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Background: Variation in diversity and composition of saliva microbiota has 
been linked to weight status, but findings have been inconsistent. Focusing 
on clinically relevant conditions such as central obesity and using advanced 
sequencing techniques might fill in the gaps of knowledge.

Aims: We investigated saliva microbiota with shallow metagenome 
sequencing in children with (n  =  14) and without (n  =  36) central obesity. 
Additionally, we  examined the role of habitual food consumption on 
microbial enzymatic repertoire.

Methods: Data comprised 50 children (50% male) with a mean age of 14.2 
(SD 0.3) years, selected from the Finnish Health in Teens (Fin-HIT) cohort. 
Dietary scores for consumption frequency of sweet treats (STI), dairy 
products (DCI) and plants (PCI) were derived based on a self-administered 
food frequency questionnaire. Central obesity was defined based on waist–
height ratio using the cut-off 0.5. Saliva samples were subjected to whole-
metagenome shotgun sequencing, and taxonomic and functional profiling 
was achieved with METAnnotatorX2 bioinformatics platform.

Results: Groups had an average 20 (95% CI 14–27) cm difference in waist 
circumference. We  identified the lack of Pseudomonas guguagenesis and 
Prevotella scopos, oulorum and oris as putative biomarkers associated with 
central obesity and observed a total of 16 enzymatic reactions differing 
between the groups. DCI was associated with the highest number of enzyme 
profiles (122), followed by STI (60) and DCI (25) (Pearson correlation p  <  0.05). 
Intriguingly, STI showed a high positive/negative correlation ratio (5.09), 
while DCI and PCI showed low ratios (0.54 and 0.33, respectively). Thus, 
the main driver of enzymatic reactions was STI, and the related pathways 
involved nitrate metabolism induced by Haemophilus parainfluenzae and 
Veilonella dispar among others.

Conclusion: Clinically relevant differences in central obesity were only 
modestly reflected in the composition of saliva microbiota. Habitual 
consumption of sweet treats was a strong determinant of enzymatic 
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reactions of saliva microbiota in children with and without central obesity. 
The clinical relevance of these findings warrants further studies.

KEYWORDS

metagenomics, sugar, dairy, fruit and vegetables, bacterial species, oral 
microbiome

1 Introduction

The prevalence of childhood overweight/obesity and obesity-
related co-morbidities have been increasing at an alarming rate 
worldwide, posing a challenge to our well-being and healthcare 
system, even causing premature death (World Health Organization, 
2022). The link between human microbiome and health conditions, 
obesity included, has been established but most of the microbiome 
research has focused on gut microbiota that likely contributes to 
human health by modifying nutrient intakes, preventing invading 
pathogens, and interacting with the immune system (Nishida et al., 
2018; Lu et al., 2022). However, microbes reside in different niches of 
the human body: the oral cavity harboring the second most diverse 
microbiota after the gut (Deo and Deshmukh, 2019).

Saliva microbiota, in recent times, is gaining more attention as a 
first line of defense with similar contributions to human health as gut 
microbiota. Furthermore, as 1.5 liters of saliva is ingested daily, its role 
as an enhancer of gut colonization has also been proposed (Wade, 
2021). Some studies have investigated saliva microbiota in overweight/
obese children (Raju et al., 2019; Coker et al., 2022), but their results 
have been discordant with each other possibly due to differences in 
the study design, age range, and methodology. Moreover, none of 
these studies have considered central obesity that is mirrored by waist 
circumference or waist–height ratio (WHtR). WHtR is a better 
indicator of whole-body obesity than the traditionally used body mass 
index (McCarthy et al., 2005; Chrzanowska and Suder, 2010; Garnett 
et al., 2011), and intra-abdominal adipose tissue is known to function 
as an active organ producing hormones and cytokines which could 
potentially disrupt metabolic and inflammatory processes in the body 
(Mokha et al., 2010). In addition, the role of diet in oral microbiota 
has been scarcely studied in children. For example, frequent sugar 
consumption appears to play a role in the composition and 
functionality of the saliva microbiota (Lommi et al., 2022) but the 
associations between diet and enzymatic pathways of saliva microbial 
communities have so far not been examined.

While 16S rRNA gene profiling has been widely used to 
examine the human microbiome, it does not provide a reliable 
species-level identification. To overcome this shortcoming, 
metagenome sequencing methods are used that provide up to 
strain-level identification and thus, a deeper insight into the 
microbial population and its functional potential. In this study, 
we investigated central obesity and habitual food consumption as 
determinants of saliva microbiota composition. We  compared 
composition and enzymatic properties of the saliva microbiota in 
participants with and without central obesity. Furthermore, 
we  examined the enzymatic classes encoded by the salivary 
microbiome and the key taxa behind them. Saliva microbiota was 
subjected to shallow metagenome sequencing.

2 Materials and methods

2.1 Study population and data

For this study, we utilized questionnaire data, saliva samples, 
and anthropometric measurements available from the prospective 
Finnish Health in Teens cohort (Fin-HIT) which started in 2011 
as a school-based cohort study, initially comprising of 11,407 
Finnish children aged between 9 and 12 years living in large cities 
or their surrounding areas. The details of the Fin-HIT cohort are 
described elsewhere (Figueiredo et al., 2019). In 2015–2016, 54% 
of the children participated in the first follow-up by filling in an 
online health survey and providing a saliva sample. Here, we used 
data exclusively from the follow-up. The Coordinating Ethics 
Committee of the Hospital District of Helsinki and Uusimaa 
approved the study protocol (169/13/03/00/10), and written 
informed consent was obtained from all participants and 
their parents.

2.2 Anthropometrics

Children self-reported their height (cm), waist circumference 
(cm), and weight (kg) with instructions that the measurements should 
be done with the help from an adult. We have previously reported the 
validity of home-measured anthropometry among 113 children 
(Sarkkola et al., 2016). Waist–height ratio (WHtR) was calculated by 
dividing waist circumference (cm) with height (cm) after which 
children were categorized into those without central obesity 
(WHtR < 0.5) and those with central obesity (WHtR ≥ 0.5).

2.3 Food consumption and dietary scores

Three dietary scores were derived based on a self-administered 
food frequency questionnaire (FFQ) measuring consumption 
frequencies of 16 foods and drinks during the preceding month of 
data collection. The sweet treat index (STI) measures the weekly 
consumption of chocolate/sweets, ice cream, sweet pastries, 
biscuits/cookies, sugary juice drinks and sugary soft drinks (Lommi 
et al., 2020), the plant consumption index (PCI) that of vegetables, 
fruits and berries (Räisänen et  al., 2022), and finally, the dairy 
consumption index (DCI) measured the weekly consumption of 
milk/buttermilk and ice cream. Our FFQ was adapted from the FFQ 
used in the WHO’s International Health Behaviour in School-Aged 
Children study, which was validated and retested among school-age 
children in Europe (Vereecken and Maes, 2003; Vereecken 
et al., 2008).
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2.4 Sampling, sequencing and 
bioinformatic analyses of salivary datasets

Unstimulated saliva samples were collected using the Oragene® 
DNA (OG-500) Self-Collection Kit (DNA Genotek Inc., Ottawa, 
Ontario, Canada). Saliva samples were mixed with a stabilizing reagent 
within the collection tube and stored at room temperature per the 
manufacturer’s instructions. After an intensive lysis and mechanical 
disruption protocol of microbial cells, genomic DNA was extracted using 
a CMG-1035 saliva kit and Chemagic MSM1 nucleic acid extraction 
robot (PerkinElmer) (Raju et al., 2018). Sampling was based on an equal 
number of normal-and overweight children with equal sex distribution. 
In total, 50 saliva samples were subjected to whole-metagenome shotgun 
(WMGS) sequencing on Illumina HiSeq 2500 system (Illumina Inc., San 
Diego, CA, USA) at the Institute of Molecular Medicine Finland 
(FIMM). The raw data in fastq format were submitted to quality filtering 
(quality score < 25) and for the removal of reads derived from the host. 
Subsequently, taxonomic profiling of the reads which passed filtering 
was achieved with the METAnnotatorX2 bioinformatics platform 
(Milani et  al., 2021) using MEGABLAST employing the curated 
non-redundant sequence database of genomes retrieved from the 
National Center for Biotechnology Information (NCBI).

IBM SPSS v29 (IBM Corp., Armonk, NY, USA) and R studio 
(version 4.2.2)1 were used for comparing the Shannon index between 
the groups. Similarities between samples (beta-diversity) were 
assessed by the Bray–Curtis dissimilarity index based on species 
abundance. PCoA representation of beta-diversity was performed 
using OriginPro v2021 (OriginLab Corporation, Northampton, MA, 
USA), and analysed with permutational multivariate analysis of 
variance [PERMANOVA].

1 http://www.rstudio.com/

Microbial community functional analyses were performed using 
METAnnotatorX2, giving us enzymatic classification numbers by 
using the Metacyc database as a reference (Caspi et  al., 2014). 
OriginPro v2021 was used to perform the statistical tests in each 
comparison of differentially abundant taxa and differentially encoded 
functional enzymes.

2.5 Statistical analyses

Background characteristics, dietary scores, and mean abundance 
of genera and species were compared between groups with and 
without central obesity with Mann–Whitney U test or Chi-Square 
using IBM SPSS v29. Results are presented as means with standard 
deviations (SD) or as counts (n) with percentages (%).

STI, PCI, and DCI correlation with enzyme repertoire was 
examined with Pearson correlation on R studio (version 4.2.2). Only 
significant correlations with correlation scores >0.2 or < −0.2 were 
retained to remove weak correlations from the results. Force-driven 
Network was used to represent correlation scores through Gephi 
(Version 0.9.6) software (Bastian et  al., 2009) and ForceAtlas2 
algorithm (Jacomy et  al., 2014). Statistical significance was set at 
p < 0.05.

3 Results

3.1 Background characteristics

The participants’ background factors except for waist 
circumference did not differ between the groups (Table 1). Of the 
three dietary summary scores, only the dairy consumption index 
seemed to be non-significantly lower in children with central obesity 
than those without central obesity (p = 0.101).

TABLE 1 Background characteristics of groups without (no) and with (yes) central obesity with mean (SD), if not indicated otherwise.

Central obesity

Noa Yesb p-valuec

n 36 14

Sex, n (%) 1.000d

Female 18 (50.0%) 7 (50.0%)

Male 18 (50.0%) 7 (50.0%)

Age, y 14.2 (0.3) 14.3 (0.3) 0.778

Height, cm 167.1 (5.9) 168.4 (9.6) 0.509

Waist, cm 72.6 (5.5) 93.4 (10.7) <0.001

Waist–height ratio (WHtR) 0.43 (0.03) 0.55 (0.05) <0.001

Sweet treat index, times per week 7.6 (6.2) 6.1 (4.5) 0.404

Plant consumption index, times per 

week
15.1 (8.1) 13.2 (7.2) 0.523

Dairy consumption index, times 

per week
12.2 (4.7) 9.9 (5.7) 0.101

Waist–height ratio: calculated by dividing waist circumference (cm) with height (cm). aNo: without central obesity (WHtR < 0.5), bYes: with central obesity (WHtR ≥ 0.5). cMann-Whitney U 
test. SD; standard deviation. dChi-Square test.
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3.2 Description of saliva microbiota in the 
entire sample

Whole-metagenome shotgun (WMGS) sequencing of the saliva 
microbiomes produced an average of 1.97 million ± 329,000 paired-end 
(2 × 150 bp) reads per sample. Following quality filtering and removal of 
reads that map on the Homo sapiens genome, an average of 285,567 
microbial reads per sample, with a max of 1,427,437 reads were retained 
and subjected to downstream analyses (Supplementary Table 1).

In total, 43 genera were identified. On average, the participants 
had 15 genera present. The core microbiota consisted of seven 

genera based on the highest relative abundance across the samples 
as shown in Figure  1A, accounting for 81% of the total 
saliva microbiota.

We identified a total of 124 microbial species among the 
participants (Figure 1B). The top 20 species accounted for 69.5% 
of the total saliva microbiota, the top five being Prevotella 
melaninogenica (11.7%), Haemophilus parainfluenzae (8.0%), 
Prevotella histicola (5.5%), Porphyromonas pasteri (5.0%), and 
Veillonella nakazawae (4.3%). These accounted for 34.5% of the 
total. A complete description of the top 20 species is also shown 
in Supplementary Table 2.

FIGURE 1

Description of saliva microbiota with (A) the core genera and (B) at a species level. The top 20 prevalent species are highlighted with bold.
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3.3 Saliva microbiota composition 
according to central obesity

The Shannon index (SD) (alpha diversity) was similar between 
the groups: 2.99 (0.4) vs. 3.06 (0.3) (p = 0.53) with and without 
central obesity, respectively. The analysis of inter-sample variability 
(beta-diversity) did not reveal any compositional differences at 
genus level between the groups (p = 0.744). Notably, some taxa-
specific differences were detected. Pseudomonas showed lower 
mean abundance in the group with central obesity than those 
without central obesity (0.7% vs. 1.4%, p = 0.041; Figure 2A and 
Supplementary Figure 1).

Similarly, a species-level investigation revealed that Pseudomonas 
guguanensis had a lower abundance among participants with central 
obesity compared with those without central obesity (0.7% vs. 1.3%, 
p = 0.046). Moreover, unclassified Pseudomonas and several Prevotella 
species, e.g., scopos, oulorum and oris, although present among those 
without central obesity, were completely absent in the group with 
central obesity (p < 0.05 for all; Figure 2B).

3.4 Enzymatic profiling – central obesity

To assess whether and how saliva bacterial community-derived 
metabolites differed between the groups, we analyzed the potential 
microbiota-encoded enzymatic profiles based on the MetaCyc (Caspi 
et al., 2014) database and the bioinformatic suite METAnnotatorX2 
(Milani et al., 2021).

A total of 16 enzymatic classes differed between the groups. 
Compared to the group without central obesity, group with central 
obesity showed enrichment in 15 enzymatic classes (Figure 3), while 
one enzymatic class was diminished. Through functional back-tracing 
of taxonomic information, we linked these classes to the microbial 
species that encode these enzymes. Overall, the analysis revealed that 
Staphylococcus aureus, Prevotella histicola, and Prevotella 

melaninogenica were the major taxa with the highest genetic potential 
for these enzyme-coding genes (Figure 3).

3.5 DCI, PCI and STI associate with 
enzymatic profiles

To look for additional drivers for the enzymatic profiles, 
we  examined correlations of DCI, PCI, and STI with relative EC 
numbers. DCI correlated with 122 enzymes, STI with 60, and PCI 
with 25 (p < 0.05). STI had a correlation ratio (positive/negative) of 
5.09, DCI that of 0.54, and PCI that of 0.33 (Figure 4A). Figure 4B also 
shows the correlations of DCI, PCI, and STI with enzymes in the 
network representation. Thus, STI, with the highest correlation ratio 
and the most positive correlations with several enzymes, held a central 
position in the network.

A subsequent back-tracing analysis was performed among the 
reactions encoded by these enzymes, showing the highest 
correlations with PCI, DCI and STI (five unique reactions for each; 
Figure 5). The enzyme L-fucose isomerase (EC 5.3.1.25) correlated 
positively with both DCI and PCI, and is hence listed twice in the 
figure. The back-tracing analysis showed that Haemophilus genus 
has a key role in defining the enzymes associated with PCI, DCI and 
STI, acting as the main taxa encoding for eight out of 16 of the 
enzymes analyzed (Figure 5B). Other main taxa encoding for some 
of these enzymes belong to Pseudomonas, Veillonella, Rothia and 
Granulicatella genera, followed by Neisseria and 
Streptococcus genera.

The enzymatic class correlating with STI with maximum relative 
abundance (0.176%) was Nitrate reductase (EC 1.7.99.4) encoded by 
Veilonella dispar. Similarly, IMP dehydrogenase (EC 1.1.1.205) 
correlated (0.085%) with PCI, encoded by Prevotella melaninogenica, 
the most common species in our samples, and Hydrolases/Serine 
endopeptidases (EC 3.4.21.-) was most abundantly correlated 
(0.071%) with DCI, encoded by Haemophilus parainfluenzae. Overall, 

FIGURE 2

The taxa significantly differing between the groups with (orange) and without (blue) central obesity are shown with mean abundance for (A) genus and 
(B) species levels. The error bars represent SEM.
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Haemophilus parainfluenzae encoded the most enzymatic classes in 
relation to the dietary scores.

4 Discussion

Our findings based on saliva metagenome sequencing show a 
high inter-individual variability at the species level, which could 
be attributed to individual dietary habits, but less to central obesity in 
this age group. Central obesity is a clinically relevant marker of 
adiposity (Ross et al., 2020), yet, in our sample, bacterial composition 
differed only very modestly between groups with and without central 
obesity. In total, we  observed 16 enzymatic classes that differed 
significantly between the groups. Contrary to this, habitual food 
consumption was highlighted as a potential modifier of bacterial 
enzymatic reactions in saliva. To our knowledge, no previous studies 
have addressed this topic.

4.1 Saliva microbiome and central obesity

Pseudomonas was the only genus that differed between the 
groups and was less abundant among children with central obesity 
compared to those without central obesity. The species-level 
analyses further verified that Pseudomonas guguanensis was less 
common and unclassified Pseudomonas fully absent in individuals 
with central obesity. In addition, the back-tracing analysis 
suggested that P. guguanensis contributes to formyltetrahydrofolate 
deformylase enzymatic class, which is a key enzyme in the 
pathway providing formate to the cell under aerobic growth 

conditions. This enzyme was also associated with dairy 
consumption in our sample, perhaps activating the same pathway. 
Indeed, slightly lower consumption of dairy products was marked 
among the group with central obesity compared with others, 
although this difference was not statistically significant.

Prevotella was the most common genus with prevalence of 29%, 
with similar abundances in the groups. However, certain species 
such as P. oris, P. oulorum, and P. scopos were fully absent in 
participants with central obesity. The most dominant species 
Prevotella melaninogenica and P. histicola were linked to the same 
enzymatic class IMP dehydrogenase which catalyzes the first 
committed, rate-limiting step in de novo guanine nucleotide 
biosynthesis in most organisms. Besides, P. melaninogenica also 
contributes to adenylosuccinate synthase, which catalyzes AMP’s de 
novo synthesis; both these enzymes were linked with the 
consumption of vegetables, fruits, and berries in our study. 
Previously, a high abundance of Prevotella was observed in the saliva 
of participants following plant-rich diets (Hansen et  al., 2018; 
Daniele et al., 2021). In particular, the presence of Prevotella species 
correlated with high intake of dietary fiber (Daniele et al., 2021), 
which could be generally lower in individuals with central obesity 
(Parikh et al., 2012).

4.2 Saliva microbiome and habitual food 
consumption

The novelty of our study is that we demonstrated associations of 
habitual food consumption with the bacterial enzymatic profiles in 
saliva. We  measured habitual diet using three dietary indices 

FIGURE 3

Functional analysis of saliva samples from participants with (orange, n  =  14) and without central obesity (blue, n  =  36) (A) revealed several differences in 
microbiota-encoded enzymatic potential profiles. (B) Table represents main producers of each enzymatic class.
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indicating weekly consumption frequencies of sweet treats, plants, 
and dairy.

Although dairy consumption associated with a very large 
enzymatic repertoire both positively (n = 43) and negatively (n = 88), 
the strongest modulator was the consumption of sweet treats, which 
had the highest correlation ratio among the three dietary scores as well 
as the most positive correlations. It also contributed to the most 
abundant nitrate reduction pathway through nitrate reductase. These 
findings resemble our recent results in another Fin-HIT sample 
employing 16S profiling on saliva microbiota; that study also 
highlighted the nitrate reduction pathway in frequent sugar consumers 
(Lommi et al., 2022). The pathway converts nitrate to nitrite, allowing 
further metabolism to nitric oxide (Rosier et al., 2020). Nitric oxide 

has physiological effects like vasodilation, and it contributes to innate 
immunity responses (Gantner et  al., 2020), while in the mouth it 
increases the nitrate reduction capacity of the oral microbiota and is 
related with lower prevalence of caries (Doel et al., 2005). Specifically, 
nitrate reduction prevents acidification and cariogenic bacteria’s 
overgrowth by increasing lactate and ammonia production (Rosier 
et al., 2020). Based on the back-tracing analysis in our study, species 
responsible for nitrate reduction were Veillonella dispar, Haemophilus 
paraprohaemolyticus and unclassified Rothia.

Plant consumption was associated with the lowest number of 
enzymatic classes and showed a positive correlation with only seven 
enzymes, among them beta-fructofuranosidase and L-fucose 
isomerase, which are utilized to break down certain complex sugars 

FIGURE 4

Number of Pearson correlations between (A) dietary scores and enzymes are presented in the table. (B) Force-driven network represents the entity of 
the correlation scores between dietary scores and enzymes through Gephi (Version 0.9.6) software and ForceAtlas2 algorithm.
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from plant sources (Vanhooren and Vandamme, 1999; Kotwal and 
Shankar, 2009). This suggests that the enzymatic profiles of saliva 
microbiome adapt to the prevailing diet.

Haemophilus parainfluenzae was among the key producers of 
the enzymatic reactions related to these three dietary summary 
scores. Typically, Haemophilus parainfluenzae is considered 
pathogenic to humans and is related to infections in urban 
environment (Roslund et al., 2021). In our sample of children from 
densely populated areas of Finland, it was the second most common 
species in saliva microbiome.

4.3 Strengths and limitations

No difference in the beta diversity was observed between groups 
with and without central obesity, and only marginal differences in the 
abundance of some Pseudomonas and Prevotella species were noted. 
This could be due to small sample size and nonequal group sizes, but 
other explanations may exist as well. Initially, we selected samples with 
equal gender distribution with and without obesity based on 
BMI. However, since central obesity is considered a clinically more 
relevant measure of obesity than BMI, we divided the groups into with 
and without central obesity, leading to nonequal group sizes. Although 
we  witnessed on average 20 cm larger waist circumference in the 
group with central obesity, the association with microbiome was 
superficial and likely explained by other factors instead. Here, we offer 
a plausible explanation with the habitual diet, but also other factors 
may contribute such as oral health. However, we have recently shown 
that the history of caries in this age group was not a determinant of 

saliva microbiome diversity nor composition (Manzoor et al., 2021) 
but associated positively with sugar-metabolizers such as Leptorichia 
and Paludibacter in sex-specific analyses. Nevertheless, our analysis 
was limited by the lack of information on active caries process.

Utilizing metagenomic sequencing is a strength of this study. It 
provides more detailed information than 16S profiling; classifying the 
taxa more accurately and allowing to reflect microbiome functions in 
terms of enzymatic classes and related pathways based on a detailed 
database on microbial species and their functions.

Our dietary summary scores rely on self-reported consumption 
of indicatory food items that do not provide a complete picture of the 
children’s diet. Furthermore, we  had no exclusion criteria for 
participants; thus, some residual confounding may exist. Overall, the 
study should be considered a pilot study that provides observational 
data without full explanatory power.

5 Conclusion

Despite clinically relevant differences in waist circumference in 
participants, the saliva microbiota exhibited very modest differences 
in bacterial abundance and some in enzymatic classes according to 
central obesity. By contrast, habitual food consumption was associated 
with several enzymatic classes. Especially the role of sweet treat 
consumption was highlighted, as it contributed to nitrate reduction 
pathway through nitrate reductase produced by species Veillonella 
dispar and Haemophilus parainfluenzae among others. In adolescence, 
the contribution of lifestyle factors such as diet may have a bigger role 
on the saliva microbiome than central obesity per se.

FIGURE 5

Enzymatic classes showing the highest correlations with STI, PCI and DCI are described in (A). (B) Shows the bacterial species responsible for the 
enzymatic classes.
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