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The composition, diversity and dynamics of microbial communities associated 
with grapevines may be influenced by various environmental factors, including 
terroir, vintage, and season. Among these factors, terroir stands out as a unique 
possible determinant of the pathobiome, the community of plant-associated 
pathogens. This study employed high-throughput molecular techniques, 
including metabarcoding and network analysis, to investigate the compositional 
dynamics of grapevine fungal pathobiome across three microhabitats (soil, 
woody tissue, and bark) using the Furmint cultivar. Samples were collected during 
late winter and late summer in 2020 and 2021, across three distinct terroirs 
in Hungary’s Tokaj wine region. Of the 123 plant pathogenic genera found, 
Diplodia, Phaeomoniella, and Fusarium displayed the highest richness in bark, 
wood, and soil, respectively. Both richness and abundance exhibited significant 
disparities across microhabitats, with plant pathogenic fungi known to cause 
grapevine trunk diseases (GTDs) demonstrating highest richness and abundance 
in wood and bark samples, and non-GTD pathogens prevailed soil. Abundance 
and richness, however, followed distinct patterns Terroir accounted for a 
substantial portion of the variance in fungal community composition, ranging 
from 14.46 to 24.67%. Season and vintage also contributed to the variation, 
explaining 1.84 to 2.98% and 3.67 to 6.39% of the variance, respectively. Notably, 
significant compositional differences in fungi between healthy and diseased 
grapevines were only identified in wood and bark samples. Cooccurrence 
networks analysis, using both unweighted and weighted metrics, revealed 
intricate relationships among pathogenic fungal genera. This involved mostly 
positive associations, potentially suggesting synergism, and a few negative 
relationships, potentially suggesting antagonistic interactions. In essence, the 
observed differences among terroirs may stem from environmental filtering 
due to varied edaphic and mesoclimatic conditions. Temporal weather and vine 
management practices could explain seasonal and vintage fungal dynamics. 
This study provides insights into the compositional dynamics of grapevine 
fungal pathobiome across different microhabitats, terroirs, seasons, and health 
statuses. The findings emphasize the importance of considering network-
based approaches in studying microbial communities and have implications for 
developing improved viticultural plant health strategies.
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Introduction

The complex interplay between the grapevines and their 
environment extends beyond the mere physicochemical properties of 
the soil, it highly possibly resonates within shaping the composition, 
diversity, and dynamics of the microbial communities associated with 
grapevines, which play a crucial role in grapevine health and quality 
(Gladstones, 1992; Van Leeuwen and Seguin, 2006; OIV, 2010; 
Vaudour et al., 2015; Bokulich et al., 2016; Belda et al., 2017; Hunter 
et al., 2020; Pauvert et al., 2020; Gobbi et al., 2022). Among these 
environmental factors, terroir, vintage, and season stand out as 
assumed key determinants of the pathobiome composition and 
dynamics (Bokulich et  al., 2014; Pauvert et  al., 2020; Bekris 
et al., 2021).

Terroir, encompassing the unique combination of soil, climate, 
and topography of a vineyard, has a profound influence on the 
physiology of grapevines, potentially influencing the composition and 
interactions of the pathobiome within grapevine microhabitats 
(Hunter et  al., 2020; Gobbi et  al., 2022). However, the specific 
mechanisms by which terroir shapes the pathobiome remain largely 
unexplored. Vintage, the year in which grapes are harvested, is another 
environmental factor known to influence grapevine characteristics, 
potentially through its impact on the pathobiome (Bekris et al., 2021). 
By examining the microbial communities at different stages of the 
growing season, we  can gain insights into the dynamics of the 
pathobiome and its potential influence on quality. Furthermore, 
season, the specific time of year during which grapes are grown and 
harvested, can further modulate the composition of the grapevine 
microbiome. The unique environmental conditions of each season, 
such as temperature and rainfall, can influence the abundance and 
diversity of microbial taxa within grapevine microhabitats (Pauvert 
et al., 2020).

The application of network-based approaches, particularly 
unweighted and weighted metric analysis, provides an avenue to 
discern the structure and complexity of these microbial communities. 
By quantifying the interactions among microbial taxa and assessing 
their relative importance within the network, this approach helps to 
elucidate the intricate interplay between microbial taxa and their 
environment (Herren and McMahon, 2017; Banerjee et  al., 2018; 
Yousefi et al., 2023). Unweighted network analysis, based on presence/
absence of taxa, provides insight into community structures and 
interactions that may be driven by environmental filters or competitive 
exclusion. In contrast, weighted networks, accounting for the 
abundance of different taxa, enable detection of more subtle and 
potentially important interactions that are often overlooked in 
unweighted analysis, including those influenced by the relative 
abundance of taxa (Barberán et al., 2012; Yousefi et al., 2023). This 
methodology allows for a deeper understanding of community 
structures and interactions that may be driven by environmental filters 
or competitive exclusion (Barberán et al., 2012; Banerjee et al., 2018; 
Yousefi et al., 2023).

Amidst the vast vineyards and microbial communities, the 
pathobiome plays a critical role in plant health by maintaining a 
balanced ecosystem that limits the growth and spread of pathogens 
(Vayssier-Taussat et al., 2014; Brader et al., 2017; Bass et al., 2019; 
Pauvert et al., 2020). Understanding the composition and dynamics of 
the pathobiome is essential for developing effective strategies to 
manage grapevine diseases and improve vineyard sustainability. Inside 

the grapevine’s pathobiome, the specter of Grapevine Trunk Diseases 
(GTDs) poses a significant threat. GTDs, often attributed to wood 
endophytes with the potential to switch to a pathogenic lifestyle, 
present a significant threat to the current vineyard sustainability 
(Sakalidis et al., 2011; Laurent et al., 2020; Bettenfeld et al., 2020). The 
prevalence of these diseases, and currently considered the most 
destructive biotic factor of grapevines worldwide, exacerbated by 
factors such as vineyard intensification and environmental changes, 
makes them a focal point in the examination of the grapevine 
pathobiome (Songy et al., 2019; Bettenfeld et al., 2020).

Despite previous studies on microbiome terroir and seasonality in 
grapevines (Bokulich et al., 2014; Gilbert et al., 2014; Knight et al., 
2015; Zarraonaindia et al., 2015; Gobbi et al., 2020, 2022; Geiger et al., 
2022), our understanding of the extent to which microbial 
communities differ among terroirs and the significance of these 
differences at varying spatial scales is still limited (Gobbi et al., 2022). 
Furthermore, there is increasing evidence indicating compositional 
differences among microbiomes of different grapevine parts or 
microhabitats. This suggests the role of strong niche-based processes 
in community assembly (Singh et al., 2018; Del Frari et al., 2019; 
Martínez-Diz et al., 2019; Swift et al., 2021; Geiger et al., 2022; Molnár 
et  al., 2022). Yet, it remains unknown whether the effect of 
environmental differences on microbiome communities varies among 
these microhabitats. For example, it is still unclear whether soil or bark 
microbial communities, which are more exposed to the elements, 
exhibit greater differences among terroirs than microbial communities 
in living inner woody tissues, such as the xylem and phloem.

To address these knowledge gaps, our study embarks on an 
exploration of the composition, diversity, and dynamics of grapevine 
plant pathogenic fungi. We employed high-throughput molecular 
techniques, including metabarcoding and network analysis, to 
characterize the microbial communities associated with different 
grapevine microhabitats, and its possible influences by terroirs, 
vintage, seasons, and health status. Specifically, we  are looking at 
grapevines that are symptomatic vs. asymptomatic for Esca-type 
grapevine trunk disease, all of the same cultivar (Furmint) and 
rootstock. Previous studies have investigated the microbiome of 
grapevines, but our study is the first to systematically compare the 
pathobiome composition and dynamics across different terroirs, 
seasons, and health statuses. Accordingly, we have formulated the 
following hypotheses: (1) The grapevine fungal pathobiome differs 
among different microhabitats, with distinct microbial communities 
inhabiting soil, bark, and wood tissue; (2) The diversity, abundance, 
and distribution of the pathobiome are influenced by different 
parameters, such as terroir, seasonality, vintage aspects, and plant 
health status. The findings from this study are expected to provide a 
more understanding of environmental factors that influence the 
diversity and distribution of pathogenic, offering valuable insights for 
better understanding of the pathobiome in viticulture. By employing 
network analysis, this study provides a more in-depth understanding 
of the structure and complexity of these microbial communities, 
which helped in uncovering microbial interactions and dynamics 
within these ecosystems.

These findings have significant implications for viticulture, as they 
provide a deeper understanding of the factors that influence the 
composition and dynamics of the grapevine pathobiome. This 
knowledge can be used to develop targeted interventions to control 
Grapevine Trunk Diseases and improve overall vineyard sustainability. 
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Moreover, our results have broader implications for microbial ecology, 
offering a novel perspective on the influence of environmental factors 
on microbial communities.

Materials and methods

Study area and sampling

Samples were collected in three vineyards in the southern Tokaj 
wine region, Hungary: in the Szt. Tamás dűlő near Mád (48°11ʹ29.9”N 
21°17ʹ39.0ʹE), and the southern (48°06ʹ27.1”N 21°21ʹ59.2ʹE) and 
northern (48°08ʹ46.3”N 21°22ʹ37.2ʹE) slopes of Nagy-Kopasz Hill 
near the town of Tokaj. These terroirs represent different mesoclimatic 
and edaphic conditions. In each vineyard, we selected eight grapevines; 
four of which had been marked as symptomatic, exhibiting typical leaf 
symptoms of the Esca type of Grapevine Trunk Disease (GTD), and 
four symptomless neighboring plants selected for each symptomatic 
grapevine. Samples were collected from the same marked plants at 
four sampling times: in February and August of 2020 and 2021.

All sampled grapevine plants were of the cultivar Furmint, an old 
and popular white variety endemic to the Carpathian Basin. This is 
the principal cultivar of the Tokaj wine region used to produce the 
botrytized Aszú wines, as well as dry white wines. The vineyards, aged 
between 26 to 44 years, featured the same scion (V. vinifera cv. Furmint 
clone T85) grafted on the same rootstock (V. berlandieri x riparia 
Teleki Kober 5BB). All were managed identically, with cordon training 
and the same conventional plant protection regime.

Three different microhabitats were sampled for each plant: bark 
tissue, perennial woody tissue, and bulk soil. The soil samples were 
taken from four sampling points within 50 cm around the trunk of the 
selected grapevine, to a depth of 20 cm. The samples were combined 
into a composite sample for each of the four grapevines per terroir and 
microhabitat. The bark was peeled with sterile scalpel at four points of 
the trunk, while woody tissue was sampled from underneath the four 
peeled areas of the trunk with a drill that was sterilized with a 4% (v/v) 
bleach solution between plants.

The samples were kept in a cooler in the field and, within five 
hours of collecting, were transported to the laboratory and stored 
at −80°C. A total of 288 composite samples were collected, 
representing the three microhabitats in four symptomatic and four 
asymptomatic plants per vineyard, sampled over two seasons across 
two years. All samples were lyophilized for a minimum of 72 h and 
homogenized using a tissue lyser and steel beads prior to 
DNA extraction.

Molecular work

Metagenomic DNA was extracted from approximately 0.5 mL of 
lyophilized and homogenized soil, bark, and woody tissues from each 
sample using the NucleoSpin® Plant and Soil DNA isolation kit 
(Macherey-Nagel Gmbh & Co., Düren, Germany). This extraction was 
performed according to the manufacturer’s protocol for both the 
tissue and soil samples. The extracted DNA samples were PCR 
amplified using primers fITS7 (Ihrmark et al., 2012) and ITS4 (White 
et al., 1990). The PCR conditions were as follows: one cycle of 95°C 
for 5 min; then 35 cycles of 95°C for 20 s, 56°C for 30 s, and 72°C for 

1.5 min; and concluded with one cycle at 72°C for 7 min. Prior to PCR, 
the DNA samples were normalized for concentration.

To link the sequences to the sample source, a second PCR was 
performed using the same primers, which this time were equipped 
with Illumina adaptors and sample-specific, 8-nucleotide barcodes. 
The normalization of DNA extracts, PCR reactions, and 250-base 
paired-end Illumina NovaSeq sequencing of amplicon libraries were 
conducted at BaseClear B.V. (Leiden, the Netherlands) and at BIOMI 
Kft. (Gödöllő, Hungary).

Besides DNA metabarcoding, the inner wood samples have also 
been used to isolate fungi on agar media to obtain more information 
on the pathobiome related to GTDs. The entire ITS rDNA region of 
ca. 800 cultures has been sequenced and have also been detected by 
metabarcoding (Geiger et al., unpublished data).

Bioinformatic work

Raw DNA sequences were processed with the dada2 package 
(Callahan et al., 2016), which is implemented in R (R Core Team, 
2020). This package is designed to resolve fine-scale DNA sequence 
variation and offers improved elimination of artifactual sequences. 
Since dada2 does not involve clustering sequences into Operational 
Taxonomic Units (OTUs), and is robust in removing spurious data, 
the output of unique Amplicon Sequence Variants (ASVs) captures 
both intra- and interspecific genetic variation of fungi found in the 
samples. This allows for the exploration of strain-level differences in 
inter- and intraspecific interactions.

Based on the quality score profiles, all forward and reverse reads 
were truncated to 250 and 200 bp, respectively, and were quality 
filtered, with the maximum number of expected errors (maxEE) 
allowed in a read set to 2. The filtered reads were denoised, the 
two-directional reads were merged, and clustered into sequence 
variants, which were later subjected to chimera filtering.

Taxonomic assignments of fungi were made based on the UNITE 
database of reference sequences, which represent all fungal Species 
Hypotheses (SHs) based on a dynamic delimitation (Kõljalg et al., 
2013), using USEARCH v. 11 (Edgar, 2010). We  assigned ASVs 
identified to at least the genus level to putative functional groups using 
the curated reference database of FungiTraits ver. 1.2 (Põlme 
et al., 2020).

In this paper, we investigate plant pathogenic fungi within the 
main genera, highlighting those known to be associated with GTDs, 
according to our former literature search (Geiger et al., 2022). All 
sequences of fungal ASVs analyzed in this paper have been deposited 
in GenBank (OQ370580-OQ371285).

Statistical analyses

All statistical analyses were performed in the R environment for 
statistical computing (R Core Team, 2020). The ASV table was 
normalized for subsequent statistical analyses by rarefying the number 
of high-quality fungal sequences through random subsampling of the 
smallest library (15,246 sequences) using the rrarefy function in the 
vegan R package (Oksanen et al., 2013). The resulting matrix contained 
1,616,808 read counts of 5,858 fungal ASVs that served as input for 
the subsequent analyses.
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Rarefied fungal read abundance and ASV richness were compared 
among samples according to categorical variables, i.e., microhabitat 
(bark, living wood, and bulk soil), terroir (North, South and Szt. 
Tamás), vintage (2020 and 2021), season (late winter and late summer) 
and health state (symptomatic and asymptomatic), using analysis of 
variance (ANOVA) and Tukey’s HSD test in R. ASV richness and 
rarefied read abundance of plant pathogens were graphically presented 
as boxplots using the ggplot2 R package (Wickham, 2016).

To visualize differences in fungal community composition among 
the samples, we used the vegan R package (Oksanen et al., 2013) to 
run non-metric multidimensional scaling (NMDS) with Bray-Curtis’s 
distance measure on the Hellinger-transformed ASV table, using the 
metaMDS function in vegan with 999 permutations in R, and a 
secondary matrix containing variables such as sampling source, 
vintage, season, health, and terroir. In addition, we  performed 
PerMANOVA (adonis) using vegan to estimate the amount of 
variation explained by the variables, which were tested for significance 
independently and by including significant variables in a combined 
model that accounted for any correlations among them.

Climatic variables were measured using on-site weather stations 
at multiple terroirs in the Tokaj wine region. Temperature and 
precipitation changes during the two vintages (2020 and 2021) and 
seasons (Late Winter and Late Summer) were assessed via the stored 
climatic data at met.boreas2.hu/eke/ (Local Hungarian Meteorological 
Service, 2023). The data were subjected to permutational multivariate 
analysis of variance using the adonis function in the vegan R package 
(Oksanen et al., 2013). The resulting table (Table 1) illustrates the 
proportion of variation (%) in fungal community composition 
explained by different climatic variables in our seasons and vintages.

We inferred and visualized possible interactions among ASVs of 
plant pathogenic fungi in all the three different sources as a 
cooccurrence table and network graph, using the cooccur and 
visNetwork packages, respectively (Veech, 2013; Griffith et al., 2016; 
Almende et  al., 2019) based on presence-absence matrices. The 
cooccur package was used to select pairs of ASVs that co-occurred 
significantly more often or less often than expected by chance. 
We  then used the co-occurrence table for network visualization, 
indicating both positive and negative pairwise correlations.

The weighted and unweighted network analysis was performed 
using the R package igraph (version 0.10.1, Csardi and Nepusz, 2006). 
It was performed descriptive and comparative statistics on network 
measures, where they were statistically analyzed to assess the effects 
of microhabitat, terroir, season, vintage, and health status. The 
statistical metrics analyzed: Average degree, network density and 

modularity (unweighted network analysis), and degree and 
betweenness centrality (weighted network analysis). See material and 
methods section of network metrics analysis for further details.

Furthermore, we performed indicator species analysis using the 
multipatt function in the indicspecies package (De Cáceres et al., 2012) 
with 999 permutations, to identify characteristic and differential 
fungal ASVs for the different categorical variables: microhabitat, 
vintage, season, terroir, and health type.

Network metrics analysis

The network analysis was conducted using the R package igraph 
(version 0.10.1, Csardi and Nepusz, 2006), which provided the toolkit 
for our network data analysis. Raw data were transformed into 
adjacency matrices for subsequent statistical analysis. These matrices 
represented the presence or absence of ASVs for the unweighted 
analysis, and the abundance of different ASVs for the weighted analysis.

The function ‘graph_from_adjacency_matrix()’ from the igraph 
package was employed to convert these matrices into network objects. 
For the weighted network analysis, the ‘weighted’ parameter was set 
to true to account for the abundance values. The Louvain method was 
applied to identify clusters or modules within the networks. This 
method is suitable for both weighted and unweighted networks. The 
‘cluster_louvain()’ function from igraph was utilized to apply the 
Louvain algorithm, detecting communities in each subgraph and 
calculating a modularity score based on these communities.

A variety of network metrics were computed for each network 
(weighted and unweighted). These include the average degree (using 
the ‘degree()’ function), network density (using the ‘graph.density()’ 
function), and betweenness centrality (using the ‘betweenness()’ 
function). Modularity, a measure of the division strength of a network 
into modules, was obtained from the results of the Louvain 
community detection.

Custom functions and loops were designed and implemented in 
the code to facilitate the computation of network measures across 
multiple networks. These functions significantly reduced the amount 
of repetitive code, enhancing the efficiency and readability of the 
analysis. Each function was designed to accept a network object as 
input, perform the necessary calculation, and return the result. These 
functions were applied to each network in a loop, with the results 
compiled into a data frame for subsequent analysis.

Results

Among the 3,010 ASVs assigned to functional groups, 733 ASVs 
represented 123 plant pathogenic genera, including fifteen with 
known associations with GTDs. The five most dominant plant 
pathogenic genera were: Phaeomoniella (80 ASVs), Devriesia (36 
ASVs), Fusarium (35 ASVs), Diplodia (29 ASVs), and Alternaria (25 
ASVs). Within the three different microhabitats, Diplodia showed the 
highest richness in bark and woody tissues, followed by Phaeomoniella, 
and Devriesia. In soil, Fusarium and Alternaria were the most diverse. 
The distribution and sequence read abundance of all the plant 
pathogenic group genera among the samples are shown in Table 2. The 
entire ITS rDNA region of ca. 800 cultures have been sequenced and 

TABLE 1 Proportion of variation (%) of the temperature and precipitation 
recorded of the area of the fungal community being explained by 
different seasonality (Late winter and Late summer), and year/vintage 
(2020 and 2021) calculated with permutational multivariate analysis of 
variance, based on the fungal community matrix.

Temperature Precipitation

% p value % p value

Late winter 1.188 0.0012 0.239 0.7607

Later summer 1.179 0.0011 1.074 0.0031

2020 1.09 0.0021 2.215 0.0001

2021 0.646 0.0451 0.781 0.035

Followed by significant p values from variance analysis. Significant results are in bold.
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TABLE 2 Distribution and rarefied sequence read abundance of all the plant pathogenic group genera among the samples, which were within different 
source types (wood, bark tissues, and soil bulk) of plant pathogenic fungal main community composition and its different terroir, season, year, and 
health.

Sample_ID
Seq. read 

abundance Distribution Microhabitat Terroir Year Season Health status

Sample 001 2,862 52 Bark South 2021 Late winter Asymptomatic

Sample 002 1,249 28 Bark South 2021 Late winter Symptomatic

Sample 003 2,408 34 Bark South 2021 Late winter Asymptomatic

Sample 004 1,293 33 Bark South 2021 Late winter Symptomatic

Sample 005 1,662 33 Bark South 2021 Late winter Asymptomatic

Sample 006 4,601 40 Bark South 2021 Late winter Symptomatic

Sample 007 2,156 35 Bark South 2021 Late winter Asymptomatic

Sample 008 2,481 23 Bark South 2021 Late winter Symptomatic

Sample 009 2,983 25 Bark North 2021 Late winter Asymptomatic

Sample 010 3,127 46 Bark North 2021 Late winter Symptomatic

Sample 011 3,825 49 Bark North 2021 Late winter Asymptomatic

Sample 012 1,533 40 Bark North 2021 Late winter Symptomatic

Sample 013 13,415 16 Bark North 2021 Late winter Asymptomatic

Sample 014 2,539 80 Bark North 2021 Late winter Symptomatic

Sample 015 1721 56 Bark North 2021 Late winter Asymptomatic

Sample 016 6,767 41 Bark North 2021 Late winter Symptomatic

Sample 017 2,134 48 Bark Szt. Tamas 2021 Late winter Asymptomatic

Sample 018 854 42 Bark Szt. Tamas 2021 Late winter Symptomatic

Sample 019 1,659 50 Bark Szt. Tamas 2021 Late winter Asymptomatic

Sample 020 587 17 Bark Szt. Tamas 2021 Late winter Symptomatic

Sample 021 2,539 51 Bark Szt. Tamas 2021 Late winter Asymptomatic

Sample 022 2,792 62 Bark Szt. Tamas 2021 Late winter Symptomatic

Sample 023 1,000 50 Bark Szt. Tamas 2021 Late winter Asymptomatic

Sample 024 1876 54 Bark Szt. Tamas 2021 Late winter Symptomatic

Sample 025 3,428 17 Soil South 2021 Late winter Asymptomatic

Sample 026 2,891 48 Soil South 2021 Late winter Symptomatic

Sample 027 444 2 Soil South 2021 Late winter Asymptomatic

Sample 028 6,014 10 Soil South 2021 Late winter Symptomatic

Sample 029 3,365 9 Soil South 2021 Late winter Asymptomatic

Sample 030 2,263 9 Soil South 2021 Late winter Symptomatic

Sample 031 1,383 10 Soil South 2021 Late winter Asymptomatic

Sample 032 1988 12 Soil South 2021 Late winter Symptomatic

Sample 033 1,650 39 Soil North 2021 Late winter Asymptomatic

Sample 034 1,434 48 Soil North 2021 Late winter Symptomatic

Sample 035 2,416 25 Soil North 2021 Late winter Asymptomatic

Sample 036 2,904 36 Soil North 2021 Late winter Symptomatic

Sample 037 2039 48 Soil North 2021 Late winter Asymptomatic

Sample 038 2,174 44 Soil North 2021 Late winter Symptomatic

Sample 039 1,539 54 Soil North 2021 Late winter Asymptomatic

Sample 040 2,388 54 Soil North 2021 Late winter Symptomatic

Sample 041 460 38 Soil Szt. Tamas 2021 Late winter Asymptomatic

Sample 042 1919 49 Soil Szt. Tamas 2021 Late winter Symptomatic

(Continued)
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TABLE 2 (Continued)

Sample_ID
Seq. read 

abundance Distribution Microhabitat Terroir Year Season Health status

Sample 043 203 16 Soil Szt. Tamas 2021 Late winter Asymptomatic

Sample 044 989 41 Soil Szt. Tamas 2021 Late winter Symptomatic

Sample 045 352 37 Soil Szt. Tamas 2021 Late winter Asymptomatic

Sample 046 943 45 Soil Szt. Tamas 2021 Late winter Symptomatic

Sample 047 522 34 Soil Szt. Tamas 2021 Late winter Asymptomatic

Sample 048 316 28 Soil Szt. Tamas 2021 Late winter Symptomatic

Sample 049 7,881 26 Wood South 2021 Late winter Asymptomatic

Sample 050 8,898 28 Wood South 2021 Late winter Symptomatic

Sample 051 9,201 30 Wood South 2021 Late winter Asymptomatic

Sample 052 12,967 19 Wood South 2021 Late winter Symptomatic

Sample 053 12,734 19 Wood South 2021 Late winter Asymptomatic

Sample 054 3,168 28 Wood South 2021 Late winter Symptomatic

Sample 055 3,146 31 Wood South 2021 Late winter Asymptomatic

Sample 056 10,210 27 Wood South 2021 Late winter Symptomatic

Sample 057 2,437 46 Wood North 2021 Late winter Asymptomatic

Sample 058 3,231 25 Wood North 2021 Late winter Symptomatic

Sample 059 2013 17 Wood North 2021 Late winter Asymptomatic

Sample 060 8,563 37 Wood North 2021 Late winter Symptomatic

Sample 061 394 26 Wood North 2021 Late winter Asymptomatic

Sample 062 9,018 22 Wood North 2021 Late winter Symptomatic

Sample 063 6,134 20 Wood North 2021 Late winter Asymptomatic

Sample 064 8,212 10 Wood North 2021 Late winter Symptomatic

Sample 065 9,719 28 Wood Szt. Tamas 2021 Late winter Asymptomatic

Sample 066 10,277 19 Wood Szt. Tamas 2021 Late winter Symptomatic

Sample 067 6,939 42 Wood Szt. Tamas 2021 Late winter Asymptomatic

Sample 068 7,398 14 Wood Szt. Tamas 2021 Late winter Symptomatic

Sample 069 8,811 47 Wood Szt. Tamas 2021 Late winter Asymptomatic

Sample 070 4,842 18 Wood Szt. Tamas 2021 Late winter Symptomatic

Sample 071 736 12 Wood Szt. Tamas 2021 Late winter Asymptomatic

Sample 072 6,766 18 Wood Szt. Tamas 2021 Late winter Symptomatic

Sample 073 5,186 29 Bark South 2021 Late summer Asymptomatic

Sample 074 1,211 30 Bark South 2021 Late summer Asymptomatic

Sample 075 1,133 30 Bark South 2021 Late summer Symptomatic

Sample 076 290 28 Bark South 2021 Late summer Asymptomatic

Sample 077 2,202 45 Bark South 2021 Late summer Symptomatic

Sample 078 1783 31 Bark South 2021 Late summer Asymptomatic

Sample 079 1,333 33 Bark South 2021 Late summer Symptomatic

Sample 080 2,512 29 Bark North 2021 Late summer Asymptomatic

Sample 081 2,219 36 Bark North 2021 Late summer Symptomatic

Sample 082 696 27 Bark North 2021 Late summer Asymptomatic

Sample 083 1701 21 Bark North 2021 Late summer Asymptomatic

Sample 084 2,476 24 Bark North 2021 Late summer Symptomatic

Sample 085 3,493 42 Bark North 2021 Late summer Asymptomatic
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TABLE 2 (Continued)

Sample_ID
Seq. read 

abundance Distribution Microhabitat Terroir Year Season Health status

Sample 086 4,073 30 Bark North 2021 Late summer Symptomatic

Sample 087 1,050 45 Bark Szt. Tamas 2021 Late summer Asymptomatic

Sample 088 1,464 29 Bark Szt. Tamas 2021 Late summer Symptomatic

Sample 089 481 38 Bark Szt. Tamas 2021 Late summer Asymptomatic

Sample 090 1983 42 Bark Szt. Tamas 2021 Late summer Symptomatic

Sample 091 1,601 40 Bark Szt. Tamas 2021 Late summer Asymptomatic

Sample 092 913 11 Bark Szt. Tamas 2021 Late summer Symptomatic

Sample 093 1,556 44 Bark Szt. Tamas 2021 Late summer Asymptomatic

Sample 094 6,143 36 Bark Szt. Tamas 2021 Late summer Symptomatic

Sample 095 1,514 7 Soil South 2021 Late summer Asymptomatic

Sample 096 5,013 26 Soil South 2021 Late summer Symptomatic

Sample 097 6,389 4 Soil South 2021 Late summer Asymptomatic

Sample 098 4,323 7 Soil South 2021 Late summer Symptomatic

Sample 099 1,250 9 Soil South 2021 Late summer Asymptomatic

Sample 100 3,656 16 Soil South 2021 Late summer Symptomatic

Sample 101 2,447 32 Soil South 2021 Late summer Asymptomatic

Sample 102 1,511 11 Soil South 2021 Late summer Symptomatic

Sample 103 1,519 33 Soil North 2021 Late summer Asymptomatic

Sample 104 2082 41 Soil North 2021 Late summer Symptomatic

Sample 105 1,582 35 Soil North 2021 Late summer Asymptomatic

Sample 106 1776 41 Soil North 2021 Late summer Symptomatic

Sample 107 1,345 43 Soil North 2021 Late summer Asymptomatic

Sample 108 1,328 26 Soil North 2021 Late summer Symptomatic

Sample 109 1,148 33 Soil North 2021 Late summer Asymptomatic

Sample 110 1,373 46 Soil North 2021 Late summer Symptomatic

Sample 111 682 32 Soil Szt. Tamas 2021 Late summer Asymptomatic

Sample 112 1,186 50 Soil Szt. Tamas 2021 Late summer Symptomatic

Sample 113 572 43 Soil Szt. Tamas 2021 Late summer Asymptomatic

Sample 114 1,610 45 Soil Szt. Tamas 2021 Late summer Symptomatic

Sample 115 743 38 Soil Szt. Tamas 2021 Late summer Asymptomatic

Sample 116 808 43 Soil Szt. Tamas 2021 Late summer Symptomatic

Sample 117 1,381 54 Soil Szt. Tamas 2021 Late summer Asymptomatic

Sample 118 1,417 31 Soil Szt. Tamas 2021 Late summer Symptomatic

Sample 119 10,269 19 Wood South 2021 Late summer Asymptomatic

Sample 120 14,490 17 Wood South 2021 Late summer Symptomatic

Sample 121 11,596 27 Wood South 2021 Late summer Symptomatic

Sample 122 6,330 23 Wood South 2021 Late summer Asymptomatic

Sample 123 9,921 23 Wood South 2021 Late summer Symptomatic

Sample 124 10,624 19 Wood South 2021 Late summer Asymptomatic

Sample 125 5,033 21 Wood South 2021 Late summer Symptomatic

Sample 126 2,506 21 Wood North 2021 Late summer Asymptomatic

Sample 127 9,935 25 Wood North 2021 Late summer Symptomatic

Sample 128 1,151 23 Wood North 2021 Late summer Asymptomatic
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TABLE 2 (Continued)

Sample_ID
Seq. read 

abundance Distribution Microhabitat Terroir Year Season Health status

Sample 129 6,448 37 Wood North 2021 Late summer Symptomatic

Sample 130 5,582 31 Wood North 2021 Late summer Asymptomatic

Sample 131 1,617 21 Wood North 2021 Late summer Symptomatic

Sample 132 12,034 32 Wood North 2021 Late summer Symptomatic

Sample 133 6,875 27 Wood Szt. Tamas 2021 Late summer Asymptomatic

Sample 134 8,151 21 Wood Szt. Tamas 2021 Late summer Symptomatic

Sample 135 14,452 20 Wood Szt. Tamas 2021 Late summer Asymptomatic

Sample 136 5,885 12 Wood Szt. Tamas 2021 Late summer Symptomatic

Sample 137 12,755 46 Wood Szt. Tamas 2021 Late summer Asymptomatic

Sample 138 14,410 50 Wood Szt. Tamas 2021 Late summer Symptomatic

Sample 139 13,126 18 Wood Szt. Tamas 2021 Late summer Asymptomatic

Sample 140 9,521 36 Wood Szt. Tamas 2021 Late summer Symptomatic

Sample 141 7,615 52 Bark South 2020 Late summer Asymptomatic

Sample 142 3,393 19 Bark South 2020 Late winter Asymptomatic

Sample 143 7,063 45 Bark South 2020 Late summer Symptomatic

Sample 144 3,428 22 Bark South 2020 Late winter Symptomatic

Sample 145 1851 39 Bark South 2020 Late summer Asymptomatic

Sample 146 2,584 32 Bark South 2020 Late winter Asymptomatic

Sample 147 3,611 47 Bark South 2020 Late summer Symptomatic

Sample 148 3,708 23 Bark South 2020 Late winter Symptomatic

Sample 149 2,262 22 Bark South 2020 Late winter Asymptomatic

Sample 150 857 47 Bark South 2020 Late summer Symptomatic

Sample 151 3,461 28 Bark South 2020 Late winter Symptomatic

Sample 152 516 35 Bark South 2020 Late summer Asymptomatic

Sample 153 833 27 Bark South 2020 Late winter Asymptomatic

Sample 154 4,551 38 Bark South 2020 Late summer Symptomatic

Sample 155 2,162 34 Bark South 2020 Late winter Symptomatic

Sample 156 1,228 35 Bark North 2020 Late summer Asymptomatic

Sample 157 3,183 26 Bark North 2020 Late winter Asymptomatic

Sample 158 1787 32 Bark North 2020 Late summer Symptomatic

Sample 159 4,047 29 Bark North 2020 Late winter Symptomatic

Sample 160 325 27 Bark North 2020 Late summer Asymptomatic

Sample 161 1,082 17 Bark North 2020 Late winter Asymptomatic

Sample 162 1,477 28 Bark North 2020 Late summer Symptomatic

Sample 163 2,256 17 Bark North 2020 Late winter Symptomatic

Sample 164 1,224 63 Bark North 2020 Late summer Asymptomatic

Sample 165 3,064 32 Bark North 2020 Late winter Asymptomatic

Sample 166 4,355 39 Bark North 2020 Late summer Symptomatic

Sample 167 3,994 23 Bark North 2020 Late winter Symptomatic

Sample 168 2,155 42 Bark North 2020 Late summer Asymptomatic

Sample 169 1,495 32 Bark North 2020 Late winter Asymptomatic

Sample 170 1741 41 Bark North 2020 Late summer Symptomatic

Sample 171 3,787 35 Bark North 2020 Late winter Symptomatic
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TABLE 2 (Continued)

Sample_ID
Seq. read 

abundance Distribution Microhabitat Terroir Year Season Health status

Sample 172 880 57 Bark Szt. Tamas 2020 Late summer Asymptomatic

Sample 173 836 35 Bark Szt. Tamas 2020 Late winter Asymptomatic

Sample 174 980 31 Bark Szt. Tamas 2020 Late summer Symptomatic

Sample 175 3,607 23 Bark Szt. Tamas 2020 Late winter Symptomatic

Sample 176 4,231 57 Bark Szt. Tamas 2020 Late summer Asymptomatic

Sample 177 855 34 Bark Szt. Tamas 2020 Late winter Asymptomatic

Sample 178 437 47 Bark Szt. Tamas 2020 Late summer Symptomatic

Sample 179 491 26 Bark Szt. Tamas 2020 Late winter Symptomatic

Sample 180 1,054 27 Bark Szt. Tamas 2020 Late summer Asymptomatic

Sample 181 314 12 Bark Szt. Tamas 2020 Late winter Asymptomatic

Sample 182 693 49 Bark Szt. Tamas 2020 Late summer Symptomatic

Sample 183 3,475 30 Bark Szt. Tamas 2020 Late winter Symptomatic

Sample 184 1,140 42 Bark Szt. Tamas 2020 Late summer Asymptomatic

Sample 185 438 24 Bark Szt. Tamas 2020 Late winter Asymptomatic

Sample 186 5,682 51 Bark Szt. Tamas 2020 Late summer Symptomatic

Sample 187 478 27 Bark Szt. Tamas 2020 Late winter Symptomatic

Sample 188 2,667 86 Soil South 2020 Late summer Asymptomatic

Sample 189 2,191 49 Soil South 2020 Late winter Asymptomatic

Sample 190 3,778 102 Soil South 2020 Late summer Symptomatic

Sample 191 3,104 51 Soil South 2020 Late winter Symptomatic

Sample 192 2,230 69 Soil South 2020 Late summer Asymptomatic

Sample 193 1891 43 Soil South 2020 Late winter Asymptomatic

Sample 194 2,830 74 Soil South 2020 Late summer Symptomatic

Sample 195 1767 42 Soil South 2020 Late winter Symptomatic

Sample 196 1,183 71 Soil South 2020 Late summer Asymptomatic

Sample 197 1,541 35 Soil South 2020 Late winter Asymptomatic

Sample 198 2,638 83 Soil South 2020 Late summer Symptomatic

Sample 199 7,508 41 Soil South 2020 Late winter Symptomatic

Sample 200 2,553 100 Soil South 2020 Late summer Asymptomatic

Sample 201 2,986 98 Soil South 2020 Late summer Symptomatic

Sample 202 186 12 Soil South 2020 Late winter Asymptomatic

Sample 203 4,073 47 Soil South 2020 Late winter Symptomatic

Sample 204 1,355 60 Soil North 2020 Late summer Asymptomatic

Sample 205 1,577 36 Soil North 2020 Late winter Asymptomatic

Sample 206 1,687 84 Soil North 2020 Late summer Symptomatic

Sample 207 926 39 Soil North 2020 Late winter Symptomatic

Sample 208 1,508 76 Soil North 2020 Late summer Asymptomatic

Sample 209 1895 51 Soil North 2020 Late winter Asymptomatic

Sample 210 1,611 82 Soil North 2020 Late summer Symptomatic

Sample 211 3,793 37 Soil North 2020 Late winter Symptomatic

Sample 212 1,396 64 Soil North 2020 Late summer Asymptomatic

Sample 213 1,105 41 Soil North 2020 Late winter Asymptomatic

Sample 214 1823 76 Soil North 2020 Late summer Symptomatic
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TABLE 2 (Continued)

Sample_ID
Seq. read 

abundance Distribution Microhabitat Terroir Year Season Health status

Sample 215 1,389 46 Soil North 2020 Late winter Symptomatic

Sample 216 1,507 78 Soil North 2020 Late summer Asymptomatic

Sample 217 852 48 Soil North 2020 Late winter Asymptomatic

Sample 218 1,053 60 Soil North 2020 Late summer Symptomatic

Sample 219 2,594 42 Soil North 2020 Late winter Symptomatic

Sample 220 2,328 77 Soil Szt. Tamas 2020 Late summer Asymptomatic

Sample 221 1,523 36 Soil Szt. Tamas 2020 Late winter Asymptomatic

Sample 222 4,047 96 Soil Szt. Tamas 2020 Late summer Symptomatic

Sample 223 2,981 40 Soil Szt. Tamas 2020 Late winter Symptomatic

Sample 224 1,095 89 Soil Szt. Tamas 2020 Late summer Asymptomatic

Sample 225 661 43 Soil Szt. Tamas 2020 Late winter Asymptomatic

Sample 226 1767 118 Soil Szt. Tamas 2020 Late summer Symptomatic

Sample 227 3,711 51 Soil Szt. Tamas 2020 Late winter Symptomatic

Sample 228 565 77 Soil Szt. Tamas 2020 Late summer Asymptomatic

Sample 229 991 32 Soil Szt. Tamas 2020 Late winter Asymptomatic

Sample 230 1,548 69 Soil Szt. Tamas 2020 Late summer Symptomatic

Sample 231 737 32 Soil Szt. Tamas 2020 Late winter Symptomatic

Sample 232 522 57 Soil Szt. Tamas 2020 Late summer Asymptomatic

Sample 233 351 24 Soil Szt. Tamas 2020 Late winter Asymptomatic

Sample 234 1721 58 Soil Szt. Tamas 2020 Late summer Symptomatic

Sample 235 554 30 Soil Szt. Tamas 2020 Late winter Symptomatic

Sample 236 10,210 44 Wood South 2020 Late summer Asymptomatic

Sample 237 5,121 44 Wood South 2020 Late winter Asymptomatic

Sample 238 11,375 53 Wood South 2020 Late summer Symptomatic

Sample 239 6,570 15 Wood South 2020 Late winter Symptomatic

Sample 240 4,194 65 Wood South 2020 Late summer Asymptomatic

Sample 241 13,001 50 Wood South 2020 Late winter Asymptomatic

Sample 242 6,718 57 Wood South 2020 Late summer Symptomatic

Sample 243 8,058 36 Wood South 2020 Late winter Symptomatic

Sample 244 11,230 55 Wood South 2020 Late winter Asymptomatic

Sample 245 12,754 75 Wood South 2020 Late summer Symptomatic

Sample 246 15,113 35 Wood South 2020 Late summer Asymptomatic

Sample 247 12,384 37 Wood South 2020 Late winter Symptomatic

Sample 248 2,388 29 Wood North 2020 Late summer Asymptomatic

Sample 249 7,604 33 Wood North 2020 Late winter Asymptomatic

Sample 250 8,518 36 Wood North 2020 Late summer Symptomatic

Sample 251 10,026 30 Wood North 2020 Late winter Symptomatic

Sample 252 8,871 55 Wood North 2020 Late summer Asymptomatic

Sample 253 1,568 32 Wood North 2020 Late winter Asymptomatic

Sample 254 7,772 52 Wood North 2020 Late winter Symptomatic

Sample 255 4,222 52 Wood North 2020 Late summer Asymptomatic

Sample 256 4,826 23 Wood North 2020 Late winter Asymptomatic

Sample 257 12,372 20 Wood North 2020 Late summer Symptomatic
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more than 90% of these have also been detected by metabarcoding 
(Geiger et al., unpublished data).

The variance analyses for richness and abundance values of 
different plant pathogens across different microhabitats (sources), 
terroirs, vintage, season, and health types revealed notable distinctions. 
For plant pathogenic fungi, richness exhibited significant differences 
among microhabitats/sources (p = 7.64 × 10−8), vintage 
(p = 1.74 × 10−14), and season (p = 2.79 × 10−11). However, the terroir 
(p = 0.168) and health types (p = 0.242) did not significantly impact 
richness. Regarding rarefied fungal read abundance values of plant 
pathogenic fungi, significant differences were observed among 
different microhabitats (p = 2×10−16), terroirs (p = 0.000168), and 
health types (p = 0.033922). Meanwhile, the influence of vintage 
(p = 0.785) and season (p = 0.363) on abundance was not significant. 
Additionally, total richness values were significantly different for 
vintage (p = 2.60 × 10−14) and season (p = 2.32 × 10−11), whereas 
abundance values showed significant differences with terroirs 
(p = 7.86 × 10−4) and health types (p = 0.033922).

The fungal richness was greatest in soil, followed by bark and 
wood (Figure 1A). In terms of abundance values, wood showed by far 
the highest amount, followed by bark and soil (Figure  1B). Plant 
pathogens abundance considering health types was highest in 
symptomatic plants (Sympt.) compared to non-symptomatic 
(Asympt.) (Figure 1B). Another observation was the highest richness 
in August (late summer) compared to February (late winter) in the 

seasonality parameter, while observed richness in 2020 was higher 
than in 2021 (Figure 1A).

Fungal community composition was visualized in a 
two-dimensional NMDS ordination for all the plant pathogenic 
community (stress value = 0.07869204), as well as each source: wood 
(stress value = 0.08765602), bark (stress value = 0.09239610) and soil 
(stress value = 0.07753184) (Figure 2). PERMANOVA, using adonis, 
indicated that the composition was strongly correlated with terroirs, 
vintage, and season, in this order of strength, for all microhabitats, 
while significant compositional difference of fungi between 
asymptomatic and symptomatic grapevines was only observed in bark 
and inner woody tissue (Figure 3; Table 3). Although fungi from all 
three microhabitats showed compositional differences among terroirs, 
soil communities showed the greatest effect of terroir on compositional 
turnover, explaining 24.67% of variance (p = 0.0001), followed by bark 
(16.56%, p = 0.0001) and woody tissue (14.46%, p = 0.0001). The effect 
of vintage showed the same above pattern as terroir, although it was 
much weaker, while the influence of season was greatest on bark 
communities (2.98%, p = 0.0002), followed by soil (1.93%, p = 0.0036), 
and wood (1.84%, p = 0.0337). As for vintage, it has the same tendency 
as terroir. Health type only explained ca. 3% of the compositional 
variance in woody tissue and bark (Table 3).

The assessment of climatic variables, temperature and 
precipitation, displayed significant influence on fungal community 
composition (Table  1). Both seasonal and vintage parameters 

TABLE 2 (Continued)

Sample_ID
Seq. read 

abundance Distribution Microhabitat Terroir Year Season Health status

Sample 258 5,007 20 Wood North 2020 Late winter Symptomatic

Sample 259 7,930 43 Wood North 2020 Late summer Asymptomatic

Sample 260 1984 38 Wood North 2020 Late winter Asymptomatic

Sample 261 2049 51 Wood North 2020 Late summer Symptomatic

Sample 262 9,176 29 Wood North 2020 Late winter Symptomatic

Sample 263 3,286 53 Wood Szt. Tamas 2020 Late summer Asymptomatic

Sample 264 6,594 34 Wood Szt. Tamas 2020 Late winter Asymptomatic

Sample 265 10,868 32 Wood Szt. Tamas 2020 Late summer Symptomatic

Sample 266 4,883 24 Wood Szt. Tamas 2020 Late winter Symptomatic

Sample 267 11,845 55 Wood Szt. Tamas 2020 Late summer Asymptomatic

Sample 268 10,514 38 Wood Szt. Tamas 2020 Late winter Asymptomatic

Sample 269 4,455 48 Wood Szt. Tamas 2020 Late summer Symptomatic

Sample 270 2,960 20 Wood Szt. Tamas 2020 Late winter Symptomatic

Sample 271 9,240 50 Wood Szt. Tamas 2020 Late summer Asymptomatic

Sample 272 10,753 30 Wood Szt. Tamas 2020 Late winter Asymptomatic

Sample 273 7,842 40 Wood Szt. Tamas 2020 Late summer Symptomatic

Sample 274 9,837 30 Wood Szt. Tamas 2020 Late winter Symptomatic

Sample 275 8,866 42 Wood Szt. Tamas 2020 Late summer Asymptomatic

Sample 276 11,692 29 Wood Szt. Tamas 2020 Late winter Asymptomatic

Sample 277 9,449 35 Wood Szt. Tamas 2020 Late summer Symptomatic

Sample 278 8,137 44 Wood Szt. Tamas 2020 Late winter Symptomatic

GTDs represent Grapevine Trunk Diseases representatives’ genera.
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FIGURE 1

Comparison of plant pathogenic richness (A) and rarefied fungal read abundance (B) across the four-parameters and source types, which represented 
as Szt (Szt. Tamás terroir), y20 (year 2020), y21 (year 2021), Feb (February), and Aug (August). Means were compared using ANOVA and Tukey’s HSD 
tests, with letters denoting significant differences.

FIGURE 2

Two-dimensional non-metric multidimensional scaling (NMDS) ordination illustrating the combined community structure of plant pathogenic fungi 
with ellipses representing the ordination scalability of the microhabitats: wood, bark, and soil. The overall stress value for this combined analysis is 
0.07869204.
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contributed to the variation in fungal communities. The late winter 
season exhibited a statistically significant impact on fungal community 
composition, explaining 1.188% of the variance (p = 0.0012) in 
temperature. Similar to late winter, the late summer season 
significantly contributed to compositional changes, accounting for 
1.179% of the variance (p = 0.0011). This underscores the sensitivity of 
fungal communities to temperature fluctuations during the colder and 
warmer months. In contrast to temperature, precipitation during late 

winter did not show a significant impact on fungal communities 
(0.239%, p = 0.7607). Late summer precipitation, on the other hand, 
played a more substantial role, explaining 1.074% of the variance 
(p = 0.0031).

The year 2020 contributed significantly to the variance in fungal 
communities, with temperature explaining 1.09% (p = 0.0021) and 
precipitation explaining 2.215% (p = 0.0001). In 2021, the impact of 
temperature reduced to 0.646% (p = 0.0451), and precipitation 

FIGURE 3

Separate two-dimensional non-metric multidimensional scaling (NMDS) ordinations representing the community structure of plant pathogenic fungi 
in each microhabitat: wood, bark, and soil. Each graph demonstrates variations according to different parameters, namely terroir (North, South, and 
Szt. Tamás), health type (Asymptomatic and Symptomatic), vintage (20 for year 2020, and 21 for year 2021), and season (A  =  August/Late summer, and 
F  =  February/Late winter). Individual stress values for each microhabitat analysis are as follows: wood  =  0.08765602, bark  =  0.09239610, and 
soil  =  0.07753184.
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explained 0.781% of the variance (p = 0.035). Although less 
pronounced, these results indicate continued but potentially 
attenuated seasonal effects on fungal communities in the subsequent 
year. Cooccurrence analyses and network graphs revealed differences 
in network complexity of plant pathogenic fungi among microhabitats 
in each terroir. The size of networks of significant relationships 
increased from woody tissue (265 ASVs) to bark (566 ASVs) and to 
soil (1,669 ASVs) (Figures 4–6; Supplementary Table S1). Positive 
relationships were more prevalent than negative ones in all 
microhabitats, as evidenced by the co-occurrence analysis 
(Figures 4–6). In soil (Figure 6), there were 1,407 positive and 262 
negative relationships between pairs of ASVs, in bark (Figure 5) there 
were 414 positive and 152 negative relationships, and in wood 
(Figure  4), there were 195 positive and 70 negative relationships, 
respectively.

The network metrics analysis elucidated the structure of microbial 
communities across different conditions, focusing on the specific 
metrics of betweenness and degree for the weighted analysis, and 
average degree, network density, and modularity for the unweighted 
analysis (Supplementary Tables S2, S3). Considering the abundance 
of different ASVs, the weighted network analysis showed from the 
weighted network metrics that for the bark microhabitat during late 
winter in vintage year ‘21’, the southern terroir showed the highest 
degree (3.662650602) for asymptomatic health status. Interestingly, 
the bark microhabitat in the northern terroir demonstrated the highest 
betweenness (147.316092) for symptomatic health status 
(Supplementary Table S2).

However, the soil microhabitat during late summer of vintage year 
‘20’, the southern terroir showed the highest degree (4.418918919) for 
symptomatic health status, while the soil northern terroir during late 
summer of the same year displayed the highest betweenness 
(150.5374717) for symptomatic health status (Supplementary Table S2). 
As for the wood microhabitat during late winter in vintage year ‘21’, 
the southern terroir exhibited the highest degree (3.672727273) for 
symptomatic health status, while the northern terroir, late winter of 
the same year, demonstrated the highest betweenness (120.4482759) 
(Supplementary Table S2) for symptomatic health status.

The unweighted network analysis, considering the presence or 
absence of different ASVs, revealed for the bark microhabitat during 
late winter of vintage year ‘21’, the southern terroir demonstrated the 
highest average degree (3.69047619) with a network density of 
0.044463569 and a modularity of 0.266118626 for asymptomatic 
health status (Supplementary Table S3). In the soil microhabitat 
during late winter in vintage year ‘21’, the southern terroir had the 
highest network density (0.071969697) with an average degree of 
2.303030303 and a modularity of 0.457063712 for asymptomatic 

health status. For the wood microhabitat during late winter in vintage 
year ‘21’, the southern terroir showed the highest average degree 
(3.593220339) with a network density of 0.061952075 and a 
modularity of 0.268823425 for symptomatic health status 
(Supplementary Table S3).

Collectively, the network structures of the fungal pathobiome 
differ significantly among the grapevine microhabitats, with intricate 
and robust network structures evident in certain conditions.

The number of indicator species was the highest in the soil, 
representing the genera Fusarium, Lactera, Alternaria, Coniothyrium, 
Dactylonectria, Plectosphaerella, Botryosphaeria etc. 
(Supplementary Table S4). The most significant indicators of terroir in 
soil were Lectera (North), Alternaria (South), and Coniothyrium (Szt. 
Tamás). For season, the most significant indicator was Fusarium (late 
summer), while none of the ASVs was an indicator for late winter. 
Lastly, the strongest indicators for vintage in soil were Dactylonectria 
(2020) and Plectosphaerella (2021). In bark samples, Diplodia, 
Microstroma, Devriesia, Botrytis was the most significant identified as 
indicators among the parameters, with an especially high presence of 
the genus Diplodia. In wood, significant indicators mostly belonged to 
grapevine trunk disease, such as Phaeomoninella, Diplodia, and 
Eutypella. From those, the genus Diplodia and Eutypella were strongly 
significant to the symptomatic of the health type parameter, and 
Devriesia and Phaeomoniella to the asymptomatic 
(Supplementary Table S2). Interestingly, in wood terroir the genus 
Pleurophoma and Diplodia were most significant for North and South, 
but in Szt. Tamás there were only indicators of the genus Phaeomoniella.

Discussion

This study delves into the intricate structure and dynamics of the 
grapevine pathobiome, primarily focusing on how microhabitat, 
terroir, vintage, season, and health status shape these complex fungal 
communities. In alignment with our first hypothesis, our findings 
illustrate a significant variation in richness and composition of plant 
pathogenic fungi among different microhabitats. Specifically, a 
decrease in the richness of plant pathogenic fungi was observed from 
soil to bark and wood samples, while the richness of pathogens 
associated with GTDs followed an increasing trend. This reinforces 
the concept of niche specialization within these fungal communities, 
demonstrating that certain microhabitats favor the proliferation of 
specific fungal groups. In addition, our findings suggest that selection 
pressure of abiotic environmental factors is buffered to a certain extent 
inside the grapevine trunk, as indicated by the somewhat weaker, 
although still significant, effects of terroir, season, and vintage on 

TABLE 3 Proportion of variation (%) in different source types (wood, bark tissues and soil bulk) of fungal community composition explained by different 
terroir, season, year, and health calculated with permutational multivariate analysis of variance, based on the fungal community matrix.

Terroir Season Vintage Health

% p value % p value % p value % p value

All 1.825 0.0002 0.872 0.0066 9.034 0.0001 0.186 0.8967

Wood 14.46 0.0001 1.842 0.0337 3.675 0.001 3.329 0.0007

Bark 16.56 0.0001 2.984 0.0002 4.535 0.0003 3.535 0.0001

Soil 24.673 0.0001 1.928 0.0036 6.388 0.0001 1.105 0.0973

Followed by significant p values from variance analysis among the taxonomic groups regarding richness. Significant results are in bold.
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FIGURE 4

Cooccurrence comparison visual network of the microhabitat wood visualized by the method ‘visNetwork’. Nodes represented by each specific ASVs 
with positive cooccurrence being represented by the blue lines and red dotted lines the negatives. A follow up table with specificities (descriptive 
statistics) can be seen in Supplementary Table S1. Legend specifies the main important genus represented by ASVs shown in the network.

https://doi.org/10.3389/fmicb.2023.1322559
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Leal et al. 10.3389/fmicb.2023.1322559

Frontiers in Microbiology 16 frontiersin.org

FIGURE 5

Visual network comparing the cooccurrence of microhabitat in Bark ASVs using the ‘visNetwork’ method. Nodes represent individual ASVs, with blue 
lines indicating positive cooccurrence and red dotted lines indicating negative cooccurrence. A table with descriptive statistics can be found in 
Supplementary Table S1. The legend highlights the main genus represented by ASVs in the network.
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FIGURE 6

Network visualization comparing the co-occurrence of microhabitat soil ASVs using the ‘visNetwork’ method. Each node represents a specific ASV, and 
the blue lines indicate positive co-occurrence while the red dotted lines indicate negative co-occurrence. Supplementary Table S1 provides additional 
descriptive statistics. The legend indicates the key genus represented by ASVs in the network with rendered imaging for size fitting of the visualization.
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fungal community composition in wood, compared to bark and 
soil communities.

The soil, known to be greatly influenced by both mesoclimatic and 
edaphic factors worldwide (Tedersoo et al., 2014; Větrovský et al., 
2019) as well as in the wider region of study in northeastern Hungary 
(Geml, 2019; Geml et al., 2022), exhibited the highest fungal richness, 
particularly during the late summer.

Adding depth to our understanding, the indicator species analysis 
shed light on specific fungal taxa serving as microbial fingerprints 
across various microhabitats. For instance, in the soil, where NMDS 
highlighted vintage influences, we found Fusarium indicative of late 
summer and terroir-specific markers such as Lactera (North) and 
Alternaria (South). Bark samples pointed toward Diplodia’s 
prominence, and in the wood, disease-associated genera like 
Phaeomoninella and Diplodia stood out, especially in relation to plant 
health status. These indicator species, in harmony with NMDS 
findings, emphasize the intricate connections between fungal 
communities, their microhabitats, and external factors.

The isolation of fungi from inner wood samples has provided 
additional insights into the pathobiome related to GTDs. More than 
90% of the fungal genera detected through metabarcoding were also 
isolated from inner wood samples, confirming their presence within 
the grapevine (Geiger et al., unpublished data). This suggests that 
these genera are well-established members of the grapevine 
pathobiome and play a significant role in grapevine health and 
disease development.

Building upon this, it’s important to delve deeper into the nuances 
of vintage variations. In terms of vintage, distinct patterns were 
observed across different microhabitats. The NMDS ordination 
(Figure  3) illustrates a clearer separation of fungal communities 
between the years 2020 and 2021 in the soil samples, indicating a 
notable impact of vintage in this microhabitat. The year 2020 exhibited 
higher fungal richness compared to 2021. This difference could 
be attributed to the distinct climatic conditions each year presented, 
with 2020 having an early and extended rainy period, whereas 2021 
experienced a severe heatwave and drought, as reported by the 
Copernicus Climate Change Service (C3S) and the European State of 
Climate (ESOTC).

These adverse weather conditions created significant mesoclimatic 
differences and could have led to a temporary decrease in overall plant 
pathogenic fungal diversity. This likely is the result of a selection 
pressure favoring taxa that can withstand low moisture content and 
adapt to shifts in the diffusion rates of nutrients and microbial signals. 
Many of these microbial signals, such as mycotoxins, volatile organic 
compounds (VOCs), and extracellular enzymes, are influenced by 
environmental moisture content (Henry et al., 2007; Smith and De 
Smet, 2012; Song et al., 2012; Barnard et al., 2013; Bokulich et al., 
2014; Naylor et al., 2017; Santos-Medellín et al., 2017; Naylor and 
Coleman-Derr, 2018). Under drier conditions, the diffusion of these 
signals in the soil might be hindered, affecting both fungal-fungal and 
plant-fungal interactions. This can modify competition dynamics, 
nutrient acquisition strategies, and even the establishment of 
symbiotic relationships.

Nevertheless, the highest rarefied fungal read abundance of plant 
pathogens was observed in wood and in symptomatic plants, 
underscoring that both microhabitat and health status exert a 
significant influence on the diversity and abundance of fungal 

communities. Our second hypothesis suggested that the diversity, 
abundance, and distribution of the pathobiome are influenced by 
different parameters, such as terroir, seasonality, and vintage aspects. 
In support of this hypothesis, we found that compositional shifts in 
these fungal communities were chiefly influenced by site-specific 
environmental factors, often referred to as “microbial terroir.” These 
observations align with previous research indicating that both 
mesoclimatic and edaphic factors substantially shape fungal 
communities worldwide (Tedersoo et al., 2014; Větrovský et al., 2019). 
It becomes increasingly apparent that unraveling the intricate 
relationships between different microhabitats and their unique 
‘microbial terroir’ characteristics is essential for comprehending the 
nuanced composition of the pathobiome.

Moreover, our investigation revealed a notable influence of vintage 
and seasonality on the pathobiome. In terms of richness and 
abundance, the soil and late summer season presented the highest 
fungal richness, while wood and symptomatic plants exhibited the 
highest abundance. These patterns suggest that both environmental 
conditions and plant health status can significantly influence the 
diversity and abundance of fungal communities. The NMDS 
ordination further substantiated these patterns, revealing distinct 
clustering of fungal communities based on terroir, vintage, and season, 
thereby affirming a strong influence of these factors on 
community composition.

The integration of climatic variables, temperature, and 
precipitation into our analysis provides a nuanced understanding of 
their impact on fungal community composition across seasons and 
vintages. Late winter and late summer exerted distinct influences, 
with temperature changes during these seasons significantly 
contributing to the variance. Interestingly, late summer precipitation 
played a more substantial role than its winter counterpart, 
underlining the sensitivity of fungal communities to warmer and 
drier conditions. Vintage variations added another layer to this 
narrative, with the year 2020 significantly shaping fungal 
communities through both temperature and precipitation, while 2021 
exhibited a more tempered effect. These findings enhance our insights 
of the pathobiome dynamics, affirming that while it is evident that 
the weather of the actual year and season can influence microbial 
community dynamics, the mesoclimate of the particular terroirs plays 
a more significant role in shaping the overall diversity and 
composition of the microbial communities. These climatological 
variations were further depicted in Supplementary Figure S1 and 
Table 1 from Local Hungarian Meteorological Service (2023).

The uniformity of vineyard management practices, including 
consistent fungicide application, across all three terroirs during 
various seasons and vintages is a salient aspect of our study. While 
this uniformity minimizes direct impacts on the observed 
pathobiome variations, we  acknowledge the potential indirect 
influence of fungicides on seasonal dynamics. Fungicide application 
introduces a dynamic element, influencing fungal community 
abundance and diversity, with documented short-term and long-
term effects on non-target fungi (Leroux et al., 2002; Rodriguez-
Morelos et al., 2021). Selective pressures on fungal populations, a 
known phenomenon in agricultural systems (Tranel and Wright, 
2002), can result from fungicide applications, especially when timed 
with disease prevalence and seasonal factors. This aligns with 
findings in agricultural and environmental microbiology, 
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highlighting fungicides’ capacity to shape the structure and 
diversity of microbial communities (Fournier et al., 2020; Zhang 
et al., 2020; Ma et al., 2021; Sun et al., 2023). While our study does 
not directly measure fungicide residues or their specific impact on 
fungal communities, recognizing fungicide application as a 
potential contributor to seasonal changes across terroirs suggests 
avenues for future research. Investigating the specific impacts and 
temporal dynamics of different fungicides on the pathobiome 
would enhance our understanding of factors shaping microbial 
communities in viticultural ecosystems.

Moreover, our network analysis suggested potential interactions, 
based on co-occurrence patterns, within these fungal communities. 
The unweighted analysis revealed differences in average degree, 
network density, and modularity across different parameters, pointing 
to the complexity and diversity of these communities. Bark samples 
exhibited higher average degree and modularity compared to soil and 
wood samples, possibly indicating a more complex network structure 
in this microhabitat due to its role as a critical overwintering site for 
various fungi and animals (Geiger et al., 2022).

Similarly, the weighted network analysis emphasized the role of 
the abundance data, revealing the importance of certain fungal 
genera such as Diplodia and Eutypella, as central ‘hubs’ in the 
network. These key players, often associated with GTDs, underscore 
the potential influence of disease dynamics on community assembly 
and vice versa.

To better understand these findings, it is crucial to interpret 
them in light of network metrics. The ‘degree’ of a node, 
representing the number of its connections, reflects its potential 
influence or importance within the network (Barabási and Oltvai, 
2004). In our study, higher degrees in certain genera indicate their 
pivotal role in community interactions. Network density, which 
measures the proportion of actual connections relative to all 
possible connections, provides insights into the overall 
interconnectedness of the community (Newman, 2003). A higher 
density in our findings could imply a more integrated fungal 
community. Furthermore, ‘modularity’ assesses the degree to 
which the network can be  partitioned into smaller, tightly 
connected groups or modules (Newman and Girvan, 2004). The 
higher modularity observed in bark samples suggests the existence 
of distinct microbial sub-communities or groups within that 
microhabitat. Biologically, more modular networks can contribute 
to system resilience, as disturbances might be confined within a 
single module, preventing them from affecting the entire system 
(Stouffer and Bascompte, 2011).

These observations support the notion that microbial interactions, 
which are effectively mapped through such network metrics, play a 
crucial role in the development and severity of grapevine diseases for 
this studied area. These interactions might involve synergistic or 
antagonistic relationships between co-infecting microbes (Hogan, 
2006; Hosni et al., 2011; Lamichhane and Venturi, 2015).

Our findings offer valuable insights into the complex interplay 
between environmental factors and fungal communities in grapevines, 
supporting both our initial hypotheses. The metabarcoding, 
bioinformatics and network metrics suite of analyses conducted in this 
study enhances our understanding of the complex plant pathogenic 
fungal communities within grapevines and the environmental factors 
influencing them. Recognizing that the grapevine physiology and 

environment can strongly affect fungal behavior is crucial (Bruno and 
Sparapano, 2006; Freitas et  al., 2009). By identifying relevant key 
players, understanding the possible effects of different parameters on 
fungal communities, and recognizing potential early indicators of 
disease, we  are better equipped to devise effective strategies for 
managing impactful plant diseases in the fields. This knowledge can 
ultimately contribute to improved grapevine health and productivity. 
Building upon our research, there’s potential to not only advance the 
scientific understanding but also revolutionize grapevine cultivation 
and disease management strategies in the broader context of 
viticulture, creating a foundation for future studies, innovations and 
sustainable practices.

Looking forward, our study lays the groundwork for future 
investigations that could enhance our uncovering of the grapevine 
pathobiome. Firstly, a more in-depth exploration into the nuanced 
impact of vintage variations on fungal communities across different 
microhabitats would contribute significantly. Understanding how 
climatic conditions, especially during exceptional years, shape 
microbial interactions and disease dynamics could unravel critical 
insights. Additionally, delving into the direct impacts of fungicides, 
particularly their residues, on fungal communities could provide a 
more comprehensive understanding of their role in shaping 
seasonal variations. The network analysis opens avenues for 
studying microbial interactions further, emphasizing the need for 
experimental validations to decipher the nature of relationships 
indicated by network metrics. Investigating the specific responses 
of key genera, such as Diplodia and Eutypella, to environmental 
changes and their role in disease development could provide 
targeted strategies for disease management. Overall, this study 
serves as a steppingstone, and future research endeavors should 
capitalize on these insights to propel advancements in viticulture, 
offering innovative solutions for sustainable grapevine cultivation 
and disease control.

Conclusion

This investigation brings to light the multifaceted dynamics of 
grapevine pathobiomes across varied microhabitats. It accentuates 
the substantial impact of both environmental and temporal 
determinants on these dynamics. Viewing this through the 
concept of “microbial terroir” lets us start to comprehend the 
critical role that spatial differences may play in molding the 
microbial environment surrounding grapevines. Our research, 
bolstered by advanced network-based approaches, which played a 
pivotal role in our analytical methodology, offers deeper insights 
into grapevine-microbe interactions for the specific area of study. 
This understanding is valuable, given its broader implications in 
wider agricultural and ecological spheres. Furthermore, our 
findings can serve as a guide to refine sustainable viticulture 
practices, with a potential focus on tailored plant health 
management. While this study stands as a milestone in 
demystifying the intricate relationship between grapevines and 
their resident microbes, specifically in Hungary, it also beckons 
toward a future rich with possibilities for even more detailed 
exploration in the realm of pathobiome interplay.
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