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Introduction: Reforestation is a widely used strategy for ecological restoration 
in areas facing ecological degradation. Soil bacteria regulate many functional 
processes in terrestrial ecosystems; however, how they respond to reforestation 
processes in surface and deep soils remains unclear.

Methods: Artificial Robinia pseudoacacia plantation with different stand ages (8, 
22, and 32 years) in a typical fallow forest on the Loess Plateau was selected to 
explore the differential response of soil bacterial community to reforestation in 
different soil depths (surface 0–200 cm, middle 200–500 cm, and deep 500-
100 cm). Soil bacterial diversity, community composition and the co-occurrence 
patterns, as well as the functions were analyzed.

Results and discussion: The results showed that alpha diversity and the presence 
of biomarkers (keynote species) decreased with the increasing soil depth, with a 
sharp reduction in family-level biomarker numbers in 500–1,000 cm depth, while 
reforestation had a positive impact on bacterial alpha diversity and biomarkers. 
Reforestation induced a more loosely connected bacterial community, as 
evidenced by an increase of 9.38, 22.87, and 37.26% in the average path length 
of the co-occurrence network in all three soil layers, compared to farmland. In 
addition, reforestation reduced the hierarchy and complexity but increased the 
modularity of the co-occurrence network in top and deep soil layers. Reforestation 
also led to enrichment in the relative abundance of functional pathways in all soil 
layers. This study sheds light on the strategies employed by deep soil bacteria in 
response to reforestation and underscores the significant potential of deep soil 
bacteria in terrestrial ecosystems, particularly in the context of human-induced 
environmental changes.
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1 Introduction

Reforestation is the predominant ecological restoration strategy to improve ecosystem 
services (Chazdon, 2008; Hua et al., 2016; Nunes et al., 2020). Specifically, artificial forestation 
is one of the important ecological managements on the Loess Plateau (Jin et al., 2011). The large-
scale reforestation in the past 20 years has effectively mitigated soil erosion and greatly improved 
the natural ecological environment of the region (Liang et al., 2022). These efforts have brought 
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about substantial benefits to soil structure, soil fertility, carbon 
sequestration, water balance, and biodiversity (Chazdon, 2008; 
Cunningham et al., 2015). The age of a forest, i.e., stand age, is a key 
determinant in reforestation, and it can influence the soil nutrient 
distribution by altering forest material fractions (Lucas-Borja et al., 
2016; Jonsson et al., 2020). Previous studies have shown that the stocks 
of soil organic carbon and total nitrogen in the forest soil decrease or 
continue to increase after reaching the peak throughout the 
reforestation process (Guo and Gifford, 2002; Xu et al., 2019).

As the most crucial and sensitive biological component of the soil 
ecosystem, soil bacteria regulate most biogeochemical reactions and 
play a dominant role in the nutrient-cycling process in terrestrial 
ecosystems (Falkowski et al., 2008; Nelson et al., 2016). Notably, soil 
bacteria are the main driving factors of organic carbon turnover. 
Vegetation restoration leads to changes in bacterial community 
structure by altering plant community composition and soil 
physicochemical properties (Probst et al., 2018), which in turn affects 
functional processes such as organic carbon turnover.

A large population of bacteria are concentrated in deep soils, and 
these deep-lying bacteria play an extremely important role in soil 
formation, ecosystem geochemical cycling, pollutant degradation, and 
maintenance of groundwater quality (Falkowski et al., 2008; Hartmann 
et al., 2009; Eilers et  al., 2012; Li et  al., 2014; Probst et  al., 2018). 
Nevertheless, most current studies have primarily focused on the 
surface layer (0–20 cm), where bacterial activity and diversity are the 
highest (Fierer et al., 2003). Soil bacterial diversity and composition 
vary with soil depth (Li et al., 2014), and changes in resource and 
environmental gradients in the soil profile lead to a shift in bacterial 
communities with soil depth (Chu et  al., 2016). The responses of 
surface and non-surface soil bacteria to reforestation were dissimilar. 
Previous studies have investigated how reforestation impacts surface 
soil bacteria (Zheng et al., 2005; Jourgholami et al., 2019; Shao et al., 
2019) by altering surface soil bacterial community and biomass (Shao 
et  al., 2019), community composition (Jiao et  al., 2018), diversity 
(Chen et al., 2020), and bacterial functional stability (Jiao et al., 2022). 
However, much less attention has been paid to the variations of deep 
soil bacterial community characteristics during reforestation. The 
response of deep soil bacterial diversity/community composition to 
the ecological reforestation process remains less clear.

The objective of this study was to investigate the responses of deep 
soil bacterial communities to reforestation. To achieve this, 
we conducted a comprehensive field study of soil bacterial community 
and functions along a vertical profile in a typical artificial forestation 
with different reforestation ages. We systematically examined the soil 
bacterial diversity and composition, as well as the dominant functions 
under artificial forests with different stand ages along a vertical profile 
(0–10 meters). The outcome of this work is expected to contribute to 
a more systematic understanding of how reforestation would affect the 
deep soil bacterial community and functions and provide data support 
for ecological management practices in the Loess Plateau.

2 Materials and methods

2.1 Sites and soil sampling

Soil samples were collected in the spring of 2021 from five 
different forest sites located in the Gutun watershed of the Loess 

Plateau (Supplementary Figure S1). This area is characterized by a 
typical continental climate regime and is influenced by East Asian 
monsoon to different extents. The mean annual temperature is 9.8°C, 
and the mean annual precipitation is 541 mm (Zhao et al., 2020). The 
most common vegetation species in the watershed is Robinia 
pseudoacacia L. with a total coverage rate of 60–75%. The field 
experiment was conducted within the artificial Robinia pseudoacacia 
forests of different stand ages, including R8 (stand age 8 yrs), R22 
(stand age 22 yrs), and R32 (stand age 32 yrs). An additional farmland 
near the forest served as the control F, where sweet potatoes were 
interplanted with cherry trees. The basic characteristics of the forests 
and farmland examined are presented in Supplementary Table S1.

Soil samples were collected in each forest and the farmland in 
April 2021. Samples from 0–200 cm layers were collected at 20 cm 
intervals, and those from 200–1,000 cm layers were collected at 50 cm 
intervals using a 5 cm diameter soil. Considering that soils from the 
upper layers are more susceptible to changes in the environment, 
while soils in the deeper layers are relatively stable, we categorized 
them into three levels: 0–200 cm (top layer), 200–500 cm (middle 
layer), and 500–1,000 cm (deep layer). Soil samples from different 
layers within each level were considered subsamples for each level. Soil 
samples were transported to the laboratory in a 4°C esky after 
sectioning. The soil was sieved through a 2 mm sieve after removing 
small stones and plant roots. After mixing evenly, soil samples were 
divided into two parts, with one for the soil physicochemical analysis 
and the other for soil DNA extraction.

2.2 Soil characteristics

Soil water content (SWC) was measured gravimetrically by drying 
20 g soil samples overnight in an oven at 105°C. The gravimetric 
moisture content was then calculated as grams of moisture lost per 
gram of dry soil. Soil pH was determined using a pH meter at 1:2.5 
v:w ratio (Mettler Toledo S210, Mettler-Toledo, Switzerland). Soil 
organic matter was determined by the potassium dichromate method 
(H2SO4-K2Cr2O4) (Walkley and Black, 1934; Alhassan et al., 2018). Soil 
total nitrogen (TN) was measured by the Kjeldahl digestion method 
with a Kjeltec analyser (KjeltecTM8400 Analyser, Foss, Sweden) 
(Bremner, 1960). Soil total phosphorus (TP), available phosphorus 
(AP), ammonia nitrogen (NH4

+-N), and nitrate-nitrite (NO3
−-N) were 

measured by a flow injection analyzer (SEAL Analytical AA3, 
Norderstedt, Germany).

2.3 High-throughput sequencing of 16S 
rRNA genes

Bacterial 16S rRNA genes were amplified using the primer pair 
338F (ACTCCTACGGGAGGCAGCAG) and 806R (GGACTA 
CHVGGGTWTCTAAT) (Lee et al., 2012). Sequencing libraries were 
established using a TruSeqDNA PCR-Free Sample Preparation Kit 
(Illumina) after purifying PCR products. The quality of the library was 
initially determined with a Qubit@2.0 Fluorometer (Thermo 
Scientific) and then Agilent Bioanalyzer 2,100 System (Agilent 
Technologies). Sequencing analysis was performed on an Illumina 
MIseq platform (Chen et al., 2019) with a PE250 strategy. Raw reads 
(2 × 250 bp paired-end) were analyzed mainly through the pipeline of 
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Quantitative Insights into Microbial Ecology (QIIME) (Caporaso 
et  al., 2010). Briefly, chimeras were filtered out using the default 
program ChimeraSlayer within QIIME (Haas et al., 2011), and reads 
were clustered into operational taxonomic units (OTUs) using 
UPARSE at 97% identity (Edgar, 2013). The representative sequences 
of OTUs were annotated against the latest SILVA database (Quast 
et al., 2012) using Ribosomal Database Project (RDP) classifier (Wang 
et al., 2007). Resultant OTU tables were rarefied to a sequencing depth 
of 20,000 reads per sample before downstream analyses.

Co-occurrence networks of soil bacterial communities in the 
different levels were constructed using the CoNet app in Cytoscape 
and visualized by Gephi (Bastian et al., 2009; Faust and Raes, 2016). 
Briefly, OTUs with relative abundance <0.05% and occurring in less 
than half of the samples were removed before analysis. Pearson and 
Spearman correlation, Bray–Curtis dissimilarity, and Kullback–
Leibler dissimilarity were used to measure the robustness of the 
correlation in the network simultaneously (Faust et al., 2015). The 
p-values threshold of the Benjamini-Hochberg’s false discovery rate 
correlation was 0.001. The topology parameters including average 
degree, modularity, clustering coefficient, average path length, 
betweenness centrality, and closeness centrality were calculated to 
compare the stability and complexity of different networks. PICRUSt2 
was used to predict the functions of the soil bacterial communities 
(Douglas et al., 2020a,b). The nearest sequenced taxon index (NSTI) 
values were calculated to represent the reliability of the prediction 
(Douglas et al., 2020b; Canarini et al., 2021).

2.4 Statistical analyses

We used the Shannon index to demonstrate the alpha diversity of 
the bacterial community, as it evaluates both evenness and richness 
(Gotelli and Colwell, 2001; Wang et al., 2018). Bray−Curtis distance 
was calculated as a measurement of surface soil layer-to-deep soil 
layer dissimilarity in bacterial community composition (beta 
diversity). Principal coordinate analysis (PCoA) was employed on 
Bray-Curtis distances to visualize the differences in microbial 
community composition. Moreover, Adonis permutational 
multivariate analysis of variance (PERMANOVA, Adonis) was 
conducted to verify the results of PCoA. Distance-based redundancy 
analysis (db-RDA) was used to identify the effects of soil properties 
on soil bacterial communities. Variance Inflation Factor (VIF) 
analysis was performed before RDA to eliminate the effect of 
multicollinearity; only variables with low VIF (< 10) were kept to 
perform the RDA. Linear discriminant analysis coupled with effect 
size (LEfSe) with an LDA score > 3.5 was used to determine taxa with 
significant differences in abundance among different forests (Segata 
et  al., 2011). Across all abundant taxa in all taxonomic levels of 
reforestation ages shown in LEfSe analysis, species that showed 
significant differences in reforestation were known as biomarkers that 
played important roles in the soil bacterial community of each 
reforestation age (Segata et al., 2011).

One-way analysis of variance (ANOVA) was used after Levene’s 
test of homogeneity of variances to detect the differences among soil 
layers and forests with different stand ages. Spearman correlation was 
used to determine the relationship between soil properties and 
bacterial community compositions. Multivariate linear regression 
was conducted to estimate the driving factors of soil bacterial 

diversity. Analysis of variance (ANOVA) test of models was 
conducted. The normality of unstandardized residuals was checked 
using the Shapiro–Wilk test. The Durbin-Watson test was conducted 
to examine the autocorrelation of the regression variables. Data 
points that had a Cook’s distance greater than one indicated that it 
might be an outlier and should be eliminated (Field, 2009; Neina 
et al., 2016). All statistical analyses were performed using SPSS 20.0 
(IBM Co., Armonk, NY) and R.1

3 Results

3.1 Variations of soil bacterial community 
diversity

Soil bacterial diversity displayed distinct variations through the 
reforestation processes across different soil layers. The alpha diversity 
of soil bacteria, calculated by the Shannon index, showed an upward 
trend along the reforestation sequences in 0–200 and 200–500 cm soil 
layers (Figure 1A). No significant difference in alpha diversity could 
be  observed in R8, R22, and F, while alpha diversity in R32 was 
significantly higher than the others in the 500–1,000 cm soil layer 
(p < 0.05). In all soil layers, R32 consistently exhibited the highest 
Shannon index values. Soil bacterial alpha diversity in the forest was 
significantly different than in the farmland at the top layer (0–200 cm) 
(p < 0.05). These results indicate that reforestation led to variations of 
bacterial alpha diversity in all soil layers, with R32 demonstrating the 
most substantial diversity across all layers.

To evaluate the changes in soil bacterial community beta diversity 
after reforestation, the Bary-Curtis distance of soil bacterial 
communities in different forests relative to the control (farmland) 
was compared in different soil layers (Figure 1B). In the topsoil layer 
(0–200 cm), soil bacterial beta diversity in R22 significantly deviated 
from that of the farmland (p < 0.05), while in deep soil layers, there 
were no significant differences in soil bacterial beta diversity between 
farmland and forests of different reforestation ages. Variations of soil 
bacterial community composition were illustrated by PCoA based on 
the Bray-Curtis distances (Figure  1C). The bacterial community 
composition in 0–200 cm, 200–500 cm, and 500–1,000 cm layers for 
R8, R22, R32, and F (the control) appeared as distinct clusters. Adonis 
analysis further confirmed the distinct bacterial profiles among 
forests of different reforestation ages in all soil layers (0–200 cm: 
R2 = 0.40, p = 0.001; 200–500 cm: R2 = 0.43, p = 0.001; 500–1,000 cm: 
R2 = 0.34, p = 0.001).

3.2 Variations of soil bacterial community 
composition and co-occurrence patterns

Results of LEfSe analysis were shown by LDA score and a 
cladogram visualizing all detected bacterial compositions from phylum 
to species, respectively (Figure 2). The biomarkers associated with each 
reforestation age along the soil profiles were dissimilar. A greater 
number of biomarkers were detected in the topsoil layer (0–200 cm) 
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https://doi.org/10.3389/fmicb.2023.1324052
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://www.r-project.org


Wu et al. 10.3389/fmicb.2023.1324052

Frontiers in Microbiology 04 frontiersin.org

than in the other layers; at the family level, biomarkers in the largest age 
of reforestation (R32) were more abundant than the others in each soil 
layer (Supplementary Table S2). The number of the significant 
biomarkers at the family level decreased in the deep (500–1,000 cm) 
soil layer, suggesting that the soil bacterial composition in this soil layer 
was relatively stable and consistent during the reforestation.

Among all the identified biomarkers, more family-level 
biomarkers were detected in the topsoil layer, and their abundance 
declined with increasing soil depth (Supplementary Table S2). 
Specifically, Actinobacteriota were the potential taxonomic indicators 
that primarily changed under reforestation in the topsoil layer. 
Families including Frankiales, Micrococcales, Actinomarinals, and 
norank_c_Acidimicrobiia (LDA 4.66, p = 0.003) were significantly 
abundant in R8. The abundance of Gammaproteobacteria (LDA 4.29, 
p = 0.02) including Burkholderiales and TRA3_20 was also significant 
in R8. Fewer biomarkers can be  detected in the middle soil layer 
(200–500 cm) than the topsoil layer (0–200 cm). Actinobacteriota and 
Proteobacteria were the main phyla that contained potential 

biomarkers in the middle soil layer. Actinobacteriota including 
Geodermatophilaceae, Micrococales, Nocardioidaceae, and TRA3_20 
enriched in R8 (LDA 4.85, p = 0.006), while Gammaproteobacteria was 
more abundant in R22 (LDA 4.76, p = 0.001). In the deep soil layer 
(500–1,000 cm), the order norank_c_Gitt_GS_136 (phylum 
Chloroflexi) was abundant in F (LDA 4.08, p = 0.000), and 
Unclassified_c_Parcubacteria (phylum Patescibacteria) was more 
abundant in R8 (LDA 3.53, p = 0.000). The families Nakamurellaceae 
(phylum Actinobacteriota) and Bacillaceae (phylum Firmicutes) were 
significantly enriched in R32 with an LDA score of 3.725 and 3.619, 
respectively (p = 0.000).

Correlation networks among bacterial OTUs were constructed to 
access the soil bacterial co-occurrence patterns in the forest with 
different ages of reforestation along the vertical profile. Results 
demonstrated that the complexity and the connection of soil bacterial 
communities were dissimilar (Figure 3). Specifically, the average degree 
of the network of F was higher than that in the forest with different 
reforestation ages at the 0–200 cm soil layer. In the 200–500 cm layer, 

FIGURE 1

Soil bacterial alpha diversity (Shannon index) of the forests with different reforestation ages as well as the farmland (A). Bray-Curtis distances between 
forests of different reforestation ages and the control (farmland) at different soil layers (B). Principle coordinates analysis (PCoA) based on the Bray-
Curtis matrix of the soil bacterial gene profiles from different forests and farmland (C).
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the average degree of R32 was the highest, but the modularity was the 
lowest (0.49) (Supplementary Table S3). Interestingly, the edge and the 
average degree of each network increased as the soil depth increased to 
500–1,000 cm except R32, while the average path length decreased by 
increasing the soil depth except R32.

3.3 Variations of soil bacterial functions

The relative abundance of functional groups in KEGG pathway 
level 2 predicted by PICRUSt2 differed between forests and farmland 
(Figure  4). The average weighted nearest sequenced taxon index 
(NSTI) for all samples was 0.12, falling within the conventional soil 
threshold range, indicating a moderate accuracy of the functional 
prediction (Langille et al., 2013; Douglas et al., 2020b). Across all 
treatments, the top three function traits in bacterial communities 
were global and overview maps, carbohydrate metabolism, and 
amino acid metabolism. Reforestation induced enrichment in most 
functional pathways, particularly in the 0–200 cm soil layer 
(Figure 4). In this layer, 31, 30, and 32 functional pathways increased 
in R8, R22, and R32, respectively, compared to the farmland, while 
seven, eight, and seven functional pathways decreased in the 
respective forest. In the 200–500 cm soil layer, nine functional 
pathways increased and three functional pathways decreased in R22, 
and only one functional pathway decreased in R32, while in the 
500–1,000 cm soil layer, two functional pathways increased in R8 and 

nineteen increased and eight functional pathways decreased in R32. 
Specifically, amino acid metabolism increased in the 0–200 cm soil 
layer due to reforestation, while pathways involved in secondary 
metabolites biosynthesis decreased in R22  in the 200–1,000 cm 
soil layers.

3.4 Factors driving soil bacterial taxonomic 
and functional composition

In the topsoil layer, the linear regression model showed that soil 
total nitrogen (TN) was the most important factor regulating bacterial 
alpha diversity along the reforestation sequence, while soil total 
phosphorus (TP) was the main factor driving alpha diversity along the 
reforestation sequence in the deep soil layer (Figure 5A). Distance-
based redundancy analysis (db-RDA) on the OTU level showed that 
soil properties explained 18.57% of the variability in the community 
in the topsoil layer, where TP, TN, and soil pH were the most 
important factors. In the middle soil layer, the soil main properties 
explained 20.34 and 18.2% in the middle and deep soil layer, 
respectively (Figure  5B); TP, SWC, and soil pH were the most 
influential factors driving soil bacterial community along reforestation 
in the two layers.

In addition, the major functions of soil bacteria were significantly 
correlated with SWC, soil pH, and soil NO3

− content in the topsoil 
layer; the major functions of soil bacteria were significantly affected 

FIGURE 2

Taxonomic composition of soil bacterial community based on the metagenomes from four soils of different stand ages (A). The non-significantly 
different taxa are not shown in the cladogram. The dots from the center to the outer sphere represent the phylum, class, order, family, and genus 
levels. Only taxa at the family level were listed in the legend; the letters were the abbreviation of family-level biomarkers shown in the cladogram 
correspondingly. Each dot has an effect size LDA score  >  3.5. The LDA score identifies the size differentiation among the forests and the farmland at the 
family level with a threshold score of 3.5 (B).
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by soil pH, SWC, and soil TP in the middle and deep soil layers, while 
in the deep soil layer, soil bacteria functions were mainly affected by 
nutrients content and SWC and soil pH (Figure 6).

4 Discussion

4.1 Effects of reforestation on soil bacterial 
communities along the vertical profile

Soil bacterial diversity was largely related to soil nutrients 
(Meisser et al., 2019). In the topsoil layer, bacterial alpha diversity 
was promoted by the increased soil TN content. Plant litter 
provides sufficient nutrients for soil bacteria in the topsoil layer (Li 
H. et  al., 2019; Li Y. B. et  al., 2019). Nitrogen content was an 
important control factor of litter decomposition and utilization by 
bacteria (Zhang et  al., 2008). Sufficient water content could 
promote nitrogen mineralization processes, thus nutrient 
limitation may be raised in the dry condition. In the deep soil of 
the farmland, soil TP significantly negatively altered the soil 
bacterial alpha diversity since the abundant usage of phosphate 
fertilizer and high degree of water saturation (average SWC of 
14.38% in 1000–1,500 cm) led in turn to greater P leaching 
(Keshavarzi et al., 2018; Yan et al., 2018; Khan et al., 2019).

According to the distance-based redundancy analysis (db-RDA) 
results, nutrient elements were dominant driving factors of soil 
bacterial community compositions in reforestation as the soil bacteria 
relied on the content and availability of nutrients in the soil (Shen 
et  al., 2019). Studies have proved that reforestation altered the 
distribution and stocks of soil TN, TP, and SOC (Wang et al., 2014; 
Veldkamp et  al., 2020). In addition, soil bacterial communities 
participated in the processes of soil organic matter decomposition and 
altered the availability of nutrients (Cui et al., 2018, 2020). Meanwhile, 
nutrient content and availability could lead to variations in soil 
bacterial interactions and community responses, as most of the soil 
bacteria groups are heterotrophic (Zechmeister-Boltenstern et  al., 
2015; Tian et al., 2018; Soong et al., 2020).

Previous studies have reported that forest stand age can lead to 
significant changes in soil hydrological properties (Zema et al., 2021). As 
an indicator of reforestation status, forest stand age would contribute to 
soil water fluctuations, which can influence soil bacterial activities along 
the vegetation succession (Cui et  al., 2020). In this study, the water 
content of F was significantly higher than that of the forest of reforestation 
in the deep soil layer (Supplementary Figure S2). Plant roots mediated 
soil water content and distribution by root water uptake (Rummel et al., 
2021). Studies have shown that reforestation would deplete deep soil 
water since plant roots can uptake deep soil water to support their 
growth, leading to deep soil water deficits (Kong et al., 2022). With the 

FIGURE 3

Bacterial co-occurrence networks in forests of different reforestation ages and farmland at different soil layers. The average degree of each network is 
shown in the figure.
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FIGURE 4

KEGG annotations of predicted functions of all samples. Relative abundance of 46 functions in KEGG pathway level 2 in different soil layers. Significant 
changes in the relative abundance of predicted functions induced by reforestation in different soil layers. Red represents functions that are enriched by 
reforestation; blue represents functions that are depleted by reforestation.

FIGURE 5

Linear regressions of soil bacterial alpha diversity (Shannon index) and soil total phosphorus (TP) along the reforestation in the top (0–200  cm), middle 
(200–500  cm), and deep (500–1,000  cm) soil layer (A). Distance-based redundancy analysis (db-RDA) of soil bacterial communities during 
reforestation in the top (0–200  cm), middle (200–500  cm), and deep (500–1,000  cm) soil layer (B). The ordination is based on the Bray-Curtis 
distance. Red arrows indicate the environmental variables and dots of different colors represent soil bacterial communities (OTU-level) in different 
successional stages of reforestation. TP: soil total phosphorus; TN: soil total nitrogen; OM: soil organic matter; NH4

+: soil ammonium nitrogen content; 
NO3

−: soil nitrate nitrogen content; SWC: soil water content.
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increase in forest stand age, plant root depth increases, and the process 
of root uptake of deep soil water is more likely to occur (Tao et al., 2021). 
However, this process occurs only when the water content of deep soil is 
sufficient, which in turn affects the growth and activity of bacteria in the 
soil (Li H. et al., 2019; Li Y. B. et al., 2019). Resource competition, such as 
nutrients and water, between plants and soil bacteria may lead to changes 
in soil bacterial community composition. The changes were related to the 
condition of vegetation growth and root absorption processes of water 
and nutrients (Guyonnet et al., 2018b). The nutrient uptake strategies of 
plants could alter the carbon output by releasing carbon into the soil via 
root exudation, which could therefore influence the soil bacterial 
community composition and functions (Guyonnet et al., 2018a).

In addition, the connections among soil bacterial species 
varied among different forest and soil layers. The node and edge of 
the co-occurrence networks in the topsoil layer decreased along 
the reforestation (Supplementary Table S3), indicating reforestation 
resulted in less association in bacteria in the topsoil layer. In 

addition, reforestation decreased the average connectivity (average 
degree) of the network by 21.99% in the topsoil layer. However, 
reforestation increased the average connectivity of the network by 
35.16% in the middle soil layer, while the average connectivity 
increased at first but decreased sharply (57.92%) by the end of the 
reforestation in the deep soil layer. Reforestation largely reduced 
the deep soil layer network node by 14.81–21.94%. The network 
modularity of the top and deep layers was enhanced by 2.73 and 
17.98%, respectively, while the reforestation decreased the network 
modularity by 19.94% in the middle soil layer. The average 
clustering coefficient of the network in the top and deep layers was 
decreased by 1.14 and 21.96%, respectively, while the reforestation 
increased the average clustering coefficient of the network by 
2.64% in the middle soil layer. Reforestation increased the average 
path length of networks in all soil layers by 9.38, 22.87, and 37.26%, 
respectively. An increase in average path length by reforestation 
could reduce the response of the network to environmental 

FIGURE 6

Spearman’s correlation between predicted functions and soil physicochemical properties in the top (0–200  cm), middle (200–500  cm), and deep 
(500–1,000  cm) soil layers. Asterisks represent significant levels of correlation. *p  <  0.05, **p  <  0.01.
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perturbations and induce a more loosely connected bacterial 
community (Faust and Raes, 2012). In general, reforestation 
resulted in a less complex and less hierarchical network with higher 
modularity and looser structure in the top and deep soil layers, 
while in the middle soil layer, reforestation led to a less complex 
and more hierarchical network with higher modularity and looser 
structure (Deng et al., 2012; Prescott et al., 2022).

Reforestation increased the relative abundance of the great 
majority of soil bacterial functional pathways. Metabolism was the 
most abundant function of all. The variation of metabolism 
pathways in forests with different reforestation ages indicates that 
reforestation can lead to functional trait fluctuation. In the topsoil 
layer, reforestation resulted in enrichment in relative abundance of 
most functional pathways. Specifically, an abundance of the 
carbohydrate metabolism pathway was up-regulated in forests of 
all reforestation ages. Higher carbohydrate metabolism could 
provide more substrates by degrading cellulose and hemicellulose 
(López-Mondéjar et  al., 2016). The energy released during 
carbohydrate metabolism in microorganisms sustains bacterial 
growth while maintaining functional cellular homeostasis (Cao 
et al., 2021). In the deep soil layer, the carbohydrate metabolism 
pathway was insensitive to reforestation suggesting that the 
regulatory effects of reforestation on soil bacterial functions, 
especially metabolism pathways, were non-significant.

4.2 Effects of soil depth on soil bacterial in 
forests of different reforestation age

Soil bacterial beta diversity was mainly driven by soil TP and 
TN in the topsoil layer (Figure 5). This may have resulted from the 
variation of soil elemental factors along the reforestation 
(Supplementary Figure S3) since the majority of soil bacteria 
obtained energy (essential nutrients) from the decomposition and 
mineralization of soil organic matter (Trivedi et al., 2013). The 
surface soil possessed high soil nutrient contents (e.g., TN) derived 
from the accumulation of organic residues of surface litter and root 
exudates; the abundant nutrients were tightly correlated to soil 
bacterial diversity by affecting the bacterial growth and metabolism 
(Fierer et al., 2003; Trivedi et al., 2013; Delgado-Baquerizo et al., 
2017; Prescott and Vesterdal, 2021). However, as these properties 
decreased with soil depth, their effects on soil bacterial diversity 
also decreased gradually. Deeper layers showed less water and 
nutrients as well as less available O2 for soil bacteria to grow (Li 
et al., 2016; Cai et al., 2020); thus, the soil bacterial communities 
in deeper soil layers were less abundant and diverse. Lower 
contents of nutrients in deeper soil layers resulted in the limitation 
for soil bacteria to grow, thus leading to smaller microbial densities 
and diversity (Delgado-Baquerizo et  al., 2016). Soil TP was 
significantly positively correlated with soil alpha diversity and it 
was the most significant driving factor of bacterial beta diversity. 
The availability of phosphorus was largely related to the bedrock; 
thus soil TP was the main driving factor of soil bacterial abundance 
and richness in the deep soil layer (500–1,000 cm). Furthermore, 
soil pH played an important role in driving soil bacterial beta 
diversity in all soil layers which was consistent with previous 
studies that confirmed that pH was a universal driving factor of 
soil bacterial diversity and community composition (Fierer and 

Jackson, 2006; Singh et al., 2012; Delgado-Baquerizo and Eldridge, 
2019; Li et al., 2021). The soil pH in deeper layers was higher than 
that in the top layers, but as the soil of the Loess Plateau is alkaline, 
the increase of soil pH in the vertical direction may not lead to the 
fluctuation of the soil bacterial community (Chu et al., 2010; Liu 
et al., 2013; Jin et al., 2019).

With the increase in soil depth, the significantly different taxa of 
soil bacterial community composition in the soil of the forest of 
different reforestation ages gradually decreased (Figure  2; 
Supplementary Table S2). The biomarkers of each forest were changed 
simultaneously, which could be  used to distinguish soil bacterial 
communities of different treatments (Segata et  al., 2011). The soil 
bacterial communities in deeper soil layers contained fewer biomarkers 
that were selected by the deep soil environment (Fierer et al., 2003). It 
was the environmental variations within the soil profile that caused soil 
bacterial community composition changes along the soil depth.

Among all the family-level biomarkers, the order 
Saccharimonadales belonged to the candidate phylum 
Saccharibacteria which was formerly known as TM7. 
Saccharibacteria have been proven to survive by co-metabolizing 
with other bacteria as they have small cell sizes and genomes 
(Lemos et al., 2019). As a specific biomarker in the 0–500 cm soil 
layers of R8, Saccharimonadales was significantly altered by SWC 
in the 200–500 cm soil layer. Their abundance was enriched in R8 
since the SWC was relatively high in the 0–500 cm soil layer. Many 
groups of Saccharibacteria could utilize complex carbon sources 
and degrade into carbon sources through a co-metabolism process 
in order to promote their growth and those of other bacteria in soil 
(Rüthi et al., 2020), thus stimulating the soil bacterial community 
in the young forest. The family Moraxellaceae is the biomarker in 
1000–1,500 cm of R22, which belongs to Gammaproteobacteria; 
certain species are mesophilic or psychrotrophic. The order-level 
biomaker Rokubacteriales in the 40–500 cm soil layers of R32 were 
affected by SWC and soil nutrients (OM, TN, and TP). 
Rokubacteriales is an order of Rokubacteria, that has the potential 
for nitrogen respiration, sulfur oxidation, and sulfate/sulfite 
reduction (Becraft et al., 2017; Anantharaman et al., 2018). In the 
over-mature forest, the variation of soil properties may influence 
the nitrogen- and sulfur-related processes by altering the 
abundance of Rokubacteriales.

5 Conclusion

Overall, this study highlights the profound regulator effect of 
reforestation on soil bacterial community structure, especially in 
the deep soil layer. Reforestation increased bacterial alpha diversity 
and the number of biomarkers and resulted in a less complex, more 
distant, and less hierarchical network with higher modularity in 
both top and deep layers. Deep soil bacterial functions were 
enriched by reforestation with an age of 22, highlighting the 
significance of reforestation age as a key factor influencing soil 
bacterial community responses. The responses of soil bacterial 
communities to reforestation vary with soil depth, with soil 
bacterial community structure being notably influenced by 
increasing soil depth. The findings of this work provide insight into 
the responses of deep soil bacterial community structure to 
ecological reforestation which is crucial for studying the deep layer 
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of the terrestrial ecosystem response to human-induced 
environmental changes.
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