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implications for airway 
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Human Rhinoviruses (RV) are a major cause of common colds and infections 
in early childhood and can lead to subsequent development of asthma via an 
as yet unknown mechanism. Asthma is a chronic inflammatory pulmonary 
disease characterized by significant airway remodeling. A key component 
of airway remodeling is the transdifferentiation of airway epithelial and 
fibroblast cells into cells with a more contractile phenotype. Interestingly, 
transforming growth factor-beta (TGF-β), a well characterized inducer of 
transdifferentiation, is significantly higher in airways of asthmatics compared 
to non-asthmatics. RV infection induces TGF-β signaling, at the same 
time nucleoporins (Nups), including Nup153, are cleaved by RV proteases 
disrupting nucleocytoplasmic transport. As Nup153 regulates nuclear export 
of SMAD2, a key intermediate in the TGF-β transdifferentiation pathway, its 
loss of function would result in nuclear retention of SMAD2 and dysregulated 
TGF-β signaling. We  hypothesize that RV infection leads to increased 
nuclear SMAD2, resulting in sustained TGF-β induced gene expression, 
priming the airway for subsequent development of asthma. Our hypothesis 
brings together disparate studies on RV, asthma and Nup153 with the aim 
to prompt new research into the role of RV infection in development of 
asthma.
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1 Introduction

Asthma is a chronic inflammatory lung disease characterized by episodes of 
bronchoconstriction (exacerbations or attacks) caused by many different stimuli, 
including virus infections (AIHW, 2023). Rhinovirus (RV) infections are the most 
common viral cause of exacerbations in children and adults with asthma (Nicholson 
et al., 1993; Johnston et al., 1995). Additionally, RV infection may predispose children 
to developing asthma (Brouard et al., 2016; Toivonen et al., 2016; Jartti and Gern, 
2017). The thickened airway wall with increased mucus secretion characteristic of 
asthma is attributed to airway remodeling (AR). There appears to be an association of 
severe asthma with repeated RV infections. Persistent and repeated RV infections are 
observed in people with asthma (Kling et al., 2005; Zlateva et al., 2014), while repeated 
RV infections may lead to an injury-repair loop that induces AR. In this perspectives 
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article, we  hypothesize that RV induced disruption of 
nucleocytoplasmic transport results in sustained AR related gene 
expression, priming the airway for asthma development. This could 
be the mechanism whereby RV infection predisposes children to 
developing asthma.

2 Rhinovirus

The many strains of rhinovirus (RV) are the main etiologic cause 
of upper respiratory tract infections (URTIs), commonly referred to 
as the “common cold” (Pappas, 2018). The incidence of RV infections 
tends to decrease with increasing age, with infants and children 
experiencing an average of seven to 10 episodes of the common cold 
annually, while adults experience an average of only two to five 
episodes each year (Gwaltney et al., 1967; D'Alessio et al., 1976). In 
addition to causing approximately half of all URTIs, RV can cause 
asymptomatic infections (Makela et al., 1998; Juven et al., 2000) or, 
more seriously, severe lower respiratory tract infections (LRTIs), and 
exacerbations of asthma and chronic obstructive pulmonary disease 
(COPD) that may lead to death (see Supplementary Figure S1A; 
Mosser et al., 2002; Self et al., 2016; Kerr et al., 2021).

3 Asthma

Asthma is a chronic inflammatory pulmonary disease of the 
conducting airways, usually caused by an immunological reaction. 
Asthma causes episodes of bronchoconstriction, which result in 
coughing, wheezing, breathlessness, and tightness of the chest. These 
symptoms result from increased sensitivity of the airways, bronchial 
wall inflammation and increased mucus secretions (see 
Supplementary Figure S1B; Kumar et al., 2015). Airway narrowing is 
a classic phenotypic sign of asthma and can occur as a result of airway 
remodeling (AR; Carroll et al., 1993) discussed in the next section.

RV infection is the major cause of viral induced asthmatic attacks 
in adults and children (Mak et al., 2011). In a cross-sectional study of 
hospitalized children, 85% of asthma exacerbations were a result of 
respiratory viral infections, two thirds of which were caused by RV 
infection (Mak et al., 2011).

Some studies have shown links between RV infections in 
childhood and the development of asthma later in life (Brouard et al., 
2016; Toivonen et al., 2016; Jartti et al., 2020). Exposure to RV during 
infancy can predispose children to asthma, potentially leading to the 
development of the condition (AIHW, 2023). Infants affected by 
RV-associated wheezing during the first 3 years of life experience a 
10-fold increased risk of developing asthma by age six; with nearly 
90% of the affected infants developing asthma (Jackson et al., 2008). 
Only 16% of children who were not affected by wheezing developed 
asthma by age six (Jackson et al., 2008).

4 Airway remodeling

AR refers to a series of physical and structural changes to the 
airway wall that increases wall thickness and reduces the passage of 
air through the airway as shown in Supplementary Figures S1B,C 
(Breton et al., 2018; Michalik et al., 2018). These structural changes 

are indicative of repetitive airway injuries and are found in nearly all 
asthmatic airways (Elias et al., 1999; Breton et al., 2018; Hsieh et al., 
2023). The result of these injuries can include subepithelial fibrosis, 
increased smooth muscle mass (thickening), gland enlargement, 
neovascularization and epithelial alterations as shown in 
Supplementary Figures S1B,C (Bergeron et al., 2010). One of the 
main structural changes observed during AR includes the 
transdifferentiation of epithelial cells to mesenchymal cells (EMT) 
and fibroblasts into myofibroblasts (FMT). Since myofibroblasts are 
practically absent in normal airways, FMT is one of the key events 
contributing to the chronic sequelae of asthma (Hackett et al., 2009), 
ultimately leading to permanently impaired pulmonary function 
(Pascual and Peters, 2005; Breton et al., 2018; Michalik et al., 2018). 
FMT can occur as part of a normal response to injury and, when no 
longer required, myofibroblasts undergo apoptosis or transition back 
into fibroblasts (Breton et al., 2018; Michalik et al., 2018). However, 
this does not appear to be the case in asthmatic airways (AA) where 
myofibroblasts remain after their initial purpose has finished, 
contributing to AR and chronic impairment (Breton et al., 2018; 
Michalik et al., 2018). Transforming Growth Factor-β (TGF-β) is a 
well characterized profibrotic cytokine that is elevated in the 
asthmatic lung. Importantly, TGF-β is a major inducer of both EMT 
and FMT (Breton et  al., 2018; Walker et  al., 2019) and a key 
contributor to AR.

5 TGF-β

TGF-β is part of a family of growth factors responsible for cell 
proliferation, tissue regulation, differentiation, and apoptosis 
(Kubiczkova et  al., 2012; Walton et  al., 2017). A ubiquitously 
expressed, secreted cytokine, TGF-β plays important roles in many 
physiological and pathological processes during development and in 
carcinogenesis (Chaudhury and Howe, 2009; Baba et  al., 2022). 
TGF-β is induced in response to a variety of stimuli including RV 
infections (Dosanjh, 2006; Xia et al., 2017; Wieczfinska et al., 2022). 
TGF-β was not induced when primary bronchial epithelial cells were 
infected with low levels of RV (Bedke et al., 2012) and the authors 
concluded that basal endogenous production of TGF-β contributed 
to the observed effect on RV infection in cells from asthmatic 
airways. A recent study found upregulation of TGF-βR (TGF-β 
receptor) activity in RV infection in vitro and in vivo, implying 
increased TGF-β production (Dy et al., 2023).

TGF-β signals through two receptor classes (Finnson et  al., 
2008; Miller and Hill, 2016) resulting in signaling cascades 
dependent on SMAD proteins. SMADs are intracellular 
transcription factors and key intermediates in TGF-β signaling 
(Bedke et al., 2012; Miller and Hill, 2016). A well-studied pathway 
associated with fibrosis is the TGF-β1/Activin receptor like kinase 
5 (ALK5) pathway (Figure 1A, image labeled “non-infected cells”), 
which transduces intracellular signals through SMAD2/3 in most 
cell types (Finnson et  al., 2008). Upstream receptor dependent 
interactions result in the phosphorylation of SMAD2/3, promoting 
their binding to SMAD4 to form a cytosolic complex (Kamato et al., 
2013). The SMAD2/3/4 complex translocates to the nucleus where 
transcription of target genes is activated or repressed (Xu et al., 
2012) inducing fibrosis (Walton et  al., 2017). For details of the 
signaling pathway please refer to excellent published reviews 
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FIGURE 1

TGF-β1 signaling and SMAD2 shuttling in non-infected and rhinovirus infected cells. In non-infected or rhinovirus infected cells (A) TGF-β1 binds to the 
constitutively phosphorylated receptor TβRII. TβRII and TβRI receptors dimerize, the TβRI receptor becomes phosphorylated. Activated TβRI in turn 
phosphorylates SMAD2/3. SMAD7 can inhibit SMAD2/3 phosphorylation, thereby terminating TGF-β1 signaling. SMAD2/3 heterodimerize and bind to 

(Continued)
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(Kubiczkova et al., 2012; Massague and Sheppard, 2023). SMAD2/3 
subsequently become dephosphorylated and Ran-binding protein 
3 (RanBP3) exports them back to the cytoplasm for recycling or 
termination of TGF-β1 signaling (Dai et al., 2009; Figure 1B, image 
labeled “non-infected cells”).

6 Nucleocytoplasmic transport of 
SMAD2/3

SMAD2/3 and SMAD4 continuously shuttle between the 
cytoplasm and the nucleus in unstimulated as well as stimulated cells, 
providing a dynamic pool that is competitively drawn by cytoplasmic 
and nuclear signal transduction partners. While nuclear export of 
SMAD4 is dependent on the nuclear exporter CRM1, SMAD2/3 are 
exported via CRM1 independent mechanisms (Inman et al., 2002). 
SMAD3 is exported into the cytoplasm by Exportin 4 in a Ran GTPase 
dependent manner (Kurisaki et  al., 2006). In unstimulated cells, 
SMAD2 is imported into the nucleus by its direct interaction with 
CAN/Nup (Nucleoporin) 214; it is exported to the cytoplasm in 
stimulated and unstimulated cells by direct binding to Nup153 (Xu 
et  al., 2002; Figures  1C,D, image labeled “non-infected cells”). 
Significantly, TGF-β receptor-mediated phosphorylation does not alter 
the affinity of SMAD2 for Nup153. SMAD shuttling during active 
signaling involves continuous (but low level) dephosphorylation. 
Importantly, dominant-negative CAN/Nup214 or Nup153 constructs 
interfere with TGF-β activation of SMAD-dependent transcription. 
Exactly how or even if RanBP3 and Nup153 dependent nuclear export 
of SMAD2 synergize, compete, or compensate for each other is not 
clear. Cleavage of Nup153 and the subsequent nuclear accumulation 
of SMAD2 (Figure 1, image labeled “rhinovirus-infected cells”) could 
result in continual TGF-β stimulation as is observed when SMAD2 
interaction with RanBP3 is inhibited (Dai et al., 2009).

7 RV, NUP153, and nucleocytoplasmic 
transport

The RV proteases 2A and 3C are responsible for the cleavage of 
several host proteins, in addition to their roles in proteolytic self-
cleavage of RV polyprotein (Gustin, 2003; Amineva et  al., 2004; 
Finnson et al., 2008; Castello et al., 2009; Caly et al., 2015; Jensen 
et al., 2015; Walker et al., 2016). RV proteases target the nuclear pore 
complex (NPC), cleaving several nucleoporins including Nup153, 
that make up the structure of the pore and enable transport through 
it with the result that nuclear transport in the infected cell is 
disrupted. The role of the NPC is to facilitate bidirectional nucleo-
cytoplasmic shuttling of macromolecules through the nuclear 
membrane (Hoelz et al., 2011). While smaller molecules (<40 kDa) 
and ions can diffuse through the nuclear envelope freely, Nups, such 

as Nup153, are required to escort larger molecules (40-60 kDa) into 
and out of the nucleus in a cyclic fashion (Nofrini et  al., 2016). 
Although 2A protease is capable of cleaving Nup153, 3C protease is 
thought to be the main protease responsible for cleavage in infected 
cells, as 3C protease activity correlates temporally with observed 
cleavage of Nup153 (Walker et al., 2013). The cleavage of Nup153 
clearly contributes to the disruption of nuclear transport observed in 
infected cells (Gustin and Sarnow, 2002; Ghildyal et al., 2009).

TGF-β produced by RV infected cells could auto induce the 
signaling pathway resulting in nuclear import of SMAD2 (Figure 1A, 
image labeled “rhinovirus-infected cells”). In the context of cleaved 
Nup153, SMAD2/3 would not be  able to be  exported out of the 
nucleus (Figures  1C,D, image labeled “rhinovirus-infected cells”) 
resulting in continuous induction of TGF-β dependent genes, 
inducing AR. Indeed, a 2017 study by Minor and Proud found that RV 
or TGF-β alone caused 6 (+/− 3)% or 2 (+/− 1.1)% EMT in Beas-2B 
cells respectively, but together, resulted in 23.3 (+/− 7.6)% EMT 
(Minor and Proud, 2017).

Nup153 has been shown to be a key component in a variety of 
different processes which are independent of its role in transportation 
(Jacinto et al., 2015; Kitazawa and Rijli, 2017; Khan et al., 2020). 
While the exact mechanisms are not well defined, Nup153 is known 
to play a significant role in gene regulation and chromatin 
re-structuring (Kadota et al., 2020) by itself or in tandem with Sox2. 
Sox2 is a significant transcription factor responsible for a variety of 
regulatory processes in a range of cell types. The knock-down of 
either Sox2 or Nup153 results in significantly decreased levels of 
co-occupied genes in various models (Zhang and Cui, 2014; Kitazawa 
and Rijli, 2017; Kuo et al., 2020). Interestingly, Nup153 was the only 
nuclear structural protein enriched in a genome-wide analysis of 654 
Sox2-enriched genes (Kitazawa and Rijli, 2017). Nup153 works with 
Sox2 to regulate cell type-specific transcriptional programs for the 
maintenance of neuronal progenitor cells and significantly, knock 
down of Nup153 leads to differentiation (Toda et  al., 2017). An 
increasing number of studies show that Sox2 plays a vital role in EMT 
processes with TGF-β and Nup153 (Kuo et al., 2020).

The cleavage of Nup153 in RV infected cells could have significant 
impacts on gene expression directly, in addition to effects via nuclear 
retention of SMAD2.

8 Discussion

Previous work on RV biology from our group (Ghildyal et al., 
2009; Walker et al., 2013, 2015, 2016; Caly et al., 2015; Jensen et al., 
2015) and that from other groups (Gustin and Sarnow, 2002; Amineva 
et al., 2004; Castello et al., 2009; Watters and Palmenberg, 2011) has 
shown that RV proteases cleave several Nups, including Nup153, 
resulting in disruption of nucleocytoplasmic transport in infected cells. 
Our recent work on AR cell culture models (Breton et al., 2018; Walker 

SMAD4, forming a cytosolic complex that translocates to the nucleus in an importin-dependent manner where it initiates airway remodeling 
associated gene expression. PPM1A acts to dephosphorylate SMAD2/3. (B) RanBP3 mediates nuclear export of dephosphorylated SMAD2/3 in a CRM1 
independent manner that is not fully elucidated. (C,D) SMAD2 is continually imported into the nucleus by binding to Nup214 and exported by binding 
to Nup153, in stimulated and unstimulated cells in non-infected cells. In rhinovirus infected cells, Nup153 is cleaved, leading to inhibition of SMAD2 
shuttling. SMAD2 and its phosphorylated form accumulate in the nucleus resulting in continued gene expression. Solid arrows denote signaling/
transport direction, dotted arrows denote feedback mechanisms, faded arrows denote inhibition.

FIGURE 1 (Continued)
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et al., 2019) has demonstrated that increased TGF-β in the cellular 
milieu induces AR related pathways. Data from cell neuroscience 
(Zhang and Cui, 2014) and stem cell biology (Jacinto et al., 2015) has 
shown that Nup153 has an important role in regulation of transcription 
related to differentiation. We  hypothesize that the cleavage of 
Nup153  in RV infection leads to accumulation of TGF-β induced 
SMAD2 in the nucleus and sustained AR associated gene expression, 
essentially priming the airway to increased risk of asthma in later years.

RV infection induces the production of TGF-β (Dosanjh, 2006; 
Xia et al., 2017; Wieczfinska et al., 2022), which binds to its cell surface 
receptors and induces an intracellular signaling cascade leading to 
nuclear localization of SMAD2/3/4. SMADs bind to specific gene loci 
and induce gene expression that drives AR. In uninfected cells, 
SMAD2 released from chromatin would translocate to the cytoplasm 
with the help of Nup153 (Xu et al., 2002) or RanBP3 (Dai et al., 2009). 
However, Nup153 is cleaved in RV infected cells (Walker et al., 2013), 
and we hypothesize that in that context, SMAD2 will be retained in 
the nucleus with consequent sustained AR associated signaling. 
We also hypothesize that the cleaved Nup153 is unable to continue its 
transcription functions in association with Sox2, further pushing the 
gene expression toward EMT/FMT and increased AR.

If the above is true, RV infected cells should have decreased 
expression of Nup153/Sox2 associated genes that have a role in cellular 
differentiation. We performed a first such analysis on the GEO Profiles 
dataset GDS4832 that represents microarray expression profiling using 
cultured bronchial epithelial cells (four donors) after RV infection 
(Proud et  al., 2012). TUBB3, SOX12 and ALDH1L1, that are 
downregulated by Nup153 (Toda et  al., 2017), showed a trend for 
increased expression in RV infected samples (Figure  2A). BMi1, 
CCND1 and CCND2, that are upregulated by Nup153, showed a trend 
for decreased expression (Figure 2B). Although the changes are not 
statistically significant, this analysis provides preliminary support for 
our hypothesis. Future research could investigate the relationship 

between Nup153 function, TGF-β signaling and development of asthma 
in models where Nup153 is either downregulated or knocked out.

Our hypothesis predicts that RV infected cells will have increased 
levels of SMAD2 in the nucleus; this has not yet been tested. If our 
hypothesis holds true in the clinic, repeated RV infections would 
increase the risk of later development of asthma. Our hypothesis also 
predicts that allergen injury following on initial RV infection has 
increased risk of asthma development compared to allergen injury 
alone. Interrogation of large longitudinal clinical datasets should 
clarify these and other clinical predictions of our hypothesis.
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FIGURE 2

Effect of RV infection on Nup153 dependent genes. Microarray data for expression of Nup153 genes was downloaded from GEO Profiles Accension 
number GDS4832. Data on the gene expression levels (arbitrary units) for selected genes in presence and absence of infection with RV was extracted 
and is presented here. (A) Selected genes upregulated by Nup153. TUBB3, tubulin beta 3; BMi1, B cell-specific Moloney murine leukemia virus 
integration site 1; CCND1, cyclin D1; CCND2, cyclin D2. (B) Selected genes downregulated by Nup153. SOX12, SRY-Box Transcription Factor 12; 
ALDH1L1, Aldehyde Dehydrogenase 1 Family Member L1. The source data was generated by array expression profiling and used cells from four donors 
(Proud et al., 2012). Data are presented as Mean +/− SEM for data from all 4 donors.
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