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Multiple studies have demonstrated that microRNA (miRNA) can be deeply

involved in the regulatory mechanism of human microbiota, thereby inducing

disease. Developing e�ective methods to infer potential associations between

microRNAs (miRNAs) and diseases can aid early diagnosis and treatment. Recent

methods utilize machine learning or deep learning to predict miRNA-disease

associations (MDAs), achieving state-of-the-art performance. However, the

problem of sparse neighborhoods of nodes due to lack of data has not

been well solved. To this end, we propose a new model named MTCL-MDA,

which integrates multiple-types of contrastive learning strategies into a graph

collaborative filtering model to predict potential MDAs. The model adopts a

contrastive learning strategy based on topology, which alleviates the damage to

model performance caused by sparse neighborhoods. In addition, the model also

adopts a semantic-based contrastive learning strategy, which not only reduces

the impact of noise introduced by topology-based contrastive learning, but also

enhances the semantic information of nodes. Experimental results show that our

model outperforms existing models on all evaluation metrics. Case analysis shows

that our model can more accurately identify potential MDA, which is of great

significance for the screening and diagnosis of real-life diseases. Our data and

code are publicly available at: https://github.com/Lqingquan/MTCL-MDA.

KEYWORDS

contrastive learning, diagnosis and treatment, graph collaborative filtering, human
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1 Introduction

MicroRNA (miRNA) is a kind of RNA molecule that is single-stranded and generally

consists of 19–25 nucleotides (Cuperus et al., 2011), which is endogenous non-protein-

coding, and highly conserved in evolution (Ambros, 2004). Relevant studies have shown

that miRNA is involved in the human intestinal microbial environment, thereby affecting

the pathogenesis of certain intestinal inflammation (Friedman et al., 2009). Some miRNAs

bind to mRNA, thereby inhibiting activities such as mRNA degradation, causing the

downregulation of mRNA expression function (Gebert and MacRae, 2019). Generally,

miRNA exists in human peripheral blood, but it may also appear in intestinal fluid, saliva

and other body fluids (Weber et al., 2010). Recent exploration has found that miRNA

serves as a mediator to guide the interaction between cells and microbiota (Ji et al., 2018).

In addition, certain metabolites produced by microorganisms can affect the expression of

miRNA, thereby affecting the host’s microecology. Some studies have verified that abnormal

function of miRNA is involved in the pathogenesis of certain diseases (Park et al., 2017).
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Related studies have also revealed that miRNA and microbial

communities are related to Inflammatory bowel disease (Qin et al.,

2010; James et al., 2020).

MiRNA regulates the flow and expression of genetic

information in space and time through post-transcriptional

gene regulation or silencing (Zhang et al., 2018), which involves

approximately 30 to 90 human genes (Cai et al., 2009). The

ability of miRNAs to regulate apoptosis and growth of cells has

been demonstrated by numerous studies (Neilson et al., 2007).

Tumor formation often results when cells display abnormal

growth and loss of apoptotic function (Hill and Tran, 2021).

Although it is not completely clear how miRNAs regulate the

development and maturation of nervous system and their

physiological functions, it has been confirmed that the expression

of miRNAs in nervous system is characterized by high time

sequence, high conservation, and high specificity (Cao et al.,

2016). At present, it is widely believed among researchers that

miRNAs perform specific regulatory functions in the nervous

system’s development and operation. Many studies indicate that

miRNAs are intricately involved in the precise regulation for the

function and development of nervous system (Christensen and

Schratt, 2009). Once the regulation is chaotic, it will inevitably

lead to disease. Although the correlation between miRNAs and

cerebrovascular diseases is still being explored, according to the

analysis of relevant research data, miRNAs may also contribute to

the development of cerebrovascular diseases (Hu et al., 2015). On

one hand, miRNA can be used as a therapeutic target (Ganju et al.,

2017) to achieve gene regulation (Weiland et al., 2012), and on the

other hand, it can serve as a biomarker of disease diagnosis and

disease screening (Mo et al., 2012).

The traditional methods for detecting miRNA mainly include

Northern Analysis (Válóczi et al., 2004), Microarray (Li and Ruan,

2009), and Quantitative Real-time PCR (Benes and Castoldi, 2010).

Northern Analysis (Válóczi et al., 2004) is a common method for

detecting RNA based on hybridization (Várallyay et al., 2008), and

it is one of the earliest methods for miRNA analysis. This method

is simple and feasible, and most laboratories can operate without

additional capital investment and equipment update. However, the

analysis process requires a lot of manual operations, is not suitable

for large-scale screening experiments, and it is usually unable to

effectively distinguish miRNAs with small sequence differences.

Microarray (Li and Ruan, 2009) also detects miRNA based

on hybridization principle, which analyzes and understands the

mechanism of miRNA expression regulation and gene expression

regulated by miRNA by measuring the expression level of miRNA

in a specific process. However, this method requires sufficient initial

RNA samples, and it is difficult to clearly distinguish miRNAs

with small differences, as well as precursor miRNAs with the same

sequence and mature active miRNAs. Real-time quantitative PCR

is a method that completes the overall analysis process by adding

a fluorescent group to the DNA amplification reaction (Benes and

Castoldi, 2010). However, it is of heavy workload and high cost.

Through the implementation of reliable methodologies like these,

researchers have established extensive bioinformatics databases

that house experimentally verified miRNAs and their associations

with diseases. These databases are widely acknowledged as

dependable sources of information. For example, dbDEMC is a

database of miRNAs related to human cancer (Xu et al., 2022).

HMDD is a database of miRNA-related diseases (Huang et al.,

2019). MiR2Disease is a miRNA-related disease database developed

by Harbin University of Technology (Jiang et al., 2009). They

provide a lot of valuable data support for future research.

The researches have proposed many computational methods

to predict the MDAs well. Most of these approaches assume

that miRNAs which have similar functions are potentially

associated with diseases having similar phenotypes. For example,

Chen and Yan (2014) applies regularization and semi-supervised

strategies to predict miRNA-disease correlations. Jiang et al. (2010)

proposes the network-based method to infer the potential MDAs.

Luo systematically prioritizes disease-associated miRNAs using

transduction learning-based collective prediction. Zhang et al. use a

fast network link reasoning method based on linear neighborhood

similarity. First, the known miRNA disease association is expressed

as a binary network, and the miRNA is expressed as a correlation

spectrum, so is the disease. Then the fast linear neighborhood

similarity measure and the correlation curve are proposed to

estimate theMDAs (Zeng et al., 2016). Huang integrates the nuclear

similarity of miRNA-disease Gaussian interaction profiles into the

original multiple data, and proposes a novel prediction model

called PBMDA (You et al., 2017). By integrating multiple data,

Chen et al. further propose an induction matrix strategy to forecast

MDAs (Li and Ruan, 2009; Benes and Castoldi, 2010).

Recently, machine learning and deep learning have been

leveraged in the field of biology, such as prediction of gene

regulatory (Peng et al., 2022; Wang et al., 2022; Gao et al., 2023),

drug discovery (Li et al., 2021a), and ncRNA protein interactions

(Liu et al., 2022). Biomedical scientists are drawing inspiration

from this approach, and utilizing machine learning algorithms to

forecast possible correlations between miRNAs (microRNAs) and

diseases, resulting in enhanced accuracy of prediction outcomes.

Zhang et al. (2019) propose a new method which predictes MDAs

using automatic encodingmachines and extractes features based on

unsupervised rule. Fu presentes a deep learning ensemble model,

named DeepMDA, that leverages stacked autoencoders to extract

complex features from similarity data. Ding et al. (2021) developes

a deep learning model, known as VGAE-MDA, which is based on

variational autoencoding of graphs and is intended for forecasting

MDAs.

Due to the great progress of graph neural network (GNN)s on

graph-structured data (Cai et al., 2021; Wang et al., 2022, 2023),

GNN-based models have been developed to forecast miRNA-

disease correlations. Wang and Chen (2023) estimate between

miRNAs-diseases correlations using a hybrid model that combines

graph convolutional networks and convolutional neural networks,

which are boosted by multi-channel attention. Li et al. (2021b)

suggest a model named GAEMDA, that utilizes autoencoder-based

GNNs to recognize miRNA-disease correlations. Moreover, Li et al.

(2022b) integrate attention mechanism into a hierarchical GNN to

predict miRNA-disease correlations.

The above methods have proven their success, but they

do not fully consider the sparseness of node neighborhoods,

including node topological neighborhood sparseness and node

semantic neighborhood sparseness that degrade the performance

of these models. In this study, we propose a graph collaborative
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filtering based model that integrates a contrastive learning strategy

for topological neighbors of miRNA (or disease) nodes and a

contrastive learning strategy for semantic neighbors of nodes. Our

model can well alleviate the node sparse neighborhood problem

and accurately predict miRNA-disease correlations. Experimental

results prove the superiority of our model to predict the association

between miRNAs and diseases. Our contributions are summarized

as:

1. We propose a novel method to predict miRNA-disease

associations, integrating a contrastive learning strategy into a

graph collaborative filtering.

2. We propose a contrastive learning strategy based on the

topological neighbors of miRNA (or disease) nodes, which can

be used to fully mine the topological information in the miRNA-

disease bipartite graph.

3. The semantic similarity between miRNA and disease is used to

enrich the neighborhood information of nodes in the miRNA-

disease bipartite graph, and a contrastive learning strategy for

node semantic neighbors is proposed. This reduces the noise

impact brought by the contrastive learning strategy of node

topological neighbors, while alleviating the problem of sparse

neighborhoods of nodes in the dataset.

4. Based on the MDAs datasets, we have constructed multiple sets

of comparative experiments to evaluate the effectiveness and

stability of our model. And the corresponding case analysis

proves that the MTCL-MDAmodel can provide a certain degree

of advice for early intervention in diseases.

2 Materials and methods

Based on the graph collaborative filtering model, we apply

contrastive learning strategies to node topological neighbors and

node-based semantic neighbors, respectively, and propose a model

named MTCL-MDA. In general, it is easy to aggregate topological

neighbors in GNN-based research. However, for semantic-based

neighbors, although various methods have been tried, the results

are not satisfactory. And when the topological neighborhood of

nodes is sparse, semantic information (such as feature vectors)

becomes more critical for the accurate representation of nodes.

Therefore, the importance of semantic neighbors is self-evident. In

our study, contrastive learning strategies are applied in two aspects

to alleviate this problem, and the final experimental results are

also very satisfactory. We present our approach in the following

sections.

2.1 Problem formulation

Our main goal is to predict unknown MDAs based on

observed MDAs. These known MDAs can be used as the basis for

constructing a bipartite graph G = (M, D, A). M represents miRNAs

collection, D represents disease collection, and A represents MDAs.

Our main goal is to predict unknown MDAs based on

observed MDAs. These known MDAs can be used as the basis for

constructing a bipartite graph G = (M,D,E). M = {m1, ...,mN}
represents miRNAs collection, D =

{
d1, ..., dN

}
represents disease

collection, and A represents MDAs. If there is a link from node mi

to dj, Aij = 1, otherwise Aij = 0.

Predicting MDAs involves node neighborhood information.

Nh(vi) represents the set of neighbors of node vi within h-order. In

our research, we focus on the unweighted graph, vi is regarded as

the target node and vj ∈ Nh(vi) is the neighbor within the h-order.

Link prediction problems (Lü and Zhou, 2011) are divided into

time link prediction (predicting potential new links in evolutionary

networks) and topological link prediction (inferring unknown links

in static networks). Similar to the latter, given partial observations

of the topology, it is expected to predict unknown links. In

practical problems, given the correlation topological structure of

some observed miRNAs and diseases, we can predict the unknown

correlation, that is, whether the miRNA is related to the disease.

2.2 Model architecture

Our model mainly consists of three parts: graph collaborative

filtering, contrastive learning of miRNA (or disease) nodes, and

MDAs prediction. The main components of the model are shown

in Figure 1. We apply graph collaborative filtering to disseminate

network information in the miRNA-disease bipartite graph, and

update node embeddings by aggregating neighbors. And the model

integrates the contrastive learning strategy of topological neighbors

and the contrastive learning strategy of semantic neighbors.

Immediately, it can not only reduce the negative impact of noise

caused by purely using topology contrastive learning strategy, but

also alleviate the problem of sparse topological neighborhood of

nodes. Finally, we concatenate the output miRNA and disease node

embeddings to obtain a paired vector, and then feed it into MLPs to

determine whether there exists a association between miRNA and

disease.

2.3 Graph collaborative filtering

As mentioned at the beginning of this section, GNN-based

approaches generate miRNA (or disease) embeddings by applying

propagation and prediction functions to the topology composed

of MDAs. In this study, a graph collaborative filtering model is

employed to complete the propagation process. Specifically, Our

propagation function is as follows:

Xl+1
m =

∑

d∈Nm

1
√
|Nm| |Nd|

Xl
d (1)

Xl+1
d

=
∑

d∈Nd

1
√
|Nd| |Nm|

Xl
m, (2)

where Xl
m and Xl

d
denote the embeddings of miRNA and disease

nodes on lth-layer network, respectively. Nm and Nd denote the

neighbor sets of nodes m and d, respectively. After the L layer

propagation, We utilize the weighted sum function as the readout
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FIGURE 1

MTCL-MDA model architecture figure. (A) The dashed box on the left shows the contrastive learning of disease nodes based on topological

neighborhood. For a disease node 1, its embedding and the embedding obtained in the even layer of GNN constitute a positive sample; its

embedding in the even layer constitutes a negative pair with the embedding of other disease nodes not connected to it in the even layer. Conduct

contrastive learning training so that the distance between nodes with similar structure (such as 1 and 2, 3 and 4) is smaller, and the distance between

1 (2) and 3 (4) with dissimilar structure is larger. (B) Brief process of representative graph collaborative filtering, where four layers of aggregation

operations are performed. (C) The dashed box on the left represents the contrastive learning of disease nodes based on semantic neighborhood. The

orange and blue solid squares represent the cluster centers, the nodes in the cluster and the cluster centers constitute positive samples, and the

nodes in the cluster and other cluster centers constitute negative samples. In this way, contrastive learning training is carried out, so that the distance

between nodes with similar feature vectors is smaller, and the distance between nodes with dissimilar feature vectors is larger. Processing on miRNA

nodes is similar to disease nodes.

function and aggregate the representations from all layers to derive

the ultimate representation, as depicted below:

Xm =
1

L+ 1

L∑

l=0

Xk
m, (3)

Xd =
1

L+ 1

L∑

l=0

Xk
d, (4)

where Xm and Xd respectively represent the final node embedding

of nodes m and d. And then calculate the inner product between

nodesm and d as the correlation score:

ŷm,d = Xm
TXd, (5)

where ŷm,d represents the predicted score of
(
m, d

)
pair. The BPR

loss function (Rendle et al., 2012) is employed to train directMDAs.

Specifically, the loss function can make positive MDAs scores tend

to be larger than negative association scores. Formally, the objective

function of BPR loss is as follows:

LBPR =
∑

(m,i,j)∈O
− log σ (̂ym,i − ŷm,j), (6)
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where LBPR and σ represent BPR loss and sigmod activation,

respectively. O =
{
(m, i, j)|Rm,i = 1,Rm,j = 0

}
represents the

paired training data, and j indicates the sampled diseases with

which miRNA m is not associated. By optimizing LBPR, our

proposed model can model these observed MDAs. However, the

higher-order neighbors within miRNA (or disease) is also valuable

for prediction task. For example, miRNAs within the same cluster

have a high probability of being linked to the same miRNAs (or

diseases). Next, we demonstrate two contrastive learning strategies

to capture the respective latent neighbor relationships of miRNAs

and disease nodes.

2.4 Contrastive learning strategy based on
topological neighborhood

This subsection will demonstrate a contrastive learning strategy

based on miRNA (or disease) nodes. More specifically, each

miRNA (or disease) node is learned contrastively with its own

topological neighbors. Easily, the node embeddings of these

neighbors can be aggregated by GNN propagation. Bipartite graphs

are formed on direct MDAs, and even layer propagation naturally

gathers information from homogeneously structured neighbors.

For example, node representations of similar neighbors can be

obtained from the output of even-numbered layers (such as 2, 4,

6) based on GNNmodels. We regard the embedding of the miRNA

node itself and its corresponding output embedding in even layers

as positive samples. Based on the InfoNCE (Aitchison, 2021) loss

function, we propose a structure-contrastive learning objective as

follows:

L
M
S =

∑

m∈M
− log

exp
((

X
(k)
m · X(0)

u /τ

))

∑
d∈M exp

((
X
(k)
m · X(0)

d
/τ

)) . (7)

Mmeans the set of miRNA nodes.X
(k)
m is the normalized output

of kth layer in GNN, k is an even number, and τ is the temperature

hyperparameter on the numerator and denominator in the softmax

function. Similarly, the topological neighbor contrastive learning

strategy for disease nodes can be summarized as follows:

L
D
S =

∑

d∈D
− log

exp
((

X
(k)
d

· X(0)
u /τ

))

∑
m∈D exp

((
X
(k)
d

· X(0)
d

/τ

)) . (8)

where Dmeans the set of disease nodes.

Integrating the topological neighbor contrastive learning

strategy of miRNA nodes and the topological neighbor comparison

learning strategy of disease nodes, the following can be obtained:

LS = L
M
S + αLD

S . (9)

where α represents the adjustment parameter for two losses.

2.5 Contrastive learning strategy based on
semantic neighborhood

As mentioned in Section 2.4, the topological contrastive

learning strategy focuses on the neighbors defined by the miRNA-

disease bipartite graph. However, it only takes into account the

loss of contrast between a miRNA (or disease) node and its

homogeneous neighbors. Meanwhile, it indiscriminately computes

the contrastive loss of miRNA (or disease) nodes, which will

inevitably introduce noise information. To mitigate suffering from

topological neighbor noise, we consider extending the contrastive

learning strategy by incorporating miRNA (or disease) node

semantic neighbors. For a miRNA (or disease) node, its semantic

neighbors refer to nodes that are unreachable on the miRNA-

disease bipartite graph but have similar feature vectors.

Motivated by previous work (Mirman, 2011), we can determine

semantic neighbors by learning latent prototypes of nodes.

Therefore, we construct a prototype-based contrastive learning

objective to identify potential semantic neighbors of miRNA

(or disease) nodes. Meanwhile, the semantic neighbor-based

contrastive learning strategy is integrated into the whole contrastive

learning framework to better capture the semantic features of

miRNAs (or diseases). Specifically, miRNA (or disease) nodes with

similar node embeddings will be assigned into the same clusters

using a clustering algorithm. These clusters are represented by

the central nodes of the clusters, which are called prototypes.

The process can use the EM learning algorithm (Kushary, 1998)

to optimize the proposed prototype-contrastive learning function.

Optimized by maximizing the log-likelihood of the following

probability distribution function:

∑

m∈M
log p (em | 2,R) =

∑

m∈M
log

∑

ci∈C
p (em, ci | 2,R) (10)

And 2 indicates all parameters, R indicates the miRNA-disease

bipartite graph, and ci is the potential comparison prototype of the

miRNA nodem. Similarly, we can define an optimization objective

function for the set of diseased nodes:

∑

d∈D
log p (ed | 2,R) =

∑

d∈D
log

∑

ci∈C
p (ed, ci | 2,R) (11)

Applying the InfoNCE (Aitchison, 2021) loss function, we can

optimize the following objectives based on contrastive strategies:

L
D
P =

∑

m∈M
− log

exp (em · ci/τ)∑
ct∈C exp (em · ct/τ)

, (12)

where ci is the prototype node of miRNA nodem, which is obtained

by clustering all miRNA node embeddings by k-means algorithm.

The set of miRNA nodes can be assigned into k clusters, and the

value of k can be set as required. A similar process also applies to

disease node sets:

L
D
P =

∑

d∈D
− log

exp
(
ed · cj/τ

)
∑

ct∈C exp (ed · ct/τ)
, (13)

where cj represents the prototype node of the disease node d. By

integrating the contrastive learning process of miRNA node sets
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and the contrastive learning process of miRNA node sets, we can

get the final semantic neighbor-based optimization objective:

LP = L
M
P + αLD

P (14)

According to this semantic neighbor-based contrastive learning

strategy, on the one hand, it can reduce the impact of noise brought

about by topology contrastive learning, and on the other hand, it

can alleviate the problem of sparse node neighborhoods.

Therefore, the overall loss of the model is:

L = LBPR + β1LS + β2LP + β3 ||2||2 (15)

where β1, β2 and β3 are the parameter to control the weight, and 2

denotes all parameters of GNNmodel. We can apply EM algorithm

to optimize the solution.

2.6 Prediction of MDAs based on MLP

We integrated the obtained embeddings of miRNA and disease

nodes to further predict whether they are positive pairs or negative

pairs. Commonly used integration methods include Hadamard

product, vector inner product, vector addition, and concatenate

operations. In this study, we empirically selected the concatenate

operation:

ŷm,d = concatenate(Xm,Xd), (16)

where Xm and Xd represent the embeddings of miRNA m and

disease d, respectively. If the miRNA m is associated with the

disease d, then the (m, d) pair is positive, otherwise it is negative.

The concatenated embedding representation x will be fed into

MLPs, and finally output:

S(x) =
1

1+ exp(−x)
. (17)

Then the BCE loss (Wu et al., 2020) for the classification is

calculated by:

loss = −y log(S(̂ym,d))− (1− y) log(1− S(̂ym,d)), (18)

where y represents the true MDA in the dataset, and its value is 0 or

1. S(̂ym,d) represents the label predicted by the classifier.

2.7 Preliminary disease screening

Figure 2 presents the process of the proposed MTCL-MDA

model for preliminary disease screening. First, samples are taken

from the patient’s relevant organs or tissues and assayed to extract

key miRNA components. Then, the proposed model was used to

predict diseases associated with this miRNA in the HMDD v2.0

database. The first process involves more complex biochemical

testing and analysis. The proposedmodel can serve as a preliminary

screening tool for the disease and play an active role in the

second process. And our webserver is publicly accessible at: https://

huggingface.co/spaces/ZZCrazy00/MDA.

3 Results

We use pytorch tool for building deep learning frameworks,

to implement the MTCL-MDA model. To assess the effectiveness

of the proposed model, we conducted extensive comparative

experiments using the miRNA-disease dataset. This section mainly

includes the following parts.

3.1 Datasets and experimental settings

We use datasets downloaded from HMDD v2.0 database. It

contains 495 miRNAs, 383 diseases and 5,430 MDAs verified

by experiments. The association information is represented by a

matrix A with the size of (495, 383), where Aij = 1 indicates that

the ith miRNA associated with the jth diseaseand Aij = 0 indicates

that there is no association.

We evaluate the performance of the proposed model in terms

of AUC, Accuracy (abbreviated as ACC), Specificity (abbreviated as

SPE), Precision (abbreviated as PRE), Recall (abbreviated as REC),

F1− score, and other metrics. The metrics used in our experiments

are expressed as follows:

Acc =
TP + TN

TP + TN + FP + FN
, Spe =

TN

TN + FP
, (19)

Sen =
TP

TP + FN
, Pre =

TP

TP + FP
, F1− score = 2 ∗

Pre ∗ Sen
Pre+ Sen

(20)

In the above equations, TP represents the positive association

ratio of miRNA-disease correctly classified, FP represents the

positive association ratio of miRNA-disease misclassified, TN

represents the negative association ratio of miRNA-disease

correctly classified, and FN represents misclassified miRNA-disease

negative association ratio. And we compare the proposed model

against the following eight baselines. WBSMDA (Chen et al., 2016)

and RFMDA (Chen et al., 2018) integrates multiple similarity

relations into a unified network to identify potential MDAs.

PBMDA (You et al., 2017) integrates three interrelated networks

and then predicted potential MDAs based on a depth-first search

strategy. LLCMDA (Qu et al., 2018) is a method that utilizes locally

constrained linear coding for predicting MDAs. EDTDA (Chen

et al., 2019) is an innovative method that utilizes decision tree-

based algorithms to predict MDAs. GBDT-LR (Zhou et al., 2020)

combines gradient boosted decision trees and logistic regression to

predict MDAs. MCLPMDA (Yu et al., 2019) predicts MDAs based

onmatrix completion. GAEMDA (Peng et al., 2022) predictsMDAs

based on GNN and autoencoder.

3.2 Performance evaluation

We evaluate the performance of each model in terms of the

metric AUC and the experimental results are reported in Table 1.

Overall, all models achieved good results except the WBSMDA

(Chen et al., 2016) model, which may be because most models

have integrated and processedMDAs information. For example, the

EDTMDA (Chen et al., 2019) and GBDT-LR (Zhou et al., 2020)
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FIGURE 2

The process of the proposed MTCL-MDA model for preliminary disease screening.

TABLE 1 Comparison of MTCL-MDA model with other advanced methods

on AUC indicator.

Models AUC

WBSMDA (Chen et al., 2016) 81.85%

RFMDA (Chen et al., 2018) 88.18%

PBMDA (You et al., 2017) 91.72%

LLCMDA (Qu et al., 2018) 91.90%

EDTMDA (Chen et al., 2019) 91.92%

GBDT-LR (Zhou et al., 2020) 92.74%

MCLPMDA (Yu et al., 2019) 93.20%

GAEMDA (Li et al., 2021b) 93.56%

MTCL-MDA 94.56%

models use an ensemble learning strategy, and the MCLPMDA

(Yu et al., 2019) model uses a matrix completion strategy. We

find that the GAEMDA (Li et al., 2021b) model achieves the

second best results. The reason lies in it not only considers the

topological information in the miRNA-disease bipartite graph in

spite of fully considering the feature information of the nodes by

using an autoencoder. It can also be seen from Table 1 that among

all the models, the proposed MTCL-MDA performs best on AUC

metric, and the reason is that the proposed MTCL-MDA considers

not only the node topological information but also the topological

neighborhood of nodes is sparse.

Furthermore, we conduct the 5-fold cross-validation

experiments and the experimental results, are shown in Figure 3

and Table 2. It can be seen that all indicators can reflect the

excellent effect of our model. We also run 10-fold cross-validation

experiments and theAUC curves under the 10-fold cross-validation

experiments, which indicates that the effect of the proposed

MTCL-MDA is still stable and less affected by data splitting.

In order to provide additional evidence of our model’s

performance, we perform a detailed comparison with GAEMDA

(Li et al., 2021b), which is the most advanced existing method

in the field using an autoencoder to calculate the similarity of

homogeneous nodes. Then feed the node embedding of miRNA

and disease into the bilinear decoder to predict the potential

correlations between miRNA and disease. However, the sparseness

of node neighborhoods widely exists in various graphs, and the

miRNA-disease bipartite graph is no exception. The GAEMDA

(Li et al., 2021b) model does not deliberately consider this

problem, while our method is exactly the opposite. And we

integrated the contrastive learning strategy of miRNA (or disease)

nodes based on topological neighbors and semantic neighbors,

which can alleviate this problem. From the results in Table 2,

we can see that the average of all metrics of our model is

the best. Among them, the values of AUC, ACC, PRE, REC,

and F1 − score increased by 1, 2.97, 3.97, 0.69, and 1.14%,

respectively.
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FIGURE 3

AUC curves of MTCL-MDA on 5(10)-fold cross-validation.

TABLE 2 Comparison of 5-fold cross-validation results between MTCL-MDA and GAEMDA model on HMDD v2.0 (%).

Models Testing set AUC ACC PRE REC F1-score

GAEMDA 1 93.21 84.30 80.43 90.35 85.10

2 93.59 85.36 80.96 92.10 86.17

3 94.34 86.23 84.74 88.41 86.54

4 93.57 85.27 81.94 91.25 86.35

5 93.07 83.47 78.77 91.39 84.61

Average 93.56 84.93 81.37 90.70 85.75

MTCL-MDA 1 94.46 87.38 85.43 90.15 87.72

2 94.56 88.17 85.10 92.54 88.66

3 94.76 88.17 85.89 91.34 88.53

4 94.95 87.62 85.12 91.16 88.04

5 94.02 87.15 85.00 90.24 87.54

Average 94.56 87.70 85.31 91.09 88.10

3.3 Ablation experiment

We conduct the ablation experiments to evaluate the

importance of topology-based and semantic-based contrastive

learning modules. Table 3 shows the results of the ablation

experiments. In Table 3, “w/o TCL” means the model removes

the topology-based contrastive learning module, “w/o SCL” means

the model removes the semantic-based contrastive learning

module, “w/o TCL” means the model removes all contrastive

learning module. The results show that the model achieved the

worst performance when it did not use the contrastive learning

module. The performance of the model is improved when it

adopts topology-based or semantic-based contrastive learning

modules. The best performance occurs when the model adopts

both topology-based and semantic-based contrastive learning

modules. At this time, the AUC, ACC, PRE, REC, and F1 −
score indicators obtained by the model increased by 1.27, 1.78,

2.49, 0.39, and 1.53% respectively. This proves that topology-

based and semantic-based contrastive learning modules can

TABLE 3 Results of ablation experiments of MTCL-MDA model on HMDD

v2.0 (%).

Models AUC ACC PRE REC F1-score

w/o CL 93.29 85.92 82.82 90.70 86.57

w/o TCL 94.00 86.26 84.73 88.87 86.92

w/o SCL 94.13 86.34 83.79 89.43 86.52

MTCL-MDA 94.56 87.70 85.31 91.09 88.10

work together and play a positive role in improving model

performance.

3.4 Stability evaluation

We designed an experiment to make the model run randomly

for 20 rounds, and drew the boxplots of the results of these 20
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rounds, as shown in Figure 4. Boxplots can show how scattered a

set of data is, detect and display outliers in the data, and clean them

up. Based on these results, we could judge and observe the overall

distribution of the data. When the data distribution is relatively

concentrated, the boxes in the boxplot will be smaller, otherwise

the boxes will be larger. When the midline is close to the upper edge

FIGURE 4

Boxplots of training model for 20 times.

of the boxplot, the data is concentrated in the upper half part, and

when the midline is close to the bottom edge of the boxplot, the

data is concentrated in the lower half part. The boxplot results of

each indicator in Figure 4 further demonstrate the stability of our

model.

In addition, we constructed parameter experiments to study the

sensitivity of model performance to the involved hyperparameters.

In the experiment, we kept the remaining parameters consistent

and evaluated the impact of hyperparameters α, β1, β2, and

β3 on model performance, as shown in Table 4. The results

indicate that the performance of the model is not sensitive to

the hyperparameters α, β2, and β3. Therefore we can set these

three hyperparameters relatively easily. In addition, when the

hyperparameter β1 is greater than 1e-6, the performance of the

model decreases significantly; when β1 is less than 1e-6, the

performance of the model improves significantly and tends to be

stable. We also found that when the three parameters β1, β2, and β3

are all set to smaller numbers, the model performance is relatively

stable. Therefore, we can set the hyperparameters β1, β2, and β3 to

a smaller number, such as 1e-6.

3.5 Case study

To validate the predictive performance of our proposed model

MTCL-MDA in practical scenarios, we perform case studies and

Table 5 presents the corresponding results. The known biological

TABLE 4 Results of parameter experiments of MTCL-MDA model on HMDD v2.0 (%).

Parameters Rounds AUC ACC PRE REC F1-score

α = 0.1 93.56 87.13 84.26 86.56 88.85

β1 = 1e-6 α = 0.2 93.91 87.19 84.99 89.23 86.84

β2 = 1e-8 α = 0.5 94.15 88.24 83.58 91.07 88.32

β3 = 1e-6 α = 1.0 94.31 89.02 84.06 90.98 89.02

α = 2.0 94.18 88.06 83.73 89.23 87.97

β1 = 1e-4 91.13 83.46 81.74 87.48 86.60

α = 1.0 β1 = 1e-5 91.88 82.41 81.58 83.79 85.16

β2 = 1e-8 β1 = 1e-6 94.31 89.02 84.06 90.98 89.02

β3 = 1e-6 β1 = 1e-7 94.29 87.95 85.88 89.04 88.96

β1 = 1e-8 94.04 87.26 85.01 87.29 88.15

β2 = 1e-6 94.24 87.61 84.14 89.96 87.55

α = 1.0 β2 = 1e-7 94.12 87.42 84.26 89.41 87.33

β1 = 1e-6 β2 = 1e-8 94.31 89.02 84.06 90.98 89.02

β3 = 1e-6 β2 = 1e-9 94.19 87.75 84.09 90.33 87.71

β2 = 1e-1 94.26 87.42 84.57 90.24 87.41

β3 = 1e-4 94.27 87.47 84.04 89.78 87.40

α = 1.0 β3 = 1e-5 94.23 87.75 84.47 89.87 87.66

β1 = 1e-6 β3 = 1e-6 94.31 89.02 84.06 90.98 89.02

β2 = 1e-8 β3 = 1e-7 94.35 87.84 84.58 91.16 87.87

β3 = 1e-8 94.28 87.79 84.56 91.07 87.82
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TABLE 5 Top 20 cardiomyopathy-related miRNAs predicted by

MTCL-MDA based on HMDD v2.0.

miRNA miR2Diseas miRNA miR2Diseas

hsa-mir-27a Definited hsa-mir-181b Undefinited

hsa-mir-499a Undefinited hsa-mir-195 Definited

hsa-mir-150 Undefinited hsa-mir-125b Definited

hsa-mir-21 Definited hsa-mir-199b Definited

hsa-mir-1 Definited hsa-mir-27b Definited

hsa-mir-23a Definited hsa-mir-214 Definited

hsa-mir-199a Definited hsa-mir-23b Definited

hsa-mir-196a Undefinited hsa-mir-155 Definited

hsa-mir-126 Undefinited hsa-mir-9 Undefinited

hsa-let-7i Undefinited hsa-mir-133a Definited

experiment results show that there is some relationship between

miRNA and cardiomyopathy. Cardiomyopathy is a relatively

serious heart disease. Once patients have symptoms, it will affect

their normal life and work. As the disease progresses, the symptoms

of heart failure will further aggravate, and symptoms such as

edema and dyspnea will appear. The sick will not be able to live

and rest normally, and the quality of life will further decline,

which will bring heavy burden and pain to the family and society.

Patients with hypertrophic cardiomyopathy and arrhythmogenic

cardiomyopathy, especially young people, are even at risk of

sudden death. Therefore, we selected cardiomyopathy to predict its

associated miRNAs.

In case studies, we execute experiments with the following

steps: when training the model, firstly, delete the association

information between cardiomyopathy (including dilated

cardiomyopathy and hypertrophic cardiomyopathy) and

miRNA from the 5,430 MDAs, and secondly, train the model

by randomly collecting corresponding negative samples, and

next use the association between cardiomyopathy (including

dilated cardiomyopathy and hypertrophic cardiomyopathy) and all

miRNAs as test samples. Then output the top 10 miRNAs which are

predicted associated with cardiomyopathy. After comparing with

the real labels of known samples, it is known that the prediction

results are completely correct. This further verifies the superiority

of our model. Our model MTCL-MDA has practical implications

in the field of mining disease-related miRNAs and providing

reliable guidance for disease treatment.

In biological experiments, it has been proved that miRNA is

related to various diseases, such as hsa-mir-29a is related to various

tumor diseases, including but not limited to breast tumor, liver

tumor, gastric tumor, and so on. It is likely to be involved in more

diseases, so we design experiments to explore whether hsa-mir-29a

is interrelated other diseases. The association data between hsa-

mir-29a and disease is removed when training the model, and the

corresponding negative samples are selected randomly. Finally, we

take the association of hsa-mir-29a with all diseases as test samples

and output the predicted association probabilities. The predicted

results are shown in Table 6, which manifests that miRNAs are not

only associated with various tumor diseases, but also involved in

Alzheimer’s disease (Li et al., 2022a), Parkinson’s disease and other

TABLE 6 Predicted diseases associated with hsa-mir-29a based on

MTCL-MDA (TOP 20).

Disease dbDEMC miR2Diseas

Breast neoplasms Definited Undefinited

Carcinoma, hepatocellular Definited Undefinited

Stomach neoplasms Definited Undefinited

Carcinoma, hepatocellular Definited Undefinited

Ovarian neoplasms Definited Undefinited

Mouth neoplasms Definited Definited

Parkinson disease Definited Undefinited

Colonic neoplasms Definited Definited

Crohn disease Undefinited Undefinited

Stomach neoplasms Definited Undefinited

Heart failure Undefinited Undefinited

Schizophrenia Undefinited Undefinited

Colorectal neoplasms Definited Undefinited

Tuberculosis, pulmonary Undefinited Undefinited

Aortic aneurysm, thoracic Definited Undefinited

Myocardium Undefinited Definited

Melanoma Definited Undefinited

Biliary atresia Undefinited Undefinited

Liver cirrhosis Undefinited Undefinited

Endomyocardial fibrosis Undefinited Undefinited

mental diseases, some of which have also been verified in the latest

database.

4 Conclusion

This study propose a model named MTCL-MDA based

on graph collaborative filtering, which can accurately predict

MDAs. To fully utilize the topological information, we present a

contrastive learning strategy based on topological neighborhood.

And we designed a contrastive learning strategy based on semantic

neighborhood to alleviate the problem of the noise information

introduced by the topological contrastive learning strategy and

the sparse topological neighborhood. The comparison results with

the current methods fully demonstrate the high-performance of

the MTCL-MDA model. Furthermore, the case analysis suggests

that the MTCL-MDA model can be an option for the discovery

of disease-associated miRNAs and miRNA-associated diseases,

thereby providing constructive suggestions for disease treatment

and diagnosis. Since the proposed model uses a lightweight graph

collaborative filtering model as the encoder, this may result in

the loss of some information during message propagation. In

addition, themodel will involve relatively complex operations when

calculating the contrastive learning loss. In future work, we will

focus on solving these problems and improving the applicability of

the model.
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