplant patients with high risk of CMV infections (Marty et al., 
2017). This new antiviral inhibits the terminase complex, a viral 
component not found in human cells, thereby reducing its toxicity. 
Similarly, maribavir (MBV) was approved in 2021 for the treatment 
of adults and children presenting post-transplant CMV infections 
refractory or resistant to antivirals (Food and Drug Administration, 

2021). It targets the viral kinase UL97 (Biron et al., 2002). Both LMV 
and MBV have a high oral bioavailability and a low toxicity profile. 
Nevertheless, resistance mutations have already been described with 
these new antivirals, making it crucial to continue to develop 
new therapies.

This is why it is necessary to find new molecules with an 
anti-CMV spectrum. In this context, this review summarizes the panel 
of molecules with antiviral activity, including direct inhibitors 
(brincidofovir, cyclopropavir, anti-terminase benzimidazole analogs), 
molecules acting through cellular pathways inhibition (artemisinin 
derivatives, flavonoids, leflunomide, everolimus, or anti Cox) and 
immunoglobulins (Figures 1, 2 and Table 1).

2 Newly approved antivirals target the 
late stage of the viral cycle

2.1 Letermovir

Letermovir (LMV; AIC246; Prevymis™; Figure 2), an antiviral of 
the quinazoline class, was developed by Aicuris and further marketed 
by Merck. LMV acts at the late stage of the viral cycle by direct 
inhibition of the human CMV terminase complex (Goldner et al., 
2011). This viral terminase complex has no functional equivalent in 
the mammalian cells and the drug is therefore highly specific.

It appears to be very specific of CMV, and has a high activity 
against resistant strains to DNA polymerase inhibitors (Lischka et al., 
2010). In 2017, LMV has been approved by the FDA for CMV 
prophylaxis in stem cell transplant patients seropositive for CMV 
(Marty et al., 2017).

2.1.1 Mechanism of action
LMV targets pUL56, the large subunit of the CMV terminase 

complex that cleaves DNA prior to encapsidation of the genome in 
neoformed capsids. In addition, it has high specificity against CMV, 
even if other herpesviruses also possess a terminase complex. This 
could possibly be explained by a particular mode of action, as LMV 
probably disrupts the interaction between the subunits of the 
terminase complex: pUL56, pUL89 and pUL51 unlike other 
antivirals, which often act by blocking functional domains. LMV 
has been shown to inhibit primarily the viral step of genome 
encapsidation (Lischka et al., 2010). Moreover, it was demonstrated 
that LMV prevents cleavage of concatemeric DNA into units of 
genomes and formation of CMV mature virions (Goldner 
et al., 2011).

2.1.2 Preclinical studies
Preclinical studies showed its very high antiviral activity (range: 

1.6–5.1 nM; 1,000-fold more potent than GCV) against clinical and 
laboratory strains included refractory-resistant isolates to current 
drugs (Marschall et al., 2012) with low toxicity levels at high doses 
over the EC90. LMV has a high specificity to HCMV and is well 
tolerated in various cell types with a mean selectivity index of 18,000. 
LMV has in vivo efficacy in a mouse xenograft model (Lischka et al., 
2010) and shows an anti-CMV activity in histoculture of third 
trimester placenta (Hamilton et al., 2020). It reached concentrations 
above EC50 at the fetal face when perfused across a third trimester 
placenta (Faure Bardon et al., 2020). However, its efficacy during the 
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first trimester is not yet validated. Drug combination assays showed 
additive effect and no synergistic toxicity with current CMV drugs 
and no effect with anti-HIV drugs (Wildum et al., 2015).

2.1.3 Clinical studies
LMV is a highly lipophilic molecule with a Cmax of between 45 min 

and 2.25 h and a half-life of 12 h. After administration, LMV is highly 
protein-bound and eliminated via the biliary tract. The efficacy, safety 
and pharmacokinetic parameters of oral LMV were studied in a Phase 
IIa trial: LMV 40 mg twice daily or 80 mg once daily was administered 
to patients for 14 days as a preventive treatment against CMV infection 
in kidney and kidney/pancreas transplant recipients (Stoelben et al., 
2014). This study demonstrated that all patients responded to LMV 
treatment. Chemaly et  al. conducted a Phase IIb variable-dose 
prophylaxis trial in 2014: LMV was administered daily orally at 60 mg, 
120 mg or 240 mg for 12 weeks post-transplant in CMV-seropositive 
allogeneic hematopoietic cell recipients. The incidence of prophylaxis 
failure (with or without virological failure) was significantly lower in 
the LMV-treated groups than in the placebo group (32% for the 
120 mg group, 29% for the 240 mg group vs. 64%). The incidence of 
virological failure was lower in the 240 mg group (6%) than in the 
placebo group (36%). This study demonstrated that LMV was well 

tolerated and that a dose of 240 mg once daily was effective in 
suppressing viremia (Chemaly et al., 2014).

The Phase III prophylaxis trial (NCT02137772) evaluated the 
efficacy of a daily oral or intravenous dose of LMV of 480 mg/day (or 
240 mg/day in patients taking ciclosporin) for 14 weeks after 
transplantation. A significant reduction in the number of patients 
developing CMV infection was observed. Indeed, at week 24, 38% of 
patients in the LMV group developed an HCMV infection versus 61% 
in the placebo group. In addition, the mortality rate was higher in the 
placebo group (16%) compared to the LMV group (10%). This study 
confirms the efficacy of LMV in the prophylaxis of CMV infection 
after HSCT in R+ patients (Marty et al., 2017). Used as primary and 
secondary prophylaxis in the French Compassionate Use Program 
(CUP) for high-risk patients, it was well tolerated and reduced the 
number of CMV infections compared with historical studies (Robin 
et al., 2020; Beauvais et al., 2022).

LMV has also been tested in case-series for prophylaxis or 
treatment in organ transplanted patients. It had good virologic 
outcomes and was well tolerated in patient with few side effects (Aryal 
et al., 2019; Veit et al., 2020; Linder et al., 2021). Recently, a large study 
conducted in 94 centers with kidney recipients showed that LMV was 
non-inferior to valganciclovir for prophylaxis of CMV disease for 

FIGURE 1

Antiviral targets in relication cycle of CMV. ① Virus attaches to cell. ② Entry of virus into cell and release of capsid into cytoplasm. ③ Migration of capsid 
to cell nucleus. ④ Release of viral genome from capsid through nuclear pore. ⑤ Replication of viral DNA by the rolling circle method using the viral 
polymerase pUL54. ⑥ Encapsidation of the genome into neoformed capsids via the encapsidation complex. ⑦ Nuclear exit. ⑧ Release of newly formed 
virions into cell cytoplasm. ⑨ Tegumentation of newly formed virions. ➉ Passage of virions through Golgi apparatus. ⑪ Acquisition of a primary 
envelope and transport of virions in a vesicle to the extracellular medium. ⑫ Budding, release of infectious virus particles and infection of a new cell. 
Indirect antivirals, direct antivirals and antivirals targeting the viral polymerase are in blue, green and pink, respectively. Created with BioRender.com
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52 weeks, with lower rates of leukopenia or neutropenia, arguing in 
favor of its use in this indication (Limaye et al., 2023).

2.1.4 Resistance
In less than 5 passages, the selection of resistant strains is rapidly 

achieved in vitro with UL56 mutations conferring high or absolute 
LMV resistance (Chou, 2017). In vitro studies have also revealed 
mutations in the genes encoding pUL51 and pUL89. In clinical trials, 
the first resistant isolate appeared after a sub-optimal dose of 60 mg/
day (Chemaly et al., 2014; Lischka et al., 2016). Resistant mutants can 
emerge rapidly under LMV if treatment is interrupted or underdosed 
(Alain et al., 2020). pUL56 is the main target of LMV, which explains 
why mutations occur more frequently in this protein than in other 
proteins of the terminize complex (Cherrier et al., 2018; Frietsch et al., 
2019; Alain et al., 2020). A new resistance mutation A95V in pUL51 
was also described in vivo after LMV treatment in combination with 
a L257I mutation in pUL56 (Muller et al., 2022; Figure 3).

2.2 Maribavir

Maribavir (MBV; 1,263 W94; LIVTENCITY™) [formerly 
1,263 W94, 5,6-dichloro-2-(isopropylamino)-1,β-l-ribofuranosyl-1-
H-benzimidazole] (Figure 2) is an oral bioavailable benzimidazole 
riboside initially developed by Glaxo Smith Kline (Biron et al., 2002), 
then Viropharma, now marketed by Takeda Pharmaceuticals/a Shire 
company for treatment of refractory or resistant CMV infections. In 
November 2021, the FDA approved MBV for 400 mg twice a 
day-treatment of adults and children (12 years of age or older, 
weight > 35 kg) with post-transplant CMV infection/illness refractory/

resistant to GCV, VGCV, CDV and FOS (Food and Drug 
Administration, 2021; Halpern-Cohen and Blumberg, 2022). In 2022, 
the European Commission approved MBV in the same indications.

2.2.1 Mechanism of action
Maribavir does not require activation or intracellular processing. 

Unlike other anti-CMV drugs, MBV targets the viral kinase UL97 and 
its natural substrates, which are involved in the DNA replication and 
viral capsid nuclear egress (Biron et al., 2002; Hamirally et al., 2009; 
Prichard, 2009). This mechanism of action confers MBV an in vitro 
and in vivo activity against GCV, FOS and CDV resistant CMV strains 
(Biron et al., 2002; Drew et al., 2006). The combination of MBV and 
GCV is therefore not recommended, as GCV activation requires three 
phosphorylation, the first of which being mediated by pUL97. Indeed, 
MBV antagonizes anti-CMV effect of GCV by increasing the 50% 
inhibitory concentration (IC50) of a GCV-sensitive strain by 13 fold 
(Chou and Marousek, 2006).

MBV competitively inhibits pUL97 (Biron et al., 2002) and blocks 
the phosphorylation of several downstream proteins including cellular 
components and the viral proteins pp65 and pUL44 the DNA 
polymerase accessory protein (Prichard, 2009). Like Cdc2/Cyclin-
dependent kinase 1 (CDK1) in CMV-uninfected cells, the viral kinase 
pUL97 phosphorylates nuclear lamina components (lamin A/C), 
facilitating the removal of mature virions from the nucleus. 
Consequently, MBV treatment results in the accumulation of 
immature virions in the nucleus (Hamirally et  al., 2009). It also 
inhibits CMV DNA replication through pUL44 inhibition. In vitro 
drug combination assays showed additive effect with foscarnet, and 
synergy with artesunate (Morère et al., 2015). Additive effect was also 
observed with cidofovir or letermovir (quinazoline), while association 

FIGURE 2

Molecule structures. Structures of chemical molecules with their corresponding order in the review. All molecules are classified as approved antivirals, 
molecules with direct antiviral activity or molecules with indirect antiviral activity.
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TABLE 1 Summary of molecules and their main characteristics.

Molecule Preclinical testing Clinical trials EC50 EC90 Selectivity index 
(EC50/CC50)

In vitro Ex vivo Animal model Phase I Phase II Phase III

Letermovir

Lischka et al. (2010) 

and Marschall et al. 

(2012)

-
Mouse xenograft 

(Lischka et al., 2010)

Chemaly et al. (2014), 

Stoelben et al. (2014), 

and Lischka et al. 

(2016)

NCT02137772 (Marty 

et al., 2017)

0.0038 ± 0.0009 μM 

(Lischka et al., 2010)

0.0051 ± 0.0014 μM 

(Lischka et al., 2010)

>18,000 (median SI) (Lischka 

et al., 2010)

Maribavir

Lu and Thomas 

(2000) and Chou 

et al. (2012a)

-

Mouse, rats, monkeys, 

guinea pig, rabbit, dog 

(Koszalka et al., 2002)

Wang et al. (2003), 

Swan et al. (2007), and 

Winston et al. (2008)

Papanicolaou et al. 

(2019), Maertens 

et al. (2020), and Song 

et al. (2023)

NCT02931539 (Avery 

et al., 2021)

0.54 ± 0.06 μM (Biron 

et al., 2002)

19.4 ± 18.6 (Williams et al., 

2003)

- 13 (Williams et al., 2003)

Brincidofovir Beadle et al. (2002) -

Guinea pig Bravo et al., 

2011

Monkeys, mice, rabbits, 

rats, cynomolgous 

monkeys

Painter et al. (2012)

NCT00942305 (Marty 

et al., 2013)

NCT00942305 

(Lanier et al., 2016)

NCT01769170 (Marty 

et al., 2019)

0.0009 μM (Beadle et al., 

2002)

0.001 ± 0.001 μM 

(Williams-Aziz et al., 

2005)

- 1 × 105 (Beadle et al., 2002)

Cyclopropavir

Kern et al. (2004a), 

Komazin-Meredith 

et al. (2014), Zhou 

et al. (2004), Kern 

et al. (2005), and 

Brooks and Bowlin 

(2013)

-

SCID mice (Bidanset 

et al., 2004; Kern et al., 

2004a)

dog, rat

(Brooks and Bowlin, 

2013)

(NTC01433835) 

(Brooks et al., 2015)

(NCT02454699) 

(Rouphael et al., 2019)

- -

1.2 ± 0.8 μM

(Kern et al., 2005)

0.27–0.49 μM (Zhou et al., 

2004)

- 1 × 105 (Beadle et al., 2002)

Flavonoids:

Quercetin

Baicalein

Cotin et al. (2012) - -

Polansky et al. (2016) 

and Polansky et al. 

(2018)

- -
4.8 ± 1.2 (Cotin et al., 

2012)
-

1.3 (Cotin et al., 

2012)

Cotin et al. (2012) -

Rats, mouse

(Lai et al., 2003; Dou 

et al., 2011; Tian et al., 

2012)

Li et al. (2014) and Li 

et al. (2021)
- -

2.2 ± 0.5 (Cotin et al., 

2012)
-

3 (Cotin et al., 

2012)

Anti-COX-2

Cotin et al. (2012), 

Andouard et al. 

(2021), and 

Baryawno et al. 

(2011)

Baryawno et al. 

(2011)

Mice (Baryawno et al., 

2011)

8,6–22,1 ± 3,6–10,1 μM 

(Andouard et al., 2021)
-

3–10 (Andouard 

et al., 2021)

(Continued)
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Molecule Preclinical testing Clinical trials EC50 EC90 Selectivity index 
(EC50/CC50)

In vitro Ex vivo Animal model Phase I Phase II Phase III

Artemisinin derivatives:

Artesunate

TF27
Hutterer et al. (2015) -

mice, rats and dogs 

(Efferth et al., 2002; 

Kaptein et al., 2006)

Shapira et al. (2008) and 

Germi et al. (2014)
- -

18.5 ± 5.2 μM (Arav-Boger 

et al., 2010)

3.9 ± 0.6 μM (Hutterer 

et al., 2015)

-
4 ± 2 (Arav-Boger 

et al., 2010)

Hutterer et al. (2015)

Placental vili 

(Jacquet et al., 

2020)

immunodefective mouse 

strain Rag−/− (Sonntag 

et al., 2019)

- - -

0.04 ± 0.01 μM (Reiter 

et al., 2015)

0.04 ± 0.01 μM (Hutterer 

et al., 2015)

0.08 ± 0.03 μM (Hutterer 

et al., 2015)
-

Benzimidazole analogs:

BDCRB

TRCB

Tomeglovir Townsend et al. 

(1995)
-

Guinea pig (Nixon and 

McVoy, 2004; Kern et al., 

2004a; Ourahmane et al., 

2018)

- - -

0.7 μM (Townsend et al., 

1995)

0.31 ± 0.06 (Biron et al., 

2002)

2.7 ± 0.8 (Evers et al., 

2002)

0.4 ± 0.3 μM (Williams 

et al., 2003)

0.9 ± 0.2 (Evers et al., 

2002)
425 (Williams et al., 2003)

Townsend et al. 

(1995)
- - - -

1.4 (Migawa et al., 1998)

2.9 μM (Townsend et al., 

1995)

1.4 μM (Townsend et al., 

1995)
-

Evers et al. (2002), 

Reefschlaeger et al. 

(2001), and 

McSharry et al. 

(2001)

-

Guinea pigs (Schleiss 

et al., 2005)

SCID mice 

(Reefschlaeger et al., 

2001; Weber et al., 2001)

- - -
0.52 ± 0.14 μM 

(Reefschlaeger et al., 2001)
- 300 (Reefschlaeger et al., 2001)

Leflunomide
Waldman et al. 

(1999a)
-

Nude rats (Waldman 

et al., 1999a)

Nude rats allograft 

(Chong et al., 2006)

Williams et al. (2002) 

and John et al. (2005)
- -

40-60 μM (Waldman et al., 

1999a)
- -

Everolimus

Immunoglobulins

Coste Mazeau et al. 

(2022), Germer et al. 

(2016), Miescher 

et al. (2015), and 

Schampera et al. 

(2017)

Placental vili 

(Coste Mazeau 

et al., 2022)

Guinea pig (Bia et al., 

1980; Bratcher et al., 

1995; Chatterjee et al., 

2001; Schleiss, 2008)

Mouse (Cekinović et al., 

2008)

Alsuliman et al. (2018)

NCT00881517 

(Revello et al., 2014; 

Chiaie et al., 2018)

NCT01376778 

(Hughes et al., 2021)

0.024 μM (Coste Mazeau 

et al., 2022)
- -

TABLE 1 (Continued)
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with BDCRB, a benzimidazole inhibitor of the terminase, or with 
sirolimus, a mTor inhibitor, was synergistic (Chou et al., 2019).

2.2.2 Preclinical studies
In vitro, MBV has selective activity against CMV. Its activity has 

been demonstrated against Epstein–Barr virus (EBV), however it is 
not active against herpes simplex virus, varicella-zoster virus (VZV) 
or human herpesviruses 6 and 8 (HHV-6 and HHV-8) 
(Prichard, 2009).

Preclinical studies showed that MBV has a better oral 
bioavailability, a better safety profile and a lower toxicity for host cells 
than current drugs (GCV, FOS and CDV) with theoretical benefits for 
the viral inhibition and cross-resistances appearing (Lu and Thomas, 
2000; Koszalka et al., 2002; Chou et al., 2012a). MBV also reached 
concentrations above EC50 at the fetal face when perfused across a 
third trimester placenta (Faure Bardon et al., 2020). In addition, it 
inhibits CMV replication in first trimester placental villi models in 
histoculture, with the same EC50 as in vitro (Morère et al., 2015).

In animal models, the oral bioavailability of MBV is 90% in rats 
and 50% in monkeys. MBV is excreted via the biliary route and, to a 
lesser extent, via the metabolic and renal pathways. The minimum 
effect dose in rats was 100 mg/kg/day and the no-effect dose in 
monkeys was 180 mg/kg/day (Wang et  al., 2003). It was initially 
distributed in the gastrointestinal tract of rats, but did not cross the 
blood–brain barrier. This study showed favorable results for MBV’s 
safety profile (Koszalka et al., 2002). In addition, Kern et al. (2004a) 
demonstrated that oral MBV significantly reduced HCMV replication 
at concentrations of 75 mg/kg twice daily in SCID-humanized mice 

with human fetal retinal tissue implants or thymus/liver implants. 
However, MBV was more effective in treating thymus/liver infection, 
as it was shown to be poorly absorbed by ocular tissues.

2.2.3 Clinical studies
Several Phase I clinical trials have been conducted with MBV to 

evaluate its safety, pharmacokinetics and efficacy against CMV 
infection. In fact, two Phase I clinical trials with escalating single doses 
of MBV (50 mg to 1,600 mg) were conducted in healthy and human 
immunodeficiency virus (HIV)-infected patients. 30–40% of an oral 
dose of MBV was absorbed, and Cmax was reached 1–3 h after 
administration (Wang et al., 2003). MBV was rapidly eliminated. At 
the 400 mg dose, no statistical difference was observed whatever the 
renal functions of patients (Wang et al., 2003; Swan et al., 2007). The 
main side effect of MBV is dysgeusia. A Phase I study with multiple 
oral doses of MBV was carried out to evaluate its antiviral activity. 
MBV was administered orally at doses of 100 mg twice daily, 400 mg 
once daily or 400 mg twice daily to CMV-seropositive HSCT 
recipients. One hundred days after transplantation, pp65 antigenemia 
was lower in all groups than in the placebo group (15, 19, 15% vs. 39% 
respectively). In addition, pharmacokinetic analysis of the 400 mg 
twice-daily dose showed higher Cmax and area under the curve (AUC) 
values than the 100 mg twice-daily dose, but with no improvement in 
antiviral activity and more side effects (Winston et al., 2008).

At low doses, MBV failed to meet the primary endpoints of the 
initial Phase III study for prophylaxis in hematopoietic stem cell 
allograft and liver transplant recipients. However, in a Phase II dose-
ranging clinical trial, MBV ≥ 400 mg twice was active against 

FIGURE 3

Resistance mutations to letermovir in UL56, UL89 and UL51 genes. LMV resistance mutations according to EC50 values. Mutations are referenced on 
genes under the map of conserved and variable regions. Scaled representation.
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refractory or resistant CMV infections in transplant recipients 
(Papanicolaou et al., 2019). This dosing also showed similar efficacy 
to those of valganciclovir in pre-emptive treatment of solid organ 
transplant and HSCT recipients (Maertens et  al., 2020). MBV is 
mainly metabolized in the liver, and moderate hepatic impairment 
increased total MBV concentrations. This suggests that dose 
adjustment of MBV may not be necessary for individuals with mild to 
moderate hepatic impairment (Song et al., 2023).

A randomized Phase III trial, the Solstice study (NCT02931539), 
demonstrated the efficacy of MBV in SOT and HSCT patients with 
refractory CMV infections with or without resistance. The study was 
conducted on 352 patients (235 patients receiving MBV 400 mg twice 
daily versus 117 patients receiving investigator-assigned therapy 
(IAT): GCV, VGCV, FOS or CDV) for 8 weeks with a 12-week 
follow-up. Endpoints were CMV disappearance at the end of week 8 
and MBV disappearance and symptom control at the end of week 8, 
maintained until week 16. Significantly, more patients in the MBV 
group achieved the primary endpoint (55.7% vs. 23.9%; p < 0.001) and 
the secondary endpoint (18.7% vs. 10.3%; p < 0.01). Side effects were 
less frequent in the MBV group than in the IAT group. Acute kidney 
injury was more frequent in patients treated with FOS (21.3% vs. 
8.5%), and neutropenia was more frequent in patients treated with 
GCV/GCV (9.4% vs. 33.9%). In the MBV group, 13.2% of patients 
discontinued treatment due to drug-related adverse events, compared 
with 31.9% in the IAT group (Avery et al., 2021).

2.2.4 Resistance
Although MBV is a newly approved antiviral, resistance mutations 

(Figure 4) have already been found in viral genes UL97 and UL27. 
Indeed, some pUL97 mutations (V353A, L397R, L337M, T409M, 
H411L, H411N, H411Y, F342, C480F) confer moderate to high-level 
resistance to MBV, with a 3.5 to 200 fold increase of the EC50 (Chou 
et al., 2007, 2019; Chou and Marousek, 2008; Chou, 2020). These 
mutations are close to the kinase ATP-binding and catalytic domains 

upstream the GCV resistance mutations (Chou and Marousek, 2008). 
Mutations F342Y and C480F are responsible for cross-resistance to 
ganciclovir and may be present before MBV treatment (Chou et al., 
2023). In addition, mutations in the UL27 gene confer low resistance 
to MBV with a 2- to 3-fold increase in EC50. These mutations (R233S, 
W362R, W153R, L193F, A269T, V353E, L426F, E22stop, W362stop, 
218delC, and 301-311del) compensate for pUL97 inhibition by 
destabilizing Tip60 (histone acetyltransferase), increase p21 
expression and inhibit cyclin-dependent cellular kinases (Chou et al., 
2004; Chou, 2009; Kamil and Coen, 2011; Reitsma et al., 2011). In 
phase II and phase III clinical trials, resistance to MBV emerged in 52 
and 26% of treated patients, respectively (Papanicolaou et al., 2019; 
Chou et al., 2023).

3 New molecules with activity against 
CMV

3.1 Direct-acting antivirals

3.1.1 Brincidofovir
Brincidofovir (BCV, CMX001; HDP-CDV) [[(S)-2-(4-amino-2-

oxo-1(2H)-pyrimidinyl)-1-(hydroxymethyl)ethoxy]methyl]mono[3-
(hexadecyloxy)propyl] ester (Figure 2) developed by Chimerix is a 
lipid antiviral conjugate (LAC) composed of a lipid [1-0-hexadecyl-
oxypropyl (HDP)] covalently linked to the acyclic nucleotide analog 
CDV, enabling the drug to utilize the natural absorption pathways of 
lysophosphatidylcholine in the small intestine (i.e., passive diffusion 
and flipases; Lanier et al., 2016). Currently, the United-States FDA 
approves BCV for treatment of smallpox.

3.1.2 Mechanism of action
BCV was designed to remain intact in plasma and deliver the drug 

directly to target cells. It enabled enhanced cellular uptake and high 

FIGURE 4

Resistance mutations to maribavir in UL97 and UL27 genes. Mutations responsible for cross-resistance with GCV are represented in blue. Mutations are 
referenced on genes under the map of conserved and variable regions. Scaled representation.
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intracellular levels of the converted active antiviral agent, 
CDV-diphosphate (CDV-PP), increasing antiviral activity against 
CMV by 2 to 3 orders of magnitude compared with CDV alone 
(Aldern et al., 2003; Williams-Aziz et al., 2005). BCV is cleaved to 
release CDV. Then, CDV is converted by intracellular anabolic kinases 
to CDV-PP, the active inhibitor of viral DNA synthesis. Unlike CDV, 
BCV is not a substrate for the human organic anion transporter 1, 
which mechanistically explains the absence of renal toxicity observed 
in clinical trials with BCV (Tippin et al., 2016; Figure 5).

3.1.3 Preclinical tests
BCV has been developed for the treatment of infections by 

double-stranded DNA viruses. It has broad-spectrum efficacy against 
herpesviruses, polyomaviruses, adenoviruses, papillomaviruses and 
orthopoxviruses (Beadle et al., 2002; Bidanset et al., 2004; Williams-
Aziz et al., 2005). BCV is effective against clinical isolates of HCMV 
(EC50 of 0.0009 μM against HCMV strain AD169) and HSV, including 
isolates resistant to GCV and ACV (Williams-Aziz et al., 2005; James 
et al., 2013). In addition, BCV has been shown to be 10 to 100 times 
more active than CDV against murine CMV (Kern et al., 2004b).

In vivo tests were carried out on animal models to evaluate its 
efficacy in congenital CMV infection. BCV showed antiviral activity 
of 0.004 μM ± 0.001 μM against guinea pig CMV (GPCMV). At the 
end of the second or beginning of the third trimester of gestation, 
guinea pigs were infected with GPCMV. Significant pup survival was 

observed in the BCV group (93–100% vs. 50–60%; p ≤ 0.019). Viral 
load was significantly reduced in the spleen and liver of pups after 
BCV treatment (p = 0.017 and p = 0.029 respectively). Although pup 
survival was improved with 4 mg/kg treatment, virus levels in fetal 
tissues were related to those in control tissues. This suggests that BCV 
could have been a good candidate for the treatment of congenital 
CMV infections in humans, with high tolerance (Bravo et al., 2011).

3.1.4 Clinical trials
Painter et al. evaluated the pharmacokinetics and safety of BCV 

in the first Phase I  clinical trial in 2012. This was a randomized, 
double-blind, placebo-controlled, parallel-group, dose-escalation trial 
in healthy adults. There were no adverse events during the trial. No 
significant changes in pharmacokinetic parameters were reported. 
Gastrointestinal analyzes showed no BCV-related mucosal changes. 
After multiple doses, no accumulation of BCV was observed. 
Maximum plasma concentrations of BCV were observed 2 to 3 h after 
dosing. This trial showed that BCV was relatively well tolerated and 
had a high bioavailability with a dose of approximately 140 mg in 
adults (2 mg/kg) (Painter et al., 2012).

From 2009 to 2011, Marty et  al. (2013) conducted a phase II 
clinical trial (NCT00942305) on 230 adult CMV-seropositive 
hematopoietic stem cell transplant recipients at 27 centers. Five 
sequential study cohorts were planned according to a double-blind 
ascending dose schedule (3:1 ratio to receive BCV or matching 

FIGURE 5

Mechanism of action of brincidofovir. BCV enters the HCMV-infected cell, is cleaved and phosphorylated by cellular anabolic kinases to cidofovir 
diphosphate. In the nucleus, CDV-PP binds competitively to the dGTP binding site of UL54 DNA polymerase. The result is inhibition of DNA synthesis 
and arrest of viral replication.
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placebo). Drugs were administered for 9 to 11 weeks post-transplant. 
The primary endpoint was a CMV-related event, i.e., CMV disease or 
a plasma CMV DNA level above 200 copies/ml. In the BCV 100 mg 
twice weekly group, the incidence of CMV-related events was 
significantly lower than in the placebo group (10% vs. 37%; p = 0.002). 
The most frequent side effect of treatment was diarrhea in the BCV 
200 mg weekly group. There were no reports of myelosuppression or 
nephrotoxicity (Marty et al., 2013).

The Phase III clinical trial (NCT01769170) was a randomized, 
double-blind, placebo-controlled (2:1) trial for CMV prophylaxis in 
452 CMV-seropositive adults with HCT without CMV viremia. 
Patients received BCV or placebo until week 14 after HCT. The 
primary endpoint was the proportion of patients who developed 
clinically significant CMV infection (CS-CMVi: CMV viremia 
requiring preemptive treatment or CMV disease) up to week 24 after 
HCT. This proportion was similar in both groups (51.2% vs. 52.3%; 
p = 0.805). Fewer BCV-treated patients developed CMV viremia up to 
week 14 than placebo-treated patients (41.6%; p < 0.001). BCV resulted 
in more frequent adverse events (51.1% vs. 37.6%) such as acute graft-
versus-host disease (32.3% vs. 6.0%) and diarrhea (6.9% vs. 2.7%). 
All-cause mortality at week 24 was 15.5 and 10.1% in the BCV and 
placebo groups, respectively. In conclusion, BCV did not reduce CMV 
viremia at week 24 post-transplant, and was associated with 
gastrointestinal toxicities (Marty et al., 2019). BCV is not available to 
date for the treatment of CMV infection.

3.1.5 Resistance
Since 2013, CDV resistance mutations in UL54 DNA polymerase 

have been shown to confer resistance to BCV. In vitro, increasing 
concentrations of BCV over 10 months conferred CDV and BCV 
resistance on a wild-type strain. Genotyping of the strain revealed a 
D542E mutation in pUL54, which was responsible for a more than 
10-fold reduction in susceptibility to BCV and CDV in marker-
transfer experiments. This mutation did not confer resistance to GCV 
or FOS. A smaller plaque phenotype and slower replication kinetics 
than the parent viruses were also demonstrated. This is the first 
mutation described under BCV selective pressure. This suggests that 
BCV may have a unique resistance profile associated with reduced 
viral replication and maintenance of sensitivity to FOS and GCV 
(James et al., 2013).

In vitro experiments under BCV pressure selected the N408K and 
V812L mutations in CMV DNA polymerase, which were already 
known to confer resistance to CDV. In addition, new substitutions in 
the exonuclease domain were identified: D413Y, E303D and E303G, 
which confer resistance to GCV and CDV, with 6- to 11-fold 
resistance to BCV, or 17-fold when E303G is combined with 
V812L. This confirmed the expected pattern of cross-resistance 
(Chou et al., 2016).

In a clinical study, Lanier et al. investigated CMV genotypes from 
a Phase II trial comparing BCV to placebo for prophylaxis of CMV 
infections in HCT recipients. Two mutations (M827I and R1052C) 
were reported in pUL54 in a small number of patients, but did not 
confer resistance to BCV, CDV, GCV or FOS. This study suggests that 
the first-line use of BCV for the prevention of CMV infection may 
preserve downstream options for patients (Lanier et  al., 2016). 
Nevertheless, A987G and F412L mutations in pUL54 have been 
reported in other studies using BCV as rescue therapy (Kaul et al., 
2011; Vial et  al., 2017). These mutations were known to confer 

resistance to CDV, suggesting that the emergence of resistance could 
occur after BCV treatment.

3.2 Metylenecyclopropane analog: 
cyclopropavir

Cyclopropavir (CPV, Filociclovir (FCV), ZSM-I-62), (Z)-9-{[2,2-
bis-(hydroxymethyl)cyclopropylidene]methyl}guanine (Figure 2) is a 
new analog of methylenecyclopropane (MCPN) (Zhou et al., 2004). 
This antiviral showed a good activity against HCMV and murine 
CMV in animal models (Kern et al., 2004b). In addition, CPV proved 
highly potent against HCMV (wild-type and GCV-resistant mutants 
in pUL97 and pUL54), EBV, both variants of HHV-6, HHV-7 and 
HHV-8 (Kern et al., 2005).

3.2.1 Mechanism of action
As with other nucleoside analogs such as GCV, activation of CPV 

by tri-phosphorylation is required (Littler et al., 1992). The primary 
phosphorylation is performed by the viral kinase pUL97 (HCMV) or 
pU69 (HHV-6), whereas the second and third phosphorylations are 
made by the guanosine monophosphate kinase (GMPK), thus 
resulting in tri-phosphate CPV (CPV-TP) (Kern et al., 2005; Gentry 
et al., 2011; Komazin-Meredith et al., 2014). Therefore, the conversion 
mechanism of CPV is different from that of GCV; it necessitates a 
single cellular enzyme to have CPV-triphosphate (CPV-TP; Figure 6).

CPV inhibits HCMV replication by a dual mechanism, inhibiting 
both pUL54 DNA polymerase and UL97 kinase (James et al., 2011). 
Indeed, some mutations on pUL54 confer a resistance to CPV, which 
confirms that the viral polymerase is a target of CPV (Chou et al., 
2012b). CPV-TP inhibits pUL54 by competition with dGTP and takes 
place as chain terminator that stops the DNA synthesis. Interestingly, 
of the two CPV enantiomers, (+)-CPV-TP could have a twenty-fold 
higher affinity with pUL54 (Chen et al., 2016). In addition, (+)-CPV 
is preferencially converted in (+)-CPV-TP than (−)-CPV-TP by the 
GMP kinase (Gentry et  al., 2011). Besides this mechanism, the 
inhibition of normal function of pUL97 kinase by CPV was assessed 
by cell transfection with plasmids expressing pUL97 and a reporter 
plasmid expressing pp65-GFP. CPV prevented the pUL97 capacity to 
inhibit aggresomes formation, as MBV (James et al., 2011).

3.2.2 Preclinical tests
A study on immunocompromised SCID mice (BALB/c) infected 

with MCMV, orally administered CPV showed a good effectiveness 
compared with GCV. Mortality rates were significantly reduced with 
CPV. Indeed, reducing of viral replication was much more effective in 
CMV target organs like liver, spleen and lung (Kern et al., 2004c).

Additionally, CPV showed a greater efficacy in vitro and in vivo 
than GCV without any increase of toxicity (Zhou et al., 2004; Kern 
et al., 2005) and achieved therapeutic concentrations in vivo without 
prodrug modification (Wu et al., 2009). In addition, CPV was used in 
combination with BDCRB and produced a statistically significant 
synergistic effect against HCMV in vitro (O’Brien et al., 2018). On the 
other hand, the introduction of 1.0 or 10 nM MBV demonstrated a 
competitive inhibition of CPV phosphorylation with a Ki of 
3.0 ± 0.3 nM (Gentry et al., 2010).

Pharmacokinetics, toxicokinetics and absorption, distribution, 
metabolism and excretion (ADME) datas of CPV showed good results 
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in animals. CPV has a high oral biodisponibility. It also shown that 
plasma concentration were higher after the first dose of CPV than 
after the fourteenth daily dose. CPV did not induce or inhibit 
cytochrome P450 and was minimily metabolized by liver microsomes 
(Brooks and Bowlin, 2013).

The safety study showed that CPV did not present adverse effects 
on central nervous system, respiratory and cardiovasular systems. 
Besides, toxicology studies demonstrated that CPV did not cause 
haemolysis ex vivo (Brooks and Bowlin, 2013).

3.2.3 Clinical trials
The first phase 1A clinical trial (NTC01433835) included 48 

healthy adults (3 males, 45 females) with a main age of 50.3 years. This 
randomized, placebo-controlled (3:1) trial evaluated CPV safety and 
pharmacokinetics after the administration of various doses ranging 
from 35 to 1,350 mg. No serious adverse effects were classified. Cmax 
were reached after 1 to 2 h after oral administration and the CPV was 
not detectable 24 h after last dose of treatment (Brooks et al., 2015).

A phase 1B, double blind, randomized, placebo-controlled (3:1), 
single center, multiple ascending doses, clinical trial (NCT02454699) 
was done to assess safety, tolerability and pharmacokinetics of CPV at 
various doses in 24 healthy adult volunteers monitored for 22 days (7 
males and 17 females; main age 47.4 years). Doses of CPV were 100, 
350 and 750 mg for 7 days. During this study, no serious adverse effect 
was highlighted. Indeed, main adverse events concerned 

gastrointestinal tract (17%), nervous system (11%) and skin and 
subcutaneous tissues (11%). The only severe adverse event appeared 
in the 750-mg cohort was a reversible grade 3 elevation in serum 
creatinine and bilirubin associated with a 1-log increase of CPV in 
plasma after 24 h of the initial dose. The Cmax was reached at 2 to 3 h 
following administration and CPV was undetectable in plasma 24 h 
after the last dose, as phase 1A trial. Finally, authors concluded that, 
in vivo, doses as low as 100 mg were sufficient to inhibit CMV 
(Rouphael et al., 2019).

So far, no phase II or III clinical trials are in progress (source: 
ClinicaTrials.gov).

3.2.4 A new antiviral against adenoviruses
Adenoviruses are responsible for a variety of infections in 

children, and can cause acute hepatitis with high morbidity and 
mortality (Kajon and St George, 2022). Recent studies have also 
demonstrated the antiviral activity of CPV against adenovirus (HAdV) 
by inhibition of the adenovirus-encoded DNA polymerase (Toth et al., 
2020). Hartline et  al. (2018), have shown that the strain human 
adenovirus type 5 (HAdV5) of the American Type Culture Collection 
(ATCC) was sensitive to CPV. CPV has shown a high potential to 
inhibit in vitro HAdV replication with a higher efficacy than CDV 
(5- to 10- fold higher) (Tollefson et al., 2022).

The same potential against adenoviruses has been observed with 
BCV. It has been demonstrated in several clinical trials, notably in the 

FIGURE 6

Mechanism of action of cyclopropavir. CPV enters the HCMV-infected cell and is phosphorylated by a viral kinase to CPV monophosphate. Two 
successive phosphorylations by GMPK are required to obtain CPV triphosphate. In the nucleus, CPV-triP binds competitively to the dGTP binding site 
of DNA polymerase UL54 and inhibits DNA synthesis. It also inhibits the ability of the viral UL97 kinase to prevent aggresome formation. Both 
mechanisms lead to inhibition of viral replication. GMPK: guanosine monophosphate kinase.
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treatment of severe adenovirus infection and disease in 2022 
(NTC02596997) (Alvarez-Cardona et al., 2020; Chimerix, 2022).

3.2.5 Resistance
Mutations are known to confer CPV resistance (Figure 7). Indeed, 

a recombinant virus with Δ498 bp mutation in the UL97 open reading 
frame (ORF) is resulting in a protein with a missing kinase domain 
(Gentry et al., 2013). The K355M mutation confers to the virus a 
moderate 5- to 7- fold increase in EC50 versus a 13- to 25- fold increase 
for FCV and GCV, respectively, (Komazin-Meredith et  al., 2014). 
Recombinant virus lacking pUL97 kinase domain is 20 times more 
resistant to CPV (Kern et al., 2005), which can be explained by the 
need for the first phosphorylation of CPV by pUL97, essential for 
activation of the molecule (Gentry et al., 2013). Mutations have been 
identified in vitro, ranging from insignificant mutations to resistance 
mutation confering cross-resistance to GCV, MBV and CPV.

Mutations close to critical functional residues were also identified: 
F342S and V356G. These mutations are close to the highly conserved 
residues involved in the kinase ATP-binding P-loop G338, G340 and 
G343 (Chou et al., 2013). The L595S mutants are resistant to GCV but 
remain susceptible to CPV (Chou and Bowlin, 2011). On the other 
hand, M460V, A594V, C592G and C603W, which confer low resistance 
to GCV, increase EC50 by 3 to 5-fold; M460I and H520Q induce high 
resistance to CPV, with a 12- to 20-fold increase in EC50 (Chou and 
Bowlin, 2011; James et al., 2011).

In addition, D456N, C480R and Δ617 confer resistance to GCV, 
MBV and all the MCPNs including CPV (Komazin-Meredith 
et al., 2014).

The combination H520Q-M488V (UL97-UL54) induced the 
highest level of resistance to CPV. Resistance mutations are close to 
finger and palm domains of the polymerase catalytic core (Chou et al., 
2012b). Two other mutations in pUL54 were shown to confer a lower 
resistance to CPV: E756D and E756K. Both are involved in FOS 
resistance (Lurain and Chou, 2010).

3.3 Benzimidazole analogs: BDCRB, TCRB 
and tomeglovir

BDCRB or 2-Bromo-5,6-dichloro-1-(beta-d-ribofuranosyl)
benzimidazole and TRCB or 2,5,6-Trichloro-1-(beta-D-ribofuranosyl)
benzimidazole (Figure 2) are benzimidazole ribofuranoside. These 
two molecules are potent and selective inhibitors of HCMV replication 
(Townsend et al., 1995). Tomeglovir (BAY 38–4,766) or {3-hydroxy-
2,2-dimethyl-N[4({[5-(dimethylamino)-1-naphthyl]sulfonyl}amino)-
phenyl] propanamide} (Figure  2) is an oral, non-nucleoside 
compound related to the D-benzimidazole ribonucleosides. It is a 
potent and selective inhibitor of HCMV replication by inhibition of 
viral DNA concatemers processing (Reefschlaeger et al., 2001; Weber 
et al., 2001).

3.3.1 Mechanism of action
The mechanism of action of BDCRB and TCRB (Figure 8) does 

not need phosphorylation at the 5′ position and does not involve 
the inhibition of DNA synthesis (Krosky et al., 2002). It prevents the 
cleavage of high molecular weight viral DNA concatemers to 
monomeric genomic lengths (Underwood et al., 1998). Resistance 
mutations were found in HCMV genes UL56 and UL89 suggesting 
that BDCRB and TCRB target the encapsidation step (Krosky et al., 
1998; Underwood et  al., 1998). BDCRB partially inhibits the 
ATPase activity of pUL56 and the pUL89-associated nuclease 
activity at high concentrations (Scholz et al., 2003). Furthermore, it 
has been suggested that BDCRB causes HCMV terminase to skip 
the normal cleavage site and continue packing DNA until a second 
cleavage site is encountered 30 kb further (McVoy and Nixon, 
2005). In GPCMV, monomer-length genomes are plentifully 
produced under BDCRB, but are slightly truncated at the left end 
(Nixon and McVoy, 2004). This is in accordance with the fact that 
BDCRB alters recognition and cleavage of DNA by the 
terminase complex.

FIGURE 7

Resistance mutations to cyclopropavir in UL97 and UL54 genes. CPV resistance mutations according to EC50 values. In UL97, cross-resistance 
mutations are represented in orange and mutations next to the ATP-binding P-loop are in pink. Mutations are referenced on genes under the map of 
conserved and variable regions. Scaled representation.
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Tomeglovir mode of action (Figure  7) is the same as that of 
BDCRB and TCRB described above. This molecule targets HCMV-
specific proteins required for cleavage and packaging of viral DNA, 
transforming high molecular weight viral DNA concatemers into 
monomeric genomes length (Reefschlaeger et al., 2001).

3.3.2 Preclinical tests
BDCRB and TCRB were effective against HCMV with EC50 of 

0.7 μM and 2.9 μM in plaque assays, respectively. It was also proved 
that BDCRB and TCRB were inactive against HSV-1. However, the 
incorporation of Cl and Br into these two molecules improved 
dramatically their therapeutic index (Townsend et al., 1995). It was 
also shown that BDCRB is inactive against HHV-6 and HHV-7 
(Yoshida et al., 1998). Another study demonstrated the inefficacy of 
BDCRB against HSV-1, HSV-2, VZV, HHV-8 but an activity against 
EBV (Williams et al., 2003). Furthermore, it was demonstrated that 
conformational changes in BDCRB structure could increase its 
spectrum against herpesviruses. Indeed, the L-analog of BDCRB was 
effective against HHV-6 (Prichard et  al., 2011). Tomeglovir was 
effective against HCMV strains (EC50 = 0.52 ± 0.014 μM) 
(Reefschlaeger et al., 2001). GCV-resistant clinical isolates were also 
susceptible to tomeglovir (McSharry et al., 2001).

Interestingly, HCMV strain AD169 was more sensitive to 
benzimidazole than the strain Towne (Krosky et al., 2000). Although 
TCRB and BDCRB showed excellent activity in vitro, their glycosidic 
bonds are hydrolyzed in vivo to less active metabolites that reduce 
their activity (Good et al., 1994).

In addition, BDCRB showed synergy in combination with MBV, 
synergy at low concentrations and antagonism at higher 
concentrations with tomeglovir (Evers et  al., 2002). Furthermore, 
tomeglovir had an antagonistic effect when combined with GCV 
(Evers et al., 2002).

The toxicity of benzimidazole analogs was tested in bone marrow 
cells. One hundred μM BDCRB inhibited cell proliferation by 20% 
over a 10-day period, while 100 μM GCV inhibited it by 52%. In other 
experiments on hematopoietic progenitor cell colony-forming assays, 
100 μM BDCRB affected BFU-E and CFU-GM (burst forming units-
erythroid and colony forming units-granulocyte/macrophage) by 31 
and 47%, respectively. In contrast, GCV inhibited BFU-E by 54% and 
CFU-GM by 86%. However, TCRB was less effective than 
BDCRB. This study concludes that certain benzimidazole nucleosides 
are less toxic than conventional drugs (Reza Nassiri et al., 1996).

Additionally, in vitro study with BDCRB in guinea pig embryo or 
lung fibroblasts showed that GPCMV was sensitive to BDCRB 

FIGURE 8

Mechanism of action of benzimidazol analogs. BDCRB, TCRB and tomeglovir enter the HCMV-infected cell and travel to the nucleus. They inhibit the 
encapsidation complex composed of pUL56, pUL89 and pUL51, and inhibit the portal protein pUL104. This mechanism leads to inhibition of DNA 
cleavage and concatemer recognition, or to premature cleavage. Encapsidation is interrupted and viral replication halted.
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(EC50 = 4.7 μM). BDCRB did not inhibit the formation of genome-
sized GPCMV DNA, which was packaged but not protected from 
nuclease. Termini formed on GPCMV genome were altered by 
BDCRB. Then, BDCRB participated to the retention of C capsids in 
the nucleus (McVoy and Nixon, 2005). However, more recently, a 
GPCMV resistant to BDRCRB was generated and characterized. 
Genetic alterations were reported: an L406P substitution in GP89, the 
HCMV UL89 homolog; a 13.4 kb internal deletion of the GP131-
GP143 non-essential ORFs; and a dramatic increase in the number of 
iterations of a 1 kb terminal repetitive sequence, from 0 or 1 to up to 
9 at either genomic end (Ourahmane et al., 2018).

In animal model experiments, efficacy was evaluated in an ocular 
model of SCID-humanized mice infected with the Toledo strain of 
HCMV. BDCRB was administered at doses of 50 mg/kg for 28 days or 
25 mg/kg twice daily for 1 week and once daily for 2 weeks. A slight but 
non-significant reduction in HCMV titers was observed in the 50 mg/
kg group, and no reduction in mean titers was observed in the 25 mg/
kg group. These results showed that BDCRB could only be active 
against HCMV at high concentrations. In the second experiment, 
HCMV-infected SCID-humanized retinal implants were treated with 
BDCRB or CDV for 28 days. Mice were treated with 75 mg/kg BDCRB 
from day one post-infection. BDCRB had no effect on reducing viral 
titers in retinal implant tissues. These results demonstrated the 
ineffectiveness of BDCRB in crossing the blood-ocular barrier in in 
vivo models. In addition, the same experiments were carried out with 
visceral organs (fetal thymus and liver) implanted in the kidney 
capsule. Doses of BDCRB blocked viral replication by around 2 to 3 
log10 PFU/g (Kern et al., 2004a).

Tomeglovir was evaluated in MCMV-infected immunodeficient 
mice and reduced viral load in target organs in a manner comparable 
to GCV. Weight loss (consequence of viral infection) is reduced after 
tomeglovir administration (Reefschlaeger et al., 2001). Another study 
on murine model with per os administration of tomeglovir at dose 
≥10 mg/kg showed similar results (Weber et al., 2001). A study in 
guinea pigs also demonstrated that peak plasma tomeglovir levels 
were 26.7 mg/mL 1 h after dosing. It reduced both viremia and 
DNAemia, as well as mortality following lethal GPCMV challenge in 
immunocompromised guinea pigs, from 83 to 17% (p < 0.0001). This 
study demonstrated the safety, pharmacokinetics and favorable 
therapeutic profiles of tomeglovir (Schleiss et al., 2005).

3.3.3 Clinical trials
Currently, no published clinical trial was performed to assess 

BDCRB, TCRB and tomeglovir in human (source: ClinicaTrials.gov).

3.3.4 Resistance
Resistance mutations to BDRCRB and TCRB (Table 2) are located 

in pUL56 (Q204R) and in pUL89 (D344E and A355T). If combined, 
these mutations showed a greater resistance to benzimidazole analogs 
than alone. Nevertheless, these mutations did not confer resistance to 
GCV (Krosky et al., 1998; Underwood et al., 1998; Evers et al., 2002). 
Additionally, mutations M360I in M89 exon II and P202A and I208N 
in M56 confer murine CMV resistance to tomeglovir. Mutation in 
M89 exon II had analogous mutations in HCMV pUL89 mentioned 
for BDCRB and TCRB but those in M56 did not have it in HCMV 
pUL56. Thus, pUL89 could be directly targeted by tomeglovir and 
pUL56 could compensate for restricted activities of Buerger et al. 
(2001). More recently, Chou (2017) highlighted new mutations in 

UL89 gene and UL56 responsible for tomeglovir resistance. In pUL89 
N329S, T350M, H389N, N405D, D344E, C347S and V362M conferred 
moderate to high drug resistance. The mutation I334V did not 
conferred tomeglovir resistance but affected growth fitness when 
combined with N405D. Then, in pUL56, Q204R was shown as lower-
grade resistance mutation (Chou, 2017).

The L406P mutation described in GPCMV QP89 was more than 
50 residues away from the positions of the confirmed resistance 
mutations in HCMV pUL89. This mutation does not confer significant 
resistance of GPCMV to BDCRB but may have a compensatory 
function in enhancing replication by making easier genomic cleavage 
at cleavage sites containing multiple repeats. Furthermore, deletion of 
the E region of HindIII is unlikely to contribute directly to resistance 
to BDCRB. Thus, the accumulation of terminal repeats could be a 
response to BDCRB pressure and the resulting increase in genome 
length resulted in compensatory deletion of the HindIII E region 
(Ourahmane et al., 2018).

BDCRB and TCRB do not show any cross-resistance with GCV 
because of their different mechanisms of action and their different 
gene targets. Surprisingly, a cross-resistance with MBV is responsible 
for an increase of 2-3-fold EC50 even if these molecules do not have 
the same mechanism of action. Indeed, BDCRB and TCRB are DNA 
processing inhibitors and MBV is a DNA synthesis inhibitor (Evers 
et al., 2002).

In addition, a mutation was described in pUL104, the portal 
protein of HCMV, which is colocalized with pUL56, in resistant 
strains to benzimidazole nucleosides. However, this L21F pUL104 
mutation alone did not prove sufficient to ensure resistance of HCMV 
to BDCRB (Komazin et al., 2004; Table 2).

4 Host-targeting antivirals

Several molecules targeting cellular metabolism have antiviral 
activity by interfering with cellular components participating in the 
viral replication cycle. These components have various targets, efficacy, 
and share the absence of identified viral resistance.

4.1 Artemisinin derivatives: artesunate, 
artemisone, and TF27

Artemisinin is an antimalarial drug that is an active compound of 
A. annua (1972). Many derivatives of this drug were developed. In this 
context, Saokim Ltd. (Hanoi, Vietnam) synthesized artesunate 
(Figure 2), a semisynthetic drug of artemisinin. This compound is 
available as intravenous or oral formulation to treat life-threatening 
malaria access. In 2010, the World Health Organization (WHO) 
recommended this drug as quinine to treat severe malarial infections 
during the first trimester of pregnancy (McGready et al., 2012; Roussel 
et al., 2017). Besides this activity, artesunate (ART) was shown as a 
good inhibitor of HCMV infections in vitro (Efferth et al., 2002, 2008). 
The laboratory of Sensitive Biology Therapy (S.B.T) synthesized its 
trimeric derived compound, TF27 (Figure 2; Hutterer et al., 2015; 
Reiter et al., 2015; Hahn et al., 2018). Recently, LH54, the heterologous 
hybrid compound of artesunate was developed in the laboratory of 
S.B.T. and has also a good antiviral activity (Wild et al., 2020). All 
these artesunate derivatives have shown good efficacy.
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4.1.1 Mechanism of action
Artemisin and its derivatives are primarily metabolized in 

dihydroartemisin (DHA) by cytochrome P-450 monooxygenase 
enzyme (CYP) 2B6 in human liver microsomes. This step is followed 
by the conversion into inactive metabolites via other enzyme systems. 
DHA has a half-life of about 45 min and is also an anti-malarial drug.

In HCMV infections, ART inhibits cellular transcription factors 
Sp1 and NF-κB (Hutterer et al., 2015). Indeed, its derivatives, TF79 
and TF27, inhibit NF-κB signaling by approximatively 90% at 
concentration of 3 μM to 0.3 μM, with a correlation between the 
diminution of NF-κB pathway and the antiviral activity (Hahn et al., 
2018). Previous studies have suggested that sustained NF-κB activation 
is necessary for viral replication (Hiscott et al., 2001; Figure 9).

4.1.2 Preclinical tests
Artemisinin derivatives are well tolerated in humans (Ribeiro and 

Olliaro, 1998; Adjuik et al., 2004). Rarely, slight and reversible adverse 

effects were observed such as first-degree heart block and neutropenia 
(Ribeiro and Olliaro, 1998; Adjuik et al., 2004). However, in animal 
models like mice, rats and dogs, neurotoxic effects were reported 
(Toovey, 2006). Studies showed that a shorter exposure to artemisinin 
derivatives with higher concentrations was less neurotoxic than a 
longer exposure with lower concentrations (Li et al., 2002).

ART was shown to be efficient against all types of herpesviruses, 
more than artemisinin. ART inhibits HCMV in vitro and in vivo 
(Efferth et  al., 2002; Kaptein et  al., 2006), both HHV-6 variants 
(Milbradt et  al., 2009; Hakacova et  al., 2013), Epstein–Barr virus 
(Auerochs et al., 2011) and Herpes simplex virus 1 (Efferth et al., 2008).

In addition, ART can be  combined with other conventional 
anti-CMV drugs such as GCV, CDV and FOS to decrease risk of 
resistance mutation emergence. ART also shows a pronounced 
synergistic effect with MBV (Chou et  al., 2011). Furthermore, its 
activity was confirmed in a model of 1st trimester placental villi 
infection (Morère et  al., 2015). In combination with MBV, ART 

TABLE 2 Resistance mutations to benzimidazol analogs in UL56 and UL89 genes.

Gene Resistance EC50 (μm; Fold change) Reference

UL56 UL89 BDCRB Tomeglovir TCRB

Q204R 17 (14) 1.2 (2.7) 57 (23) Chou (2017), Krosky et al. 

(1998), and Evers et al. (2002)

L208M 0.8 (3.4) Chou (2017)

N232Y 1.2 (2.7) Chou (2017)

E407D 1.3 (6.0) Chou (2017)

H637Q 0.9 (2.0) Chou (2017)

V639M 4.6 (10) Chou (2017)

L764M 0.19 (0.4) Chou (2017)

Q11H

I334V 1.1 (0.9) Chou (2017)

N320H 3.0 (6.5)

N329S 2.0 (15) Chou (2017)

D344E 20,3 (10) 1.8 (1.7) 6–18 (10) Chou (2017), Underwood 

et al. (1998), and Krosky et al. 

(1998)

C347S 0.6 (0.3) Chou (2017)

T350M 2.8 (8.7) Chou (2017)

A355T

M359I 3.4 (7.4) Chou (2017)

V362M 1.2 (98) Chou (2017)

H389N 1.1 (29) Chou (2017)

N405D 6.9 (15) Chou (2017)

I334V-N405D 5.6 (12) Chou (2017)

D344E-A355T 20 (30) >50 Underwood et al. (1998)

H637Q-V639M 7.5 (17) Chou (2017)

Q204R D344E 32 (13) 2.5 (5.8) 68 (30) Chou (2017) and Krosky et al. 

(1998)

F261L D344E 0.91 (2.1) Chou (2017)

M329T D344E 0.98 (2.2) Chou (2017)

Bold values are significant values for resistance.
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showed a synergistic effect at low concentrations, with IC50 of 0.25 and 
2 μM for the two molecules, respectively. However, the combination 
with baicalein had an antagonistic effect (Morère et al., 2015). In the 
same year, Drouot et al. (2016) demonstrated that combining ART 
with GCV, CDV and MBV was associated with synergy, while 
combining it with FOS or LMV produced only moderate synergy.

Artemisin was also tested against HCMV in different ratios in 
combination with the anti-HCMV drugs BDCRB, LMV, GCV, CDV, 
BCV and MBV. This study revealed synergistic antiviral activity with 
no microscopically apparent cell toxicity or reduction in cell viability 
(Oiknine-Djian et al., 2019).

ART derivative, TF27, also showed an anti-HCMV activity at 
nanomolar concentrations (Hutterer et al., 2015; Reiter et al., 2015; 
Fröhlich et  al., 2018). Besides, antiviral activity against HCMV 
infections was also shown in ex vivo placental villi explant model 
(Jacquet et  al., 2020). Recently, Sonntag et  al., demonstrated its 
antiviral efficacy in vivo by using an established model of murine 
CMV infection of an immunodeficient mouse strain Rag−/− (Sonntag 
et al., 2019). TF27 has a higher antiviral activity than ART: the EC50 of 
0.04 ± 0.01 μM against HCMV strain (Hutterer et al., 2015) was 100 
fold lower than the EC50 of artesunate (Hahn et al., 2018).

4.1.3 Clinical tests
ART is a good inhibitor for clinical use in the treatment of drug-

resistant HCMV infection. The first report of treatment of CMV 

infection with ART in a HCT recipient with resistance to foscarnet 
and ganciclovir (DNA polymerase L776M mutation) dates back to 
2008. Treatment with GCV, CDV and intravenous immunoglobulin 
had failed. ART was started at a dose of 100 mg daily after other 
treatments had been discontinued. A favorable response was observed, 
followed by a rapid reduction in viral load and improvement in 
hematopoiesis. During the 30 days of treatment, there were no adverse 
events and no increase in viremia. The patient received a third 
transplant with a recurrent episode of viremia but controlled by a new 
antiretroviral treatment regimen. Nevertheless, retinitis was diagnosed 
during treatment, reflecting the limited penetration of ART into the 
eye. Combining ART with GCV resolved this local infection and 
controlled the viral load. This study demonstrates the potential of ART 
to control CMV infection (Shapira et al., 2008).

ART was used in a case series of 6 SCT recipients as a preventive 
treatment for CMV infection to calculate its antiviral efficacy by 
studying viral kinetics. Two patients showed a decrease in viral load 
(0.8 to 2.1 log after 7 days). Antiviral efficacy was described as 
heterogeneous, ranging from 43 to 90%, and depended on the basic 
growth dynamics of the virus (Wolf et al., 2011).

In another study, ART was evaluated in five patients with resistant 
CMV infection. ART was unsuccessful in two cases of severe CMV 
disease with high CMV viral load and pulmonary involvement. 
However, these patients also suffered from diseases (Wegener’s 
granulomatosis and Hodgkin’s lymphoma) that may have accounted 

FIGURE 9

Mechanism of action of artemisinin derivatives. Artemisinin derivatives enter HCMV-infected cells and are metabolized to dihydroartemisin (DHA) by 
the cytochrome P-450 monooxygenase 2B6 (CYP 2B6) enzyme, which is then converted to inactive metabolites. In addition, ART moves to the cell 
nucleus where it inhibits the production of RelA and p65 involved in the NFκ-B pathway, which is necessary for viral replication.
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for some of the deaths. In conclusion, ART may be  useful in the 
treatment of mild CMV disease due to multidrug-resistant strains. 
However, further data are needed on the risk factors associated with 
ART failure. In addition, it should be noted that ART is not sufficient 
to treat serious CMV disease with pulmonary involvement due to its 
poor diffusion in lung tissue, as has been reported in animal models 
(Zhao and Song, 1993; Germi et al., 2014).

4.1.4 Resistance
To date, no resistance to artemisinin derivatives has been 

reported in CMV.

4.2 Flavonoids

Flavonoids are metabolites found in fruits and vegetables with high 
biological activity and low toxicity. Flavonoids with well-classified 
structures and well-defined structure–function relationships include 
flavans, flavanones, flavones, flavanonols, flavonols, catechins, 
anthocyanidins, isoflavones and chalcons (Tsao, 2010). Over 5,000 
flavonoids were defined as molecules with potential health benefits as 
antioxidative, anti-inflammatory, antitumoral, antiviral and antibacterial 
effects (Middleton, 1998; Beecher, 2003; Cazarolli et al., 2008). Besides, 
flavonoids can specially modulate activities of cellular enzymes and 
inhibit protein kinases (Middleton, 1998). These metabolites are therefore 
a real option for current antiviral therapies. Indeed, it was shown that 
kaempferol inhibits herpes simplex virus (Amoros et al., 1992) and that 
baicalein and genistein interact with the first steps of HCMV infection 
(Evers et al., 2005). In an exploratory in vitro study, Cotin et al. (2012) 
showed that baicalein and quercetin were the most potent flavonoids to 
inhibit HCMV in vitro. Their combination had an additive effect. In 
addition, the combination of these two molecules with chalcone to reduce 
toxicity was tested against HCMV. The result was a synergistic effect for 
baicalein, while an antagonistic effect was observed with quercetin 
(Andouard et al., 2016). Both molecules were also combined with MBV, 
and quercetin did not improve the efficacy of MBV alone, unlike baicalein, 
which reduced infection by 90% at low concentrations (2.2 μM baicalein; 
1 μM MBV; Morère et al., 2015). In this review, quercetin and baicalein 
will be explored for their potential antiviral activity.

4.2.1 Quercetin
Quercetin or (3,3′,4′,5,7-pentahydroxy-2-phenylchromen-4-one; 

Figure  2) is the main representative of the flavonoid subclass, 
flavonols. The fruits and vegetables with the highest concentration of 
quercetin are apples, cherries, onions, asparagus and red leaf lettuce 
(Nishimuro et al., 2015). It is also found in herbs such as licorice.

In food, quercetin is present as quercetin glycosides that are 
hydrolyzed and released as aglycone. Then, aglycone is absorbed and 
metabolized into glucuronidated, methylated and sulfated derives 
(Kawabata et al., 2015). However, the stability of quercetin and its 
derivatives in the organism can be influenced by pH, temperature, 
metal ions and other compound as glutathione (GSH) (Boots et al., 
2005; Moon et al., 2008). This could affect the efficacy of the molecule.

4.2.1.1 Mechanism of action
Quercetin was shown to act by inhibition of early viral proteins 

IE-1and IE-2 expression (Cotin et  al., 2012). Through the 
downregulation of IE-2 of VZV and HCMV, it inhibits viral lytic gene 
expression and replication (Kim et al., 2020) and modulates NF-κB, 

mitochondrial and ROS pathways (Hung et al., 2015; De Oliveira 
et al., 2016). Quercetin also inhibits the activation of IRF3 and NF-kB 
induced by HSV-1 infection in a TLR3-dependent manner that results 
in a lower production of TNF-α (Lee et al., 2017). Quercetin was then 
shown to prevent EBV-induced B cell immortalization and 
proliferation of lymphoblastoid cell lines by interrupting the dialectic 
between IL-6 and STAT3, promoting autophagy and reducing ROS 
levels and p62 accumulation (Granato et al., 2019; Figure 10).

4.2.1.2 Preclinical tests
Many studies showed the antiviral activity of quercetin. Indeed, 

quercetin inhibits HBsAg and HBeAg secretion in Hepatitis B virus 
infected cells (Wu et al., 2007). It is also an active agent against HIV-1 
reverse transcriptase, protease and α-glucosidase with an EC50 value 
of 60 μM (Yu et al., 2007).

Quercetin was tested in vitro against herpesvirus, reducing 
intracellular replication of HSV-1 and HCMV. The antiviral activity 
against HCMV infected cells was 4.8 μM and 145 μM against HSV-1 
(Cotin et al., 2012). In 2022, a formulation of polyxamer 188 and 
quercetin (QP188) amplified the in vitro GCV antiviral activity against 
HCMV. Indeed, QP188 was tunable, bioactive and rapidly internalized 
in NIH/3 T3 cells. This formulation had a dose-dependent activity 
combined synergistically with GCV. These results could be interesting 
for finding means to reduce GCV toxicities (Kjar et al., 2022).

4.2.1.3 Clinical study
In 2018, an herbal treatment (Gene-Eden-VIR/Novirin) 

composed of five ingredients including quercetin was tested in a 
clinical trial for the treatment of oral herpes. The study included 68 
participants who took 1 to 4 capsules a day for an average duration 
of 10.4 months. Efficacy was assessed from symptom onset to 
complete resolution and also included analysis of recurrence rates. 
Treatment was compared with two conventional drugs: valaciclovir 
(VAVC) and aciclovir (ACV). Gene-Eden-VIR/Novirin was more 
effective in reducing the number and duration of oral herpes 
epidemics, and more secure than ACV and VAVC. Gene-Eden-VIR/
Novirin reduced the duration of outbreaks from 5.83 days to 
3.21 days in the treated group (p < 0.0001). In addition, 46.4% of 
patients on herbal treatment were relapse-free (p < 0.0001), and no 
adverse events were observed (Polansky et  al., 2018). However, 
results of this study must be confirmed with further investigations. 
The same comparison was done with famciclovir (FCV) in 2016 
(Polansky et al., 2016).

4.2.1.4 Resistance
Currently, no resistance mutation to quercetin was documented.

4.2.2 Baicalein
Baicalein (5,6,7-trihydroxyflavone; C15H10O5) (Figure  2) 

belongs to the flavone sub-family of flavonoids. This molecule is 
isolated from the roots of Scutellaria baicalensis with different 
properties: antioxidant, anti-inflammatory, anticancer, antidiabetic, 
antithrombotic, anxiolytic, anti-convulsive, cardioprotective, 
hepatoprotective and neuroprotective agent (Chang et al., 2016; Gao 
et al., 2016; Dinda et al., 2017; Cristelli et al., 2019; Tuli et al., 2020).

4.2.2.1 Mechanism of action
Pretreatment with baicalein failed in suppressing viral replication 

in cells while post-treatment was effective. These results suggest that 
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baicalein may be effective at the post-entry stage of viral infection 
(Luo et al., 2020). Previous studies indicated that baicalein had an 
inhibitory effect on NF-κB activation induced by pathological factors 
(Li et al., 2016).

In vitro, baicalein has been shown to act on IκB-α and therefore 
to have an antagonistic effect with ART, as they share the same target, 
which could lead to competitive inhibition (Morère et al., 2015). In 
agreement, Luo et al., reported that baicalein blocks NF-κB activation 
by inhibiting phosphorylation of IKK-β and IκB-α. By reducing IκB-α 
degradation, baicalein could inhibit viral replication (Luo et al., 2020). 
Thus, HSV-1 infections are prevented by a dual mechanism: the 
suppression of IKK-β phosphorylation and the decrease of NF-κB 
activation. This study also demonstrated that baicalein inactivates 
HSV-1 particles in a direct manner (Luo et al., 2020). However, further 
studies are needed to explain how baicalein acts on IKK-β 
phosphorylation (Figure 10).

4.2.2.2 Preclinical tests
Baicalein has a poor oral bioavailability and a low aqueous 

solubility, which are the major disadvantage of this molecule. Studies 
of oral administration of baicalein have demonstrated that it is 
glucuronized in the intestinal wall and livers of rats and humans 
(Nagashima et  al., 2000; Zhang et  al., 2005, 2007). Additionally, 
baicalein is well absorbed by the small intestine and stomach (Taiming 
and Xuehua, 2006).

Some studies demonstrated baicalein is metabolized to baicalein 
and baicalein 6-O-sulfate in blood (Muto et al., 1998; Zhang et al., 
2004; Dou et al., 2011). Following intravenous administration in rats, 
75.7% of circulating baicalein in blood was as conjugated metabolites 
form (Lai et al., 2003). The bioavailability of baicalein in monkeys 
reached 23.0% after oral and intravenous administrations (Tian 
et al., 2012).

Cotin et al. (2012) demonstrated that baicalein inhibits in vitro 
CMV early proteins production. The inhibition of the tyrosine kinase 
activity of the EGF factor was already proved in a previous study 
(Evers et  al., 2005). Additionally, combinations of quercetins and 
baicalein revealed additive effects particularly when baicalein was 
added at fixed quercetin concentrations. That reflected the probably 
higher efficacy of baicalein (Cotin et al., 2012).

4.2.2.3 Clinical study
A randomized, double-blind, single-dose phase I trial of baicalein 

(100–2,800 mg) was conducted in 72 healthy adults. Analysis of 
baicalein and baicalin (baicalein’s 1st metabolite) was performed by 
liquid chromatography–tandem mass spectrometry on various 
biological fluids. Urinary clearance of baicalein and baicalin was 1, 
and 27% of baicalein was eliminated unchanged in feces. Eleven 
treatment-related side effects were recorded, but these were defined as 
moderated and resolved without further treatment. Baicalein is well 
tolerated by healthy patients, and no liver or kidney toxicity was 
observed (Li et al., 2014).

In 2021, another trial was conducted by Li et al. using data from 
the 2014 Phase I clinical trial. It was a randomized, placebo-controlled, 
multi-dose, and escalating trial of 36 healthy subjects who received 
200, 400, and 600 mg of baicalein or placebo tablets. The drug was 
administered once on days 1 and 10, and three times daily from day 4 
to 9. To analyze the pharmacokinetics of baicalein, blood and urine 
samples were taken from the 600 mg group. This study showed that 
baicalein tablets were safe and well tolerated. Mild adverse effects were 
observed, but none were not resolved. Maximum plasma 
concentrations were observed within 2 h of baicalein administration. 
Urinary excretion of baicalein and its metabolites peaked in 2 h, 
followed by a tendency to double the peak in 12 h. These results 
support the launch of a Phase II clinical trial (Li et al., 2021).

FIGURE 10

Mechanism of action of quercetin and baicalein in HCMV infected cells. Quercetin enters the HCMV-infected cell and travels to the nucleus, where it 
inhibits early viral protein and TNF-α production. It also inhibits contact between interleukin 6 (IL-6) and STAT3, resulting in reduced ROS levels and p62 
accumulation. Both mechanisms are responsible for modulating NF-κB, mitochondrial and ROS pathways. In the case of baicalein, the molecule 
penetrates the cell and inhibits phosphorylation of IκB-α and IKK-β, which are degraded and inhibited, respectively. Each molecular mechanism leads 
to a reduction in the NF-κB pathway and, consequently, in viral activity.
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4.2.2.4 Resistances
No resistance mutation to baicalein was reported in CMV.

4.3 Anti-COX-2

COX-2 inhibitors (cyclooxygenase-2) have been developed to 
reduce the adverse effects associated with the use of aspirin and 
indomethacin (gastric hemorrhage or perforation and hepatotoxicity; 
Nagi et al., 2015). Structural studies have highlighted the inhibitory 
activity of COX-2 as a heterocyclic or carbocyclic structure and 
substituting sulfonamide or methylsulfonyl in position para on one of 
the aromatic rings (Chakraborti et al., 2010). Nevertheless, some anti-
COX-2 agents have been shown to cause serious adverse effects and 
have been withdrawn from the market (Mukherjee, 2002). Thus, 
certain anti-COX-2 agents have been identified in plants with fewer 
side effects than polyphenols. In this category, chalcones are a 
sub-category of the flavonoid family (Cerella et al., 2010).

4.3.1 Mechanism of action
HCMV has been shown to increase the amount of COX-2 enzyme 

in infected cells, establishing an inflammatory state to promote 
replication (Speir et  al., 1998). As part of the analysis of anti-
inflammatory activity, certain chalcone derivatives and those of 
2′-hydroxychalocone were determined to inhibit COX-2 and the 
production of PGE2 catalyzed by this enzyme. Chalcones appear to 
act before the early stage of viral replication, by reducing the 
production of IE-1 and IE-2 proteins (Andouard et al., 2021).

4.3.2 Preclinical study
Celecoxib, a COX-2 inhibitor, was evaluated against HCMV in in 

vitro and in vivo (mouse) models of medulloblastoma. Its efficacy was 
compared with that of VGC. Both drugs inhibited HCMV replication 
in vitro, inhibited PGE2 production and reduced growth of 
medulloblastoma tumor cell in vitro and in vivo (Baryawno 
et al., 2011).

In a study carried out in 2021, the anti-HCMV activity of new 
2′-hydroxychalcone compounds was assessed. These molecules were 
designed to inhibit PGE2 synthesis. To achieve this, a COX-2 
pharmacophore (sulfonamide motif) and other substituents (chlorine, 
fluorine and methyl group) were introduced into the 
2′-hydroxychalcone backbone (Zarghi and Arfaei, 2011). The selection 
of 4 anti-COX-2 agents was based on their significant activity against 
PGE2 production. However, three of them proved to be toxic to cells 
and one had a CC50 of 1,500 μM in growing cells and 185 μM in static 
cells, which was related to indomethacin (a non-specific cyclooxygenase 
inhibitor). Toxicity was potentially increased by the presence of the 
SO2NH2 group in the molecules, whereas the presence of the chlorine 
atom reduced it. These 2’hydroxychalcones were defined as less toxic 
than the tri-hydroxychalcones (Cotin et al., 2012). The molecules were 
tested against strain AD169-GFP. EC50s were up to 16 times higher 
than GCV (EC50 = 19.6 ± 10.1 μM; 8.6 ± 10.1 μM; 10.5 ± 3.6 μM; 
22.1 ± 7.7 μM; 15.1 ± 5.9 μM for the 4 chalcones and indomethacin 
respectively). EC50s were also determined on clinical isolates and 
proved effective against resistant strains. Three chalcones tested proved 
capable of inhibiting IE1-72 production (Andouard et al., 2021).

In addition, a synthesized anti-COX-2 was combined with other 
anti-CMV drugs such as GCV, MBV, baicalein, quercetin and 

ART. This resulted in a synergistic effect with MBV or baicalein. An 
additive effect was demonstrated with GCV or ART, and an 
antagonistic effect was observed with quercetin (Andouard 
et al., 2021).

4.3.3 Clinical study
No clinical study was done for anti-COX-2 molecules against 

HCMV (source: ClinicaTrials.gov).

4.3.4 Resistances
So far, no resistance mutations in HCMV genome were defined.

5 Immunomodulating molecules

5.1 Leflunomide

Leflunomide (LEF) (HWA 486; A77 1726, Arava®) or N-(4-
trifluoromethylphenyl)-5-methylisoxazol-4-carboxamide (Figure 2) 
is an antirheumatic agent used to treat rheumatoid arthritis. It was also 
demonstrated as effective in HCMV infection in HCT and 
renal transplant.

5.1.1 Mechanism of action
After administration, LEF is converted to an active matabolite, 

teriflunomide (A77 1726) that blocks lymphocyte enzyme 
dihydroorotate dehydrogenase and the pyrimidine biosynthetic 
pathway (Williamson et al., 1996). This activity results in a lower T-cell 
proliferation and changes in immune response (Dayer and Cutolo, 
2005; Chong et al., 2006). At a later stage in virion assembly, it prevents 
viral nucleocapsides from acquiring integument. LEF has a dose-
dependent effect on the infectious production of HCMV (Waldman 
et  al., 1999a). Unlike polymerase inhibitors, LEF did not inhibit 
HCMV DNA replication, but it did appear to interfere with tegument 
assembly by inhibiting protein phosphorylation (Xu et  al., 1995; 
Waldman et al., 1999b; Figure 11).

5.1.1.1 Preclinical tests
HCMV isolates in human fibroblats and endothelial cells, 

including multidrug-resistant viruses (EC50 40–60 μM), are inhibited 
by LEF (Waldman et al., 1999b). LEF also inhibits HSV-1 with same 
mechanism of action than with HCMV (Knight et al., 2001).

Furthermore, the LEF was evaluated in vivo using animal models. 
Immunodeficient rats were inoculated with rat CMV (Maastricht 
strain of RCMV) and administered 15 mg/kg/day LEF for 14 days, 
10 mg/kg/day GCV for 5 days, or a drug-free vehicle. Plaque assay 
from tissue homogenates (salivary glands, spleen and lung) showed a 
decrease of 75 to 99% of viral load in the organs of animals treated 
with LEF, and 85 to 99% in those treated with GCV. Thus, LEF is an 
effective agent in decreasing viral load in vivo (Waldman et al., 1999a). 
After that, it was demonstrated the efficacy of LEF in an allogenic 
cardiac transplant model of RCMV infection with low toxicity (Chong 
et al., 2006).

5.1.1.2 Clinical study
Due to its synergy with calcineurin phosphatase inhibitors and its 

inhibitory effects on herpesvirus replication, LEF was presented as a 
promising drug for experimental transplantation (Williams et  al., 
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2002). Fifty-three recipients of LEF were analyzed in a retrospective 
study. A single-dose pharmacokinetic study was performed in stable 
renal transplant recipients with a target serum concentration of 
100 μg/mL to require a loading dose of 1,200 to 1,400 mg over a 7-day 
period. Anemia in the renal transplant patients and increase of liver 
enzymes in liver-transplanted patients were the major observed 
toxicities (Williams et al., 2002). Another study reported same side 
effects and diarrhea after a therapy with a mean duration of 
3.5 months. The recommended dose of LEF was 100 mg/day for 5 days 
followed by 40 mg/day, based on the serum metabolite levels of A77 
1726 teriflunomide (Avery et al., 2010).

In one study, John and colleagues analyzed 17 patients who 
underwent kidney transplantation and were infected with 
CMV. Patients were treated with monitored doses of leflunomide. 
Among these 17 patients, 88% responded clinically to leflunomide 
therapy with viral clearance in the blood and healing of the organs 
involved. The cost of treatment was cheaper than that of ganciclovir: 
64 $ for 6 months against 721 $ for 2 weeks, respectively, (John 
et al., 2005).

Three cases of resistant HCMV infections were reported with LEF 
treatment. It was showed that LEF is not efficient enough in 
monotherapy and should be combined with GCV or FOS to better 
control CMV infection. It was also only used for CMV maintenance 
therapy (El Chaer et al., 2016). As an oral treatment, LEF is also a 

convenient alternative that does not need to stay in hospital to reach 
undetectable viral load (Gómez Valbuena et al., 2016). Then, after lung 
transplant, LEF was assessed in a case of drug resistant CMV retinitis. 
In spite of intravitreal FOS administration and oral VACV, HCMV 
disease progressed. Oral LEF helped in control of retinitis and allowed 
cessation of intravitreal treatment. No recurrence of infection was 
noticed (Rifkin et al., 2017).

A more recent study on case series assessed LEF in patients treated 
with GCV and FOS with adverse effects reported in 50% of cases. In 
66.67% of cases, resistance mutations to polymerase inhibitors were 
present before LEF treatment. LEF was prescribed to treat HCMV 
infection in 75% of patients and as secondary prophylaxis in 25% of 
them. A primary reduction of HCMV viremia was observed after the 
beginning of LEF treatment in 77.7% of recipients but was transient 
in 22.2%. In 58.3% of recipients, LEF suppressed HCMV infection for 
long-term. Adverse effects were responsible for treatment 
discontinuation in 25% of cases. This study showed that LEF can be an 
effective treatment for transplant recipients with GCV-resistant 
infections, whether alone or combined with other drugs, even though 
the small number of subjects was a limitation. It can also be used as a 
secondary prophylaxis (Silva et al., 2018). LEF was also proposed in 
combination with hyperimmune globulins in cardiothoracic grafts 
and was associated with decreasing viremia (Santhanakrishnan 
et al., 2019).

FIGURE 11

Antiviral effect of leflunomide in HCMV infected cell. LEF enters the HCMV-infected cell and is converted to teriflunomide (A77 1726). The metabolite 
inhibits protein kinase, which is unable to phosphorylate proteins. It also penetrates the nucleus to inhibit pyrimidine synthesis. These two mechanisms 
are involved in inhibiting tegument assembly, thereby stopping viral replication.
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In other hand, there is few numbers of studies with LEF in 
allogeneic HCT. One reported that LEF had efficacy in HCMV 
clearance in 38% of cases. Nevertheless, treatment significantly 
succeeded (53%; p = 0.022) only when LEF was used in patients with 
HCMV viral load <2.103copies/mL. Furthermore, it was demonstrated 
as ineffective in patients with terminal organ disease. Thus, LEF could 
be used in prophylaxis in stem cell transplants (Gokarn et al., 2019).

5.1.1.3 Resistance
Currently, there is no reported resistance mutation to leflunomide 

in HCMV.

5.2 mTOR inhibitor: everolimus

Everolimus (SDZ RAD; Certican®, ZORTRESS®; EVR) or 
40-O-(2-hydroxyethyl)-rapamycin (Figure 2) is an oral mammalian 
target of a sirolimus-derived rapamycin inhibitor. It is used in 
immunosuppressive therapy after SOT. FDA approved it for the 
prevention of rejection in kidney transplant recipients at low to 
moderate risk (Gabardi and Baroletti, 2010).

5.2.1 Mechanism of action
Intracellular immunophilin (FKBP12) is bound by EVR, but it 

does not inhibit calcineurin, it binds to the mechanistic target of 
Rapamycin (mTOR). It is at the origin of the inhibition of a 
multifunctional serine–threonine kinase, preventing both the 
synthesis of DNA and proteins that leads to a cell cycle shutdown. 
More precisely, after stimulation of the IL-2 receptor on the activated 
T-cell, EVR inhibits p70S6 kinase which acts at a later stage in the 
T-cell mediated response (Roy and Arav-Boger, 2014). EVR inhibits 
HCMV through improved CD8+/CD4+ T cell responses specific to 
HCMV (Havenith et al., 2013; Roy and Arav-Boger, 2014; Figure 12).

5.2.1.1 Preclinical tests
So far, no preclinical test of the in vitro anti-HCMV efficacy of 

EVR was done because it is not the primary function of this molecule.

5.2.1.2 Clinical study
The effectiveness of EVR against HCMV has been demonstrated 

for several years. A multicenter Phase III trial included 634 heart 
transplant patients receiving immunosuppressive therapies (1.5 mg/
day EVR; 3 mg/day EVR or azathioprine). The EVR groups had 
significant lower HCMV incidence (p < 0.001). Thus, the use of EVR 
suggests an additional benefit in cardiac transplant recipients as it is 
linked to lower rates of HCMV infection, syndrome or organ damage 
(Hill et al., 2007). In accordance with these results, same doses of EVR 
were assessed in heart and renal transplants recipients compared to 
mycophenolic acid (MPA). A significantly lower HCMV incidence 
was observed in the EVR group at 3.0 mg (3%) than in the MPA group 
(7%) (p < 0.04). The same observation was made for organ involvement 
in the EVR 1.5 mg group (0.9%) than in the MPA group (3%) 
(p < 0.04). Therefore, the EVR was associated with a decrease in EVR 
events compared to the MPA (Brennan et al., 2011). In a study of data 
from 3 randomized trials of de novo cardiac transplant recipients, 
Kobashigawa et al. reported that EVR was linked to a significantly 
lower incidence of HCMV infections compared to azathioprine and 
mycophenolate mofetil by combining its immunosuppressive efficacy 

with antiproliferative effects that may have a positive impact on long-
term results (Kobashigawa et al., 2013).

In another study, EVR was compared with valganciclovir (VGC) 
in heart transplant recipients. EVR was introduced at 1.5 mg/day to 
discontinue the use of mycophenolate mophetil in combination with 
VGC that caused neutropenia. HCMV antigenemia was negative even 
after discontinuation of VGC and both renal function and neutrophil 
counts were normalized. No major side effects or rejection due to EVR 
were observed. Thus, EVR was described as an alternative or additive 
option in immunosuppressive therapy for heart transplant recipients 
because of maintenance of immune tolerance, prophylactic potency 
against HCMV, reduced myelosuppression and potential sparing of 
renal function (Imamura et al., 2012).

The impact of EVR on HCMV infection at both systemic or 
pulmonary level was also evaluated in lung transplant recipients 
(n = 32 patients). Eighteen patients were on EVR-immunosuppressive 
regimens. No differences were described in HCMV viremia 
occurrence between EVR-based and EVR-free immunosuppressive 
regimens. However, patients with EVR treatment experienced fewer 
high-load HCMV episodes defined as ≥105 copies/mL during EVR 
administration. It validate the reduction of HCMV events in 
EVR-based regimens transplanted patients, as lung transplant 
recipients (Rittà et al., 2015).

The international randomized phase IV TRANSFORM trial 
(NCT01950819) was conducted in de novo renal transplant patients 
randomized to RVE with reduced exposure to CNI or MPA with 
standard exposure to CNI, treated with induction and corticosteroids. 
EVR caused more adverse reactions than MPA, such as hyperlipidemia, 
interstitial lung disease, peripheral edema, proteinuria, stomatitis/
mouth ulceration, thrombocytopenia and wound healing 
complications. However, EVR has been associated with viral infections 
less frequently than MPA. Indeed, HCMV infections and HCMV 
syndrome were lower (8.1% vs. 20.1%; p < 0.001 and 13.6% vs. 23.0%; 
p < 0.044 respectively). The same result was observed for BKV 
infections. EVR was more often stopped due to rejection or delayed 
healing (Tedesco-Silva et  al., 2019). Another phase IV trial 
(NCT02096107) with EVR in kidney transplants was also conducted 
and reported that EVR with low tacrolimus exposure produced related 
efficacy to tacrolimus and MPA with significantly lower BK and 
HCMV levels (Taber et al., 2019). A more recent Phase IV trial was 
conducted with 186 seropositive HCMV kidney recipients randomized 
(1:1) to receive EVR or MPA in combination with basiliximab, 
cyclosporine and steroids. In seropositive recipients, HCMV 
DNAemia is prevented by EVR treatment until it is no longer tolerated 
or stopped (Kaminski et al., 2022a). In addition, the same authors 
reported that the T-cell phenotype may offer a new biomarker for 
predicting post-transplant infection and classifying patients who 
should be eligible for EVR treatment (Kaminski et al., 2022b).

5.2.1.3 Resistances
Currently, there is no resistance mutation to EVR that was 

reported in CMV.

6 Immunoglobulins

Two types of immunoglobulins are available in therapy: 
intravenous administered immunoglobulins (IVIG) and 
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hyperimmune immunoglobulins (CMV-HIG). We  will focus on 
HCMV-specific immunoglobulins which are able to neutralize viral 
infectivity (Aiba et  al., 2017). Immunoglobulins may be  used in 
preventing congenital infections or in association with other antivirals 
to cure HCMV infection in transplantation (El-Qushayri et al., 2021).

CMV-HIG are obtained by purification of adult human plasma-
derived immunoglobulin products in pools selected for high levels of 
anti-HCMV antibodies. IVIG are acquired from the plasmas of 
healthy blood donors on the basis of a high level of antibodies against 
HCMV (Maniez-Montreuil et  al., 1984). Using a correlation test 
between HCMV antibody titer and viral neutralization titer, it was 
shown that HIG has a higher level of anti-HCMV IgG than IVIG 
(Germer et al., 2016; Schampera et al., 2017). Currently, there is two 
options of HCMV-HIG which are, respectively, authorized in 
United States and Europe: Cytogam® (CMVIG CG; CSL Behring, 
Berne, Switzerland) and Cytotect CP® (Biotest AG).

Cytogam® is an HCMV-HIG derived from human plasma with 
high titers of anti-HCMV antibodies [112,5 PEIU/mL (Paul Ehrlich 
Institute Units)] (Germer et  al., 2016). It contains a standardized 
amount of Ig (5 ± 0.1%). In the United States, it is approved for the 

prophylaxis of HCMV disease in heart, liver, lung, kidney and 
pancreas transplant recipients.

Cytotect CP® contains 5% Ig (50 mg/mL), 96% of which is IgG 
(110.1 PEIU/mL) (Germer et al., 2016). Its maximum IgA level is 
2 mg/mL, and its anti-HCMV antibody level is 100 U/mL. It is 
approved in Europe for the prophylaxis of HCMV infection in patients 
treated with immunosuppressants and in solid organ transplant 
patients. In France, this solution is available as part of a patient-
nominated program for the prevention or treatment of 
HCMV infection.

Cytotect CP® and Cytogam® preparations have high avidity 
indexes (90.5 and 91.0% respectively) and both have been tested in 
immunoblot assays against antigenic HCMV glycoproteins with 
similar results (Germer et al., 2016).

6.1 Mechanism of action

HCMV-HIG involve the neutralization of viral particles in 
extracellular environment, opsonization for phagocytosis (ADP), 

FIGURE 12

Indirect antiviral action of everolimus in HCMV infected T-cell. EVR binds to the interleukin-2 receptor (IL-2R) on HCMV-infected T cells. The molecule 
enters the cell and binds to the immunophilin FKBP12. The complex binds to mTOR, which is unable to phosphorylate the p70S6 kinase. The kinase 
does not phosphorylate S6, which is involved in DNA and protein synthesis. HCMV replication is inhibited by cell cycle arrest.
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activation of the cellular immune system (ADCC) and immune 
adaptation with complement activation (Carbone, 2016; Figure 13).

6.2 Preclinical tests

Efficacy of HCMV-HIG was proved in vitro with a higher HCMV 
neutralizing activity than IVIG (Miescher et al., 2015; Germer et al., 
2016; Schampera et al., 2017).

In 2022 and 2023, an in vitro and ex vivo (in placental villi of the 
first trimester) study analyzed the efficacy and mode of action of 
Cytotect CP® and showed good efficacy and low toxicity in different 
routes of HCMV infection (Coste Mazeau et al., 2022, 2023). The 
development of infection foci was blocked by Cytotect CP® with a 
DN50 of 0.011 to 0.033 U/mL on endothelial strains (TB40E/VHLE) 
in in vitro neutralization assays. Samely, on day 7, Cytotect CP® 
prevents CMV infection with an EC50 of 0.024 U/mL in placental villi. 
Although, once infected, viral growth was not inhibited in explants. 
The viability of villi has not been affected. An additional study shows 
the need for renewing Cytotect CP® every 7 days in the medium to 
maintain efficacy at day 14 in the explants. This was coherent with the 
recent pharmacokinetics study from Kagan et al. showing the decrease 
of plasma concentrations within 2 weeks (Kagan et al., 2021).

Potency of CMV-HIGs during pregnacy was assessed in animal 
models. Guinea pigs were used as model to study HCMV-HIG 
because congenital infection has similarities between HCMV and 
GPCMV. The placental barrier can be crossed by both viruses that can 
create an in utero infection. In guinea pig experiments, pup survival 
is the endpoint as GPCMV causes their death (Schleiss, 2008). This 
model evaluated passive immunization of the fetus. Indeed, studies 
have used pregnant guinea pigs with GPCMV infection prior to HIG 
administration or after to assess the inhibition of viral particle and 
gB. In two studies, fetal survival was increased after administration of 
CMV-HIG but the viral load was not affected (Bia et  al., 1980; 
Chatterjee et al., 2001). Thus, anti-gB CMV-HIG were used in another 
study and allowed a reduction in fetal infection, inflmmation of 
placenta, death of the fetus and increased fetal development. Results 
were independent of CMV-HIG administration time. Infection rate of 
fetuses was significantly reduced with the administration of CMV-HIG 
from 39 to 0%. Anti-gB HIG also reduced inflammation of placenta 
and increased fetal development (Bratcher et al., 1995).

The mouse model was used to assess passive immunization in the 
fetal brain because the mouse CMV (mCMV) does not pass through 
the placental barrier. Peritoneal cavity of new-born mice was infected 
with mCMV. The viral infection was disseminated in mice brains with 
associated inflammatory lesions such as infiltrations of mononuclear 

FIGURE 13

The four modes of action of anti-CMV immunoglobulins. In the first mechanism, HIGs neutralize the viral particle by binding its epitope to viral 
envelope glycoproteins. Virus adsorption and cellular penetration are inhibited. In the second mechanism, HIGs induce complement pathways leading 
to the formation of the membrane attack complex (MAC), which creates a hole in the cell membrane leading to cytolysis. In the third mechanism 
(ADCC), the Fc fraction of the HIG-neutralizing viral particle is recognized by the cytotoxic cell’s Fc receptor (FcR). This leads to the release of cytotoxic 
molecules that create a cytolysis signal. In the final mechanism, after neutralization of the viral particle by HIGs, macrophage FcRs recognize HIG Fc, 
resulting in a phagocytosis signal. The viral particle-HIG complex is phagocytosed. The phagosome fuses with the lysosome, forming a 
phagolysosome and destroying the complex. Created with BioRender.com
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cells and prominent glial nodules. Treatment with HIG or monoclonal 
antibody specific of gB glycoprotein led to decrease of viral load in the 
brains and a 5-fold reduction of inflammatory lesions. This study 
showed that CMV-HIG are responsible for a limitation of viral 
replication and its associated lesions in the brain (Cekinović 
et al., 2008).

6.3 Clinical trials

CMV-HIG treatments were shown to be effective against severe 
HCMV infections in immunocompromised patients and congenital 
infections. Whereas, retrospective studies assessed the potency of the 
HCMV-HIG for the prevention of cCMV infection. To date, the only 
two published trials have reported that anti-HCMV IgG has not been 
effective (Revello et al., 2014; Hughes et al., 2021). The effectiveness of 
treatment is determined according to the frequency of treatment, the 
concentration of HCMV-HIG and the time of seroconversion of the 
patient (Kagan et al., 2019, 2021). A new administration protocol with 
higher concentrations at the first stage of pregnancy will begin as a 
third Phase III trial (NCT 05170269).

Concerning adverse events, in the phase II study, Cytotect® CP 
was associated with a tendancy to a low birth weight for treated 
newborns (Revello et  al., 2014). Nevertheless, these results were 
disclaimed by a newer investigation of Chiaie et al. that was conducted 
in 50 women with a dose of 200 unit/kg taken twice during pregnancy. 
No side effects caused by HCMV-HIG were reported in this study 
(Chiaie et al., 2018).

Recently, an observational study was undertaken in 149 pregnant 
women to assess the effectiveness of Cytotect CP® in pregnant women 
with HCMV primary infection during the first trimester or 
periconceptional period. This study was based on pharmacokinetics 
results showing the half-life of HCMV-HIGs, which is about 10 days. 
Every 2 weeks, a dose of 200 IU/kg body weight of Cytotect CP® was 
injected to women with primary infection before 14 weeks of 
amenorrhea. Intravenous injection should begin within 3 weeks of 
discovery of the primary infection. HCMV-HIG injections were made 
until the 18th week of amenorrhea. A significantly lower rate of 
maternal infection transmitted to the fetus was observed with 7.5% in 
the intervention group and 35.2% in the control group (Kagan 
et al., 2021).

In comparison with the historical cohort of Feldman, Seidel et al. 
conducted an observational survey using the same doses as Kagan 
et al. and found a significant reduction in the rate of mother-to-fetus 
transmission, regardless of the term of pregnancy (23.9% versus 39.9% 
for the Feldman control group; p = 0.026; Feldman et al., 2011; Seidel 
et al., 2020).

Some observational studies suggest that HCMV-HIG may have a 
protecting effect on the fetus after maternal primary infection 
(Buxmann et al., 2012). Cytotect® CP was evaluated on 592 cases of 
maternal primary infection before the 19th week of amenorrhea. After 
an administration of 200 unit/kg, HCMV-linked symptoms in the 
newborn decreased (Visentin et al., 2012).

Nevertheless, Cytotect CP® has also been evaluated in rescue 
therapy for hematopoietic stem cell recipients with resistant refractory 
infections. One study determined the safety and efficacy profiles of 
Cytotect CP® in 23 patients with refractory HCMV and GVHD (74%) 
and/or steroid treatment (64%). After 15 days, a response was 

observed in 18 patients. Of the 18, four had CMV reactivation, one 
died of CMV infection, and 4 died of CMV-related causes within 
100 days of starting treatment. Total 100-day survival was 69.6% after 
Cytotect CP®. However, no statistical difference between respondents 
and non-respondents was reported. Thus, it showed that Cytotect CP® 
was well tolerated and effective as a recovery treatment (Alsuliman 
et al., 2018).

Another rescue therapy study was conducted in cardiothoracic 
transplant recipients. This was a 6-year retrospective single-center 
experiment in 35 patients. The rescue therapy consisted of Cytotect 
CP® supplemented by antiviral treatment (GCV/VGCV/LEF). 
HCMV-HIGs were well tolerated by patients and safe; only two 
patients had adverse events, but their symptoms were resolved after 
reducing HCMV-HIG doses to 1.5 mg/kg. CMV DNA was reduced in 
all patients and, after 4 weeks, undetectable in 73% of them. 
HCMV-HIG were shown as effective to control viral replication in 
cardiothoracic transplant recipients (Santhanakrishnan et al., 2019).

6.4 Resistances

So far, there is no reported case of resistant CMV to HIG.

7 Discussion

The CMV DNA polymerase inhibitors (GCV, FOS, and CDV) are 
essential molecules for decreasing the morbidity and mortality rate 
associated with CMV infection in transplant recipients (SOT or 
HSCT). However, they are often responsible for toxicity (hematologic 
or renal) and emergence of resistance that may limit their use. 
Nevertheless, they are always the most used in clinical practice. The 
approval of letermovir represents an important innovation for CMV 
prevention in HSCT. A decisive step forward in the management of 
refractory and/or resistant infections has been achieved with the 
validation of maribavir in transplant recipients. However, in case of 
multidrug resistance, or in non-transplanted patient or also in the 
prevention and treatment of cCMV infection, finding new antivirals 
or molecules able to inhibit CMV replication with the lowest toxicity 
remains a critical need.

In this review, we have listed the main compounds with potential 
activity against CMV. They belong to different families of molecules, 
some with specific antiviral activity, others known for their 
antimicrobial or immunosuppressive activities but with anti-CMV 
efficacy, and still others with a completely different mode of action, 
such as immunoglobulins.

Some direct antivirals like brincidofovir or cyclopropavir have an 
interesting profile for CMV treatment, but the development of the first 
was stopped after emergence of toxicity in a phase II clinical trial 
whereas the second did not enter in phase II trials until now. The 
search of cidofovir derivatives or pro-drugs is not yet stopped: 
recently, a new family of antiviral acyclonucleoside analogs with high 
bioavailability and potential activity against HCMV was patented (Roy 
and Agrofoglio, 2022) and are under evaluation (personal data). 
Concerning anti-terminase benzimidazole analogs, their poor 
biodisponibility limited their clinical use. As the effectiveness of 
letermovir validates terminase inhibitors as a clinically relevant class 
of antiviral agents, the development of other terminase inhibitors may 
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be considered and research on these inhibitors should be encouraged 
(Ligat et al., 2018; Gentry et al., 2019). Indirect antivirals are also an 
interesting area to explore because of their cellular targets, which do 
not select for resistance to direct antivirals. Artemisin derivatives have 
shown their efficacy to control HCMV replication in some transplant 
patients but with varying degrees of effectiveness. A degree of 
uncertainty therefore remains when these treatments are used as 
monotherapy but artesunate is still an alternative alone or in 
association in multidrug resistant infections. Other indirect antivirals 
like flavonoids or anti-cox derivatives have demonstrated good 
efficacy in vitro but few or no study were performed until now with 
these molecules. Expanding these families of chemical compounds 
could be a complementary approach. Concerning immunomodulating 
agents, leflunomide, mTOR inhibitors and immunoglobulins could 
be used in combination with other antiviral drugs, as their use as 
monotherapy is not sufficiently effective to be recommended for the 
control of high level HCMV replication.

With agents acting by new modes of action as LTV and MBV 
available in clinical use, association therapy for the treatment of CMV 
infection and disease can move from concept to reality. In vitro studies 
support at least one additive (and sometimes synergistic) effect of 
association of LTV or MBV with DNA polymerase inhibitors. MBV 
targeting the kinase pUL97, his mode of action differs from the DNA 
polymerase or terminase inhibitors, but pUL97 being the kinase 
essential for GCV activation, association of both antivirals are 
antagonist. Moreover, we and others have already demonstrated in 
vitro that combination of indirect antiviral with DNA polymerase 
inhibitors have additive or synergistic activity (Morère et al., 2015; 
Wildum et al., 2015; Drouot et al., 2016; Chou et al., 2019). So far, 
clinical studies are needed to assess which combination therapy for 
HCMV is superior to monotherapy and which combination regimens 
are most effective. Combination therapy has already proved its 
relevance to treat other viral infections such as human 
immunodeficiency virus and hepatitis C virus (Hepatitis, 2018; Saag 
et  al., 2020). Use of immunoglobulins in addition with antiviral 
therapy should also be considered in immunosuppressed patients, 
especially those with weak or null cellular response against 
CMV. Nevertheless, the effectiveness of this approach must 

be  confirmed in clinical trials to better define the indications 
according to the patient profile, the history of CMV infection and the 
antivirals already used. Since few agents are currently being studied in 
humans, a combination therapy with existing agents and possibly with 
indirect acting anti-HCMV molecules approved for other indications 
not suitable for use in monotherapy should be considered.
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