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A “grazing ban” policy has been implemented in some pastoral areas in China 
to fence degraded grasslands for restoration. However, fencing increased 
grazing pressures in unmanaged grasslands. Based on the mechanism of 
negative edge effect, we investigated whether overgrazing on unmanaged 
grassland interfered with the restoration of adjacent grazing-banned 
grassland by affecting soil properties and microbial community using a 
sample in Hulun Buir of Inner Mongolia, in order to optimize the “grazing 
ban” policy. Plant and soil were sampled in areas 30  m away from the fence 
in unmanaged grassland (UM) and in areas 30  m (adjacent to UM) and 
30–60  m (not adjacent to UM) away from the fence in the grazing-banned 
grassland (F-30  m and F-60  m). The species richness and diversity of plant 
communities and the ASV number of fungal communities significantly 
decreased in F-30  m and UM, and the Simpson index of the bacterial 
community significantly decreased in F-30  m compared with F-60  m. 
The abundance of fungi involved in soil organic matter decomposition 
significantly decreased and the abundance of stress-resistant bacteria 
significantly increased, while the abundance of bacteria involved in litter 
decomposition significantly decreased in UM and F-30  m compared with 
F-60  m. The simplification of plant communities decreased in soil water and 
total organic carbon contents can explain the variations of soil microbial 
communities in both UM and F-30  m compared with F-60  m. The results 
of PLS-PM show that changes in plant community and soil microbial 
function guilds in UM may affect those in F-30  m by changing soil water and 
total organic carbon contents. These results indicate that overgrazing on 
unmanaged grassland interfered with the restoration of adjacent grazing-
banned grassland by affecting soil properties and microbial community. The 
grazing-banned grasslands should be adjusted periodically in order to avoid 
negative edge effects.
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1 Introduction

Grassland is an ecosystem where humans and nature coexist and 
interact (Wang et  al., 2018; Sun et  al., 2022). Grasslands provide 
grazing resources for humans, and moderate grazing promotes 
decomposition and regulates the structure of plant communities, 
maintaining the dynamic balance of grasslands (Xun et al., 2018). 
However, the ongoing impact of overgrazing and global climate 
change has resulted in grassland degradation, which has become a 
major factor threatening the stability of the global terrestrial ecosystem 
(Boval and Dixon, 2012; Gibbs and Salmon, 2015; Liu et al., 2019; Lyu 
et al., 2020; Bardgett et al., 2021; Török et al., 2021). To curb grassland 
degradation, a series of restoration policies have been implemented in 
some pastoral areas of China (Kolås, 2014; Sun et al., 2020). “Grazing 
ban” is one such policy to fence some grasslands from grazing. The 
implementation of the policy significantly improved the plant 
diversity, total organic carbon, soil water content, and total nitrogen 
in the grazing-banned areas (Pei et al., 2008; Cheng et al., 2016; Wang 
et  al., 2016; Xiong et  al., 2016; Li et  al., 2017). However, fencing 
increased grazing pressure in the unmanaged areas which are usually 
adjacent to the grazing-banned areas (Sun et al., 2020). In some long-
term fenced grasslands, the areas adjacent to unmanaged grasslands 
have degraded. Therefore, it is necessary to understand whether the 
overgrazing on unmanaged grasslands interfered with the restoration 
of grazing-banned grasslands.

Fencing formed a clear boundary between unmanaged and 
grazing-banned grasslands. Edge effect refers to the changes in 
community structure and ecological processes caused by ecological 
factors or system-attributed changes at the edge zone of two adjacent 
ecosystems (Fonseca and Joner, 2007; Eldegard et  al., 2015). In 
anthropogenic interference-induced edge zones, the biological 
community structures within the edge zones changed rapidly and had 
weak anti-interference abilities (Kark, 2013; Smith and Goetz, 2021). 
Light, energy utilization rate, soil temperature, and soil 
physicochemical properties in such areas changed with the changes in 
the biological community (Schmidt et al., 2017; Koelemeijer et al., 
2023). Thus, edge effects induced by anthropogenic interference have 
been confirmed to negatively influence species diversity, community 
dynamics, and ecosystem functions (Guerra et al., 2017; Krishnadas 
et  al., 2018; Fischer et  al., 2021; Blanchard et  al., 2023; Lapola 
et al., 2023).

It is well known that the anthropogenic interference-induced edge 
effect is caused by disrupting the interaction between soil microbial 
and plant communities in the edge zone (Pennanen, 2001; Ettema and 
Wardle, 2002; Malmivaara-Lämsä et  al., 2008). The interaction 
between plants and soil microorganisms is important for maintaining 
the stability and productivity of ecosystems (van der Heijden et al., 
2008; Bardgett and van der Putten, 2014). Plants serve as specific hosts 
for soil microorganisms (Zhang et al., 2018), influence the microbial 
community structure through root exudates (Meier et  al., 2017; 
Canarini et al., 2019), and provide energy and nutrients for microbial 
metabolism (van der Heijden et  al., 2008; Luo et  al., 2022). Soil 
microorganisms regulate nutrient cycling between plants and soil, 
aiding the formation of soil structures that are conducive to plant 
growth (Bissett and Burke, 2007; Coban et al., 2022; Hartmann and 
Six, 2023; Li et al., 2023). The soil microbial community structure and 
function in the edge zone change with the changes in soil properties 
and plant community, and these changes influence litter 

decomposition rates and nutrient cycling in the edge zone (Pennanen, 
2001). Changes in nutrient and water supply may in turn affect the 
structure and diversity of plant communities in adjacent areas, 
ultimately leading to vegetation degradation in these areas (Ettema 
and Wardle, 2002). For example, forest fragmentation-induced edge 
effect changed soil microbial communities by affecting the soil 
properties in the forest edge zone (Malmivaara-Lämsä et al., 2008). 
Based on the mechanism of edge effect induced by anthropogenic 
interference, overgrazing on unmanaged grassland may deteriorate 
the interaction between soil microbial and plant communities in 
adjacent grazing-banned grassland, reducing the restoration 
effectiveness in grazing-banned grassland. Therefore, it is necessary to 
understand whether such a negative edge effect exists in order to 
optimize the “grazing ban” policy.

The Inner Mongolia grassland is one of the pastoral areas in 
China where the “grazing ban” policy is implemented (Hao et al., 
2014; Kolås, 2014; Gao et al., 2022). Grasslands designated by the 
local government as under “restoration” cover approximately 70% of 
the total grassland. Of the total area under “restoration”, pastures 
fenced under “grazing ban” cover approximately 20%, and pastures 
subjected to unspecified restoration measures cover approximately 
20% (Kolås, 2014). Due to the reduction in grazing grasslands, 
herders overgrazed on the unmanaged grasslands, resulting in severe 
degradation of these areas. Many such unmanaged areas are adjacent 
to grazing-banned areas. Based on the known mechanisms of edge 
effect induced by anthropogenic interference described above, this 
study aims to investigate whether overgrazing on unmanaged 
grasslands interfered with the restoration of adjacent grazing-banned 
grassland by affecting soil properties and microbial communities. 
We predicted that (1) in grazing-banned grassland, the composition 
and the interaction of soil microbial and plant communities of the 
area adjacent to unmanaged grassland were similar to those of the 
unmanaged grassland but different from those of the area not 
adjacent to the unmanaged grassland; and (2) the changes of plant 
and soil microbial communities in the unmanaged grassland may 
change those in adjacent grazing-banned grassland by changing 
soil properties.

2 Materials and methods

2.1 Study site

The study site was located in the Xin Barag Right Banner of Hulun 
Buir, in the Inner Mongolia Autonomous Region 
(47°36′00″N ~ 49°50′0″N and 115°31′00″E ~ 117°43′00″E), and is an 
example of a typical temperate grassland. The average annual 
precipitation is 243.9 mm, with the majority of rainfall occurring 
during the summer months. The average annual temperature is 
1.6°C. The primary soil type is Calcic Luvisols (FAO, 1988), and the 
dominant plant species include Leymus chinensis, Stipa capillata, Poa 
annua, and Caragana stenophylla, among others.

2.2 Experimental design

The grazing-banned grassland selected in this study was fenced 
in 2008 and is adjacent to an unmanaged grassland (Figure 1A). 
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Three belt transects spaced 1 km apart were set up perpendicular to 
the fence. According to the observation that degradation area in the 
grazing-banned grassland is approximately 30 m away from the fence, 
we defined 30 m as a distance unit from the fence (Figure 1A). In each 
belt transect, three 5 m × 5 m plots, spaced 5 m apart, were set up 30 m 
away from the fence in unmanaged grassland (hereafter UM) and the 
areas 30 m (adjacent to the unmanaged grassland) and 30–60 m (not 
adjacent to the unmanaged grassland) away from the fence in 
grazing-banned grassland (hereafter F-30 m and F-60 m), respectively. 
The sampling diagram is shown in Figure 1B. Within each plot, the 
plant community was surveyed, and the soil was sampled. To test our 
two predictions, we compared the composition of the plant and soil 
microbial communities, soil microbial functions, and soil 
physicochemical properties in the three types of sampling grasslands, 
and then we analyzed the relationships between plant community, 
soil physicochemical properties, and soil microbial community in 
UM and F-30 m, respectively; finally, we estimated the direct and 
indirect effects of plant community, soil property, and soil microbial 
community in UM on those in F-30 m.

2.3 Plant community survey and soil 
sampling

The plant community survey and soil sampling were conducted 
in July 2022. Plant species were identified, and the number of each 
species in each plot was counted. Five soil samples, 5 cm in diameter 
and 20 cm deep, were taken from the four corners and centers of each 
plot. Samples collected from the same plot were combined and passed 
through a 2 mm sieve before being divided into three parts for 
analysis. One portion was stored at 4°C for analysis of pH and soil 
water content (SWC). Another portion was air dried for analysis of 

soil element content, and the final portion was stored at −80°C for 
Illumina sequencing of soil microorganisms.

2.4 Analysis of soil physicochemical 
properties

The soil samples were immediately weighed after collection, 
before being placed in an oven for 24 h at 60°C and weighed again. The 
difference between the wet and dry soil weights was used to determine 
the soil water content (SWC). The soil pH values were measured in the 
soil suspension (soil:water = 1:2.5) using a pH meter (Sartorius PB-10, 
Gottingen, Germany). We measured the total organic carbon (TOC) 
and total nitrogen (TN) contents using a carbon-nitrogen analyzer 
(Vario Max CN, Elementar, Germany), total phosphorus (TP) content 
using ammonium molybdate spectrophotometry, and available 
potassium (AK) content using flame atomic absorption spectroscopy.

2.5 Soil microbial analysis

We extracted DNA from different samples using Omega Bio-Tek 
(Soil DNA Kit D5625, United States), amplified the V4 region of the 
bacterial 16S rRNA gene using 515F (5’-GTGYCAGCMGCGGTAA-3′) 
and 806R (5’-GACTACHVGGGTWTCTAAT-3′) primers, and then 
amplified the ITS2 region of fungi using ITS1FI2 (5’-GTGARTCATC 
GAATCTTTG-3′) and ITS2 (5’-TCCTCTTATTGC-3′) primers. PCR 
amplification was performed in a 25 μl reaction mixture containing 
50 ng template DNA, 12.5 μL Phusion Hot start flex 2X Master Mix, 
and 2.5 μL forward and reverse primers, and ddH2O was used to adjust 
the volume to 25 μL. The PCR amplification conditions were as 
follows: initial denaturation at 98°C for 30 s, followed by 32 cycles 

FIGURE 1

The sample site (A) and experimental design diagram (B).

https://doi.org/10.3389/fmicb.2023.1327056
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Fang et al. 10.3389/fmicb.2023.1327056

Frontiers in Microbiology 04 frontiersin.org

consisting of denaturation at 98°C for 10 s, annealing at 54°C for 30 s, 
and extension at 72°C for 45 s. The bacteria and fungi were amplified 
35 times and 32 times, respectively, followed by a final extension step 
at 72°C for 10 min. PCR products were purified and quantified using 
AMPure XT beads (Beckman Coulter Genomics, Danvers, MA, 
United States) and Qubit (Invitrogen, United States), respectively. 
Amplicon library was prepared, and its size and quantity were assessed 
using an Agilent 2,100 Bioanalyzer (Agilent, United States) and the 
Library Quantification Kit for Illumina (Kappa Biosciences, Woburn, 
MA, United States). Finally, we used the NovaSeq PE250 platform to 
sequence the library.

2.6 Bioinformatics analysis on microbial 
community

We separated the sample data based on barcode information, 
removed joints and barcode sequences, and then concatenated and 
filtered the data. The Differential Amplicon Denoising Algorithm 2 
(DADA2) was used for length filtering and denoising, and single base 
precision biological sequences were obtained and renamed as 
amplified subsequence variants (ASVs), and singleton ASVs were 
removed. The feature sequences of each ASV were obtained through 
taxonomic annotation. Based on the obtained ASV feature sequence 
and ASV abundance table, the Shannon and Simpson indices of 
bacteria and fungi in each sample were calculated, and the dominant 
phyla were determined (relative abundance >1%). The prediction of 
the functional guilds of bacteria and fungi was performed in 
FAPROTAX and FUNGuild, respectively.

2.7 Calculation

We defined the number of plant species in each sample plot as plant 
species richness and measured plant species diversity using the 
Shannon−Weiner index (Spellerberg and Fedor, 2003). Based on the 
Z-score of the average abundance of each plant species, a cluster analysis 
was carried out on the composition of plant species. The microbial 
community alpha diversity was indicated by the Shannon−Weiner and 
Simpson indices (Wang et al., 2020). Based on the Bray−Curtis distance, 
we performed clustering analyses on the composition of microorganisms 
at the phylum and genus levels. We calculated the abundance of dominant 
phyla and functional guilds of bacteria and fungi.

2.8 Statistical analysis

One-way ANOVA and Tukey’s HSD multiple comparison tests were 
used to determine the significance of differences in the soil 
physicochemical properties and the alpha diversity index of plant 
communities among different types of grassland. The Kruskal–Wallis test 
and Steel–Dwass multiple comparison tests were used to determine the 
significance of differences in the alpha diversity index of microbial 
community and abundance of dominant phyla and functional guilds of 
soil microbial community among different types of grassland. Redundant 
analysis (RDA) was used to identify the effects of plant community 
composition and soil physicochemical properties on the soil microbial 
community composition in UM and F-30 m, respectively, taking F-60 m 

as a reference group. Pearson correlation was used to analyze the 
relationship between plant community composition, soil physicochemical 
properties, and the relative abundance of functional guilds of 
microorganisms in UM and F-30 m, respectively. Finally, we used partial 
least squares path modeling (PLS-PM) to estimate the influence paths 
among plant communities, soil properties, and soil microbial 
communities in UM and F-30 m. The PLS-PM (“plspm” package in R) 
used PLS regression to estimate the direction and strength of linear 
correlations between multiple variables. GoF > 0.5 is used as the indicator 
to determine the fitness of a path model. One-way ANOVA and Kruskal–
Wallis tests were completed in SPSS 20.0, while RDA analysis, Pearson 
correlation, and PLS-PM were conducted in R4.2.2.

3 Results

3.1 Plant and soil microbial community 
composition and soil physicochemical 
properties

Plant species richness and Shannon–Weiner index were significantly 
lower in F-30 m and UM than in F-60 m (one-way ANOVA and Tukey’s 
HSD test, p < 0.05; Figures 2A,B). Leymus chinensis, Caragana stenophylla, 
Poa annua, and Cleistogenes squarrosa are the dominant species in three 
types of grassland (Figure 2C). According to the results of cluster analysis, 
there were more Gramineae plants in F-60 m than in F-30 m and UM 
(Figure  2C). The Simpson index of bacterial community in F-30 m 
significantly decreased (Kruskal–Wallis and Steel–Dwass tests, p < 0.05, 
Figure 3C). The numbers of ASVs of fungal communities in UM and 
F-30 m significantly decreased (Kruskal–Wallis and Steel–Dwass tests, 
p < 0.05, Figure 3D). The Shannon–Weiner index of fungal community 
significantly decreased in UM (Kruskal–Wallis and Steel–Dwass tests, 
p < 0.05, Figure 3E). The bacteria genus, fungal genus, and phylum in 
F-30 m are similar to UM and different from F-60 m (Figures 4A,C,D), 
while the bacteria phylum in F-30 m is similar to F-60 m and different 
from UM (Figure 4B). There was no significant difference in the numbers 
of ASVs and Shannon–Weiner index of bacterial community and Simpson 
index of fungal community among different types of grassland 
(Figures  3A,B,F, Kruskal–Wallis, p > 0.05). The abundances of 
Verrucomirobiota and Methlomirabiota significantly increased, but the 
abundance of Proteobacteria significantly decreased in UM and F-30 m 
(Kruskal–Wallis and Steel–Dwass tests, p < 0.05, Figure  5A). The 
abundances of Chloroflexi and Bacteroidota significantly increased and 
decreased in UM, respectively (Kruskal–Wallis and Steel–Dwass tests, 
p < 0.05, Figure  5A). The abundances of Ascomycetes and Fungi_
unclassified in UM and F-30 m significantly decreased and increased, 
respectively (Kruskal–Wallis and Steel–Dwass test, p < 0.05, Figure 5B). 
The abundance of Basidiomycota significantly increased in UM (Kruskal–
Wallis and Steel–Dwass tests, p < 0.05, Figure 5B). The TOC content and 
SWC in UM and F-30 m significantly decreased. The TN content 
significantly decreased in F-30 m. The TP content significantly increased 
in UM (one-way ANOVA and Tukey’s HSD test, p < 0.05, Table 1).

3.2 Soil microbial functional guilds

Among the bacterial functional guilds, the abundance of 
chemoheterotrophy and aerobic chemoheterotrophy in UM was 
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significantly lower than in F-60 m (Kruskal–Wallis and Steel–Dwass tests, 
p < 0.05; Figure 6A). Among the fungal functional guilds, the abundance 
of undefined saprotroph in F-30 m and UM was significantly lower than 
in F-60 m (Kruskal–Wallis and Steel–Dwass tests, p < 0.05), while the 
abundance of dung saprotroph was significantly higher in F-30 m and 
UM than in F-60 m (Kruskal–Wallis and Steel–Dwass tests, p < 0.05). The 
abundance of fungal parasites in F-60 m was significantly higher than in 
UM (Kruskal–Wallis and Steel–Dwass tests, p < 0.05, Figure 6B).

3.3 Effects of plant community and soil 
properties on soil microbial community

Plant species richness, plant Shannon–Weiner index, SWC, and 
the abundance of L. chinensis, P. annua, and C. squarrosa were the 
main factors affecting the bacterial community composition in UM 
compared with F-60 m, which explained 53.87% of the variation in the 
composition of the bacterial communities (Figure  7A). Plant 

FIGURE 2

Plant species richness (A), Shannon–Weiner Index (B), and cluster analysis (C) of unmanaged grassland (UM) and the areas 30  m and 30–60  m away 
from the fence in grazing-banned grassland (F-30  m and F-60  m). ** and * mean one-way ANOVA and Tukey’s HSD test, p  <  0.01 and p  <  0.05. Z-score 
is the average abundance of each plant species.

FIGURE 3

The alpha diversity of bacteria and fungi in unmanaged grassland (UM) and the areas 30  m and 30–60  m away from the fence in grazing-banned 
grassland (F-30  m and F-60  m). * means Kruskal–Wallis and Steel–Dwass tests p  <  0.05. (A) bacterial ASV number; (B) bacterial Shannon–Weiner index; 
(C) bacterial Simpson index; (D) fungal ASV number; (E) fungal Shannon–Weiner index; (F) fungal Simpson index.
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Shannon–Weiner index, SWC, TN, and the abundance of P. annua 
were the main factors affecting the bacterial community composition 
in F-30 m compared with F-60 m, which explained 40.98% of the 
variation in the composition of the bacterial communities (Figure 7B). 
Plant Shannon–Weiner index, SWC, TOC, TN, and the abundance of 
P. annua and C. squarrosa were the main factors affecting the fungal 
community composition in UM compared with F-60 m, which 
explained 42.54% of the variation in the composition of the fungal 
communities (Figure 7C). Plant Shannon–Weiner index, TOC, TN, 
and the abundance of P. annua and C. squarrosa were the main factors 
affecting the fungal community composition in F-30 m compared with 
F-60 m, which explained 34.77% of the variation in the composition 
of the fungal communities (Figure 7D).

3.4 Effects of plant community and soil 
properties on soil microbial functional 
guilds

In UM and F-60 m, plant species richness, plant Shannon–Weiner 
index, SWC, and TOC positively correlated with the abundance of 
chemoheterotroph and aerobic chemoheterotroph bacteria (p < 0.05, 
Figure 8A). Three plant species positively or negatively correlated with 
the abundance of different bacteria functional guilds (p < 0.05, Figure 8A). 

SWC positively correlated with the abundance of parasite fungi (p < 0.05, 
Figure 8C). Two plant species positively or negatively correlated with the 
abundance of different fungal functional guilds (p < 0.05, Figure 8C). In 
F-30 m and F-60 m, plant Shannon–Weiner index and SWC positively 
correlated with the abundance of chemoheterotroph and aerobic 
chemoheterotroph bacteria (p < 0.05, Figure 8B). TOC positively and 
negatively correlated with the abundance of undefined saprotroph fungi 
and dung saprotroph fungi, respectively (p < 0.05, Figure  8D); SWC 
positively correlated with the abundance of parasite fungi (p < 0.05, 
Figure 8D). Three plant species positively or negatively correlated with 
the abundance of different fungal functional guilds (p < 0.05, Figure 8D).

3.5 Path model of the plant community, 
soil microbial community, and soil 
properties in UM and F-30  m

According to the results in 3.4, we selected factors that significantly 
affect soil microbial function guilds to construct three variables, 
including plant diversity (plant species richness and Shannon–Weiner 
index), dominant species abundance (Leymus chinensis, Caragana 
stenophyll, Poa annua, and Cleistogenes squarrosa), and soil properties 
(SWC and TOC). The PLS-PM estimation was performed between 
these three variables and soil microbial functions. The path model 

FIGURE 4

Cluster analyses based on Bray–Curtis distance for dominant bacterial genera (A), fungal genera (B), bacterial phyla (C), and fungal phyla (D) in 
unmanaged grassland (UM) and the areas 30  m and 30–60  m away from the fence in grazing-banned grassland (F-30  m and F-60  m).

https://doi.org/10.3389/fmicb.2023.1327056
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Fang et al. 10.3389/fmicb.2023.1327056

Frontiers in Microbiology 07 frontiersin.org

with GoF = 0.56 is shown in Figure 9. Plant diversity in UM had a 
positive effect on the bacterial function in UM, while the abundance 
of dominant species in UM had a negative effect on the fungal 
function in UM. The bacterial and fungal functions in UM had 
positive effects on soil properties in UM. The soil properties in UM 
had a direct positive effect on the soil properties of F-30 m. The soil 
properties in F-30 m had positive effects on bacterial and fungal 
functions in F-30 m. Bacterial function in F-30 m had positive effects 
on plant diversity and dominant species abundance in F-30 m. Fungal 
function in F-30 m had a positive effect on the abundance of dominant 
species in F-30 m.

4 Discussion

Numerous studies have demonstrated that long-term repeated 
grazing can reduce plant diversity and vegetation productivity 
(Eldridge and Delgado-Baquerizo, 2017; Xun et al., 2018). The results 
showed that UM had significantly lower plant richness and diversity, 
indicating the degradation of unmanaged areas. The results of the 
plant Shannon index and species cluster analysis showed that the plant 
community in F-30 m was similar to that in UM and different from 
that in F-60 m (Figure 2), indicating that the area adjacent to UM in 
the grazing-banned grassland exhibited similar degradation to 
unmanaged grassland, although there was no grazing in this area. 
Plant community degradation can cause significant changes in 
microbial communities (Zhou et al., 2019; Wang et al., 2022). The 
results of fungi ASVs, Shannon index, and cluster analysis showed that 
the fungi community in F-30 m was also similar to UM and different 
from F-60 m. The bacterial community at the genus level in the F-30 m 
was similar to UM. The abundance of stress-resistant microorganisms 

significantly increased in UM and F-30 m areas, such as 
Verrucomirobiota and Methylomirabilota, appearing in drought and 
hypoxic environments (Chowdhury et al., 2019; Zhu et al., 2022). The 
abundance of bacteria phylum Proteobacteria involved in litter 
decomposition and fungal phylum Ascomycota involved in degrading 
lignin and cellulose (Fierer et al., 2007; Wang et al., 2020; Zheng et al., 
2021) significantly decreased in UM and F-30 m areas. These results 
support our first prediction that the structures of plant and soil 
microbial communities in the areas adjacent to unmanaged grassland 
in grazing-banned grassland are similar to those in unmanaged 
grassland but different from those in the areas not adjacent to 
unmanaged grassland.

The bacterial functional guild analysis reveals that the levels of 
chemoheterotroph and aerobic chemoheterotroph, which are involved 
in the transformation of organic matter into soil (Lian et al., 2021; 

FIGURE 5

The relative abundance of bacterial dominant phyla (A) and fungal dominant phyla (B) in unmanaged grassland (UM) and the areas 30  m and 30–60  m 
away from the fence in grazing-banned grassland (F-30  m and F-60  m). The relative abundance of dominant phyla is mean  ±  standard deviation. The 
lowercase letters (a, b) on the bar chart indicate significant differences between different grasslands (Kruskal–Wallis and Steel–Dwass tests, p  <  0.05).

TABLE 1 Soil physicochemical properties in the unmanaged grassland 
(UM) and the areas 30  m and 30–60  m away from the fence in grazing-
banned grassland (F-30  m and F-60  m).

F-60  m F-30  m UM

SWC (%) 8.76 ± 041a 7.53 ± 0.44b 7.64 ± 0.48b

TOC (g/kg) 15.08 ± 1.83a 11.18 ± 2.90b 12.34 ± 2.36b

TN (g/kg) 2.03 ± 0.19a 1.66 ± 0.23b 1.84 ± 0.33ab

TP (g/kg) 0.39 ± 0.03b 0.38 ± 0.04b 0.44 ± 0.05a

pH 6.97 ± 0.42a 7.12 ± 0.74a 6.82 ± 0.55a

AK (g/kg) 0.93 ± 0.12a 0.85 ± 0.14a 0.94 ± 0.060a

Soil water content (SWC), total organic carbon (TOC), total nitrogen (TN), total phosphorus 
(TP), pH, and available potassium (AK) were expressed as mean ± standard deviation. Letters 
(a, b) indicate significant differences between different grasslands (one-way ANOVA and 
Tukey’s HSD test, p < 0.05).
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Zheng et al., 2023), are significantly lower in UM and F-30 m than in 
F-60 m. Thus, the decomposition of soil organic matter in the 
unmanaged grassland and the edge area in the grazing-banned 
grassland is weak, which is detrimental to the soil carbon cycling in 
these areas. The fungal parasite and saprophytic fungal guilds 
contributed to the majority of differences observed among the three 
types of grassland. The significant decrease in fungal parasites in UM 
and F-30 m is related to a decrease in plant diversity, which leads to a 
decrease in the host population (Maurice et al., 2021). There was a 
significant decrease in the abundance of undefined saprotrophs in UM 
and F-30 m. Saprophytic fungi play a crucial role in organic matter 
decomposition, facilitating the cycling of key soil nutrient elements, 
affecting species coexistence by altering soil nutrients, and maintaining 
stable vegetation productivity (Crowther et al., 2012; Chen et al., 2019; 
Liu et al., 2022). The bacterial and fungal functional guild analysis 
jointly suggest that soil nutrient cycling in F-30 m and UM may 
be inhibited.

Long-term overgrazing can reduce plant diversity, dominant 
species abundance, soil nutrients, and water content in grassland (Wu 
et al., 2014; Ji et al., 2022; Luo et al., 2022), which is reflected by the 
plant Shannon–Weiner index, SWC, TOC, and TN reduction in the 
UM grassland in our study. Human interference can negatively alter 
soil properties in edge areas, such as TOC, TN, and C/N (Malmivaara-
Lämsä et al., 2008). Our results showed that the SWC, TOC, and TN 
in the F-30 m are similar to those in UM, which indicate that the soil 
properties in the grazing-banned area adjacent to unmanaged 
grassland degrade. Degradation in both plant community and soil 

properties can alter the soil bacterial and fungal composition (Parton 
et al., 1995; Manzoni et al., 2012; Steinauer et al., 2015; Zhou et al., 
2019; Huang et al., 2021; Wang et al., 2021; Yu et al., 2021), especially 
reducing the microorganisms related to nutrient cycling (Pennanen, 
2001; Malmivaara-Lämsä et al., 2008). Changes in plant diversity can 
alter the composition and function of soil microorganisms by affecting 
litter input (Steinauer et  al., 2015). SWC can directly affect the 
transformation of soil nutrients and soil microbial metabolism, 
thereby affecting the composition and function of soil microbial 
communities (Parton et al., 1995; Manzoni et al., 2012). TOC can 
provide energy and carbon sources for soil microorganisms (Zhou 
et al., 2019; Wang et al., 2021). In our RDA and Pearson correlation 
results, compared with F-60 m, the plant Shannon–Weiner index and 
the abundance of Poa annua influence soil microbial composition and 
functional guilds in both UM and F-30 m, while the soil TOC and 
SWC influence the soil microbial functional guilds in both UM and 
F-30 m. The decrease in plant Shannon–Weiner index, Poa annua, 
TOC, and SWC in UM and F-30 m results in the decrease in 
chemoheterotroph and aerobic chemoheterotroph bacteria, 
saprotroph, and parasite fungi in UM and F-30 m, which may reduce 
nutrient cycling efficiency. These results indicate that the grazing-
banned area adjacent to unmanaged grassland exhibits a degraded 
interaction between plant and microbial communities just like 
unmanaged grassland.

It has been known that plant community degradation can reduce 
the abundance of microorganisms related to nutrient cycling and 
degrade the soil properties of the adjacent area (Pennanen, 2001; 

FIGURE 6

The relative abundance of bacterial functional guilds (A) and fungal functional guilds (B) in unmanaged grassland (UM) and the areas 30  m and 30–
60  m away from the fence in grazing-banned grassland (F-30  m and F-60  m). The relative abundance of functional guilds is mean  ±  standard deviation. 
The lowercase letters (a, b) on the bar chart indicate significant differences between different grasslands (Kruskal–Wallis and Steel–Dwass tests, 
p  <  0.05).
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Malmivaara-Lämsä et al., 2008). Changes in soil water and nutrient 
supply may in turn affect the structure and diversity of plant 
community and ultimately lead to the vegetation degradation of the 
adjacent area (Ettema and Wardle, 2002). Our PLS path model 
indicates that plant diversity or dominant species in UM can affect 
the soil water and organic carbon contents in UM by affecting the 
bacterial and fungal functional guilds, and the changes of soil 
properties in UM influence the soil properties in F-30 m. 
Subsequently, the changes in soil properties in F-30 m affect the 
bacterial and fungal functional guilds in F-30 m and then affect the 
plant diversity and dominant species in F-30 m. These results support 
our second prediction that the degradation of plant community, soil 
properties, and soil microbial community in unmanaged grassland 
interfere with soil microbial communities and, consequently, the 
plant restoration in the adjacent grazing-banned grassland. Such edge 
effects may gradually interfere with more areas in grazing-
banned grassland.

In summary, our results showed that soil microbial composition, 
soil properties, and plant community composition in the grazing-
banned grassland adjacent to unmanaged grassland are similar to 
those in degraded unmanaged grassland, indicating that the 
degradation of unmanaged grasslands can affect the restoration of the 
grazing-banned grasslands via negative edge effect. In our study area, 
the grazing-banned grassland has been fenced for 15 years. Long-term 
fencing increased grazing pressure in unmanaged grasslands, and 
degradation in these areas interfered with the restoration of fenced 
areas. Traditional nomadism in the Inner Mongolia grassland is 
distinguished by mobile grazing which helps prevent grassland 
degradation caused by long-term sedentary grazing on the same 
grassland (Yamamura et  al., 2013). Thus, we  suggest combining 
“grazing ban” with traditional nomadism to avoid excessive use of 
unmanaged grassland. The fence should be removed according to the 
vegetation restoration status. The study on the Tibetan plateau showed 
that degraded grassland can be restored after 4 to 8 years of fencing 

FIGURE 7

Redundancy analysis on the effect of plant diversity, plant dominant species abundance, and soil properties on soil bacterial communities in UM 
(A) and F-30  m (B) and soil fungal communities in UM (C) and F-30  m (D) compared with F-60  m.
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FIGURE 9

The partial least squares path model (PLS-PM) of the plant diversity, the abundance of dominant species, soil microbial function, and soil properties in 
UM and F-30 m. The orange and blue arrows indicate positive and negative effects (p < 0.05), respectively. The dashed line represents a non-significant 
(p > 0.05) relationship. Plant diversity includes plant species richness and Shannon–Weiner index; dominant species include Leymus chinensis, Caragana 
stenophyll, Poa annua, and Cleistogenes squarrosa; Soil properties include SWC (soil water content) and TOC (total organic carbon).* means p < 0.05.

FIGURE 8

The Pearson correlation between the bacterial and fungal functional guilds and plant diversity, relative abundance of dominant plants, and soil 
physicochemical properties [(A) bacterial guilds in UM and F-60  m samples; (B) bacterial guilds in F-30  m and F-60  m samples; (C) fungal guilds in UM 
and F-60  m samples; (D) fungal guilds in F-30  m and F-60  m samples]. SWC, soil water content; TOC, total organic carbon; TN, total nitrogen; and TP, 
total phosphorus. * p  <  0.05, ** p  <  0.01, and *** p  <  0.001.
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(Sun et al., 2020); thus, grazing-banned areas should be adjusted after 
such a period in order to avoid the negative edge effect.

5 Conclusion

The soil microbial and plant communities in the edge zone of 
grazing-banned grassland have been similar to those in adjacent 
unmanaged overgrazed grassland. The abundance of microorganisms 
was related to nutrient cycling reduced in both unmanaged and adjacent 
grazing-banned grasslands. The plant diversity, dominant plant species, 
soil organic carbon, and water content can explain the soil microbial 
community variation in both unmanaged and adjacent grazing-banned 
grasslands. Changes in soil water and organic carbon contents in 
unmanaged grassland affect these soil properties in adjacent grazing-
banned grassland and subsequently affect soil microbial functions and 
plant community. Degradation in unmanaged grassland interferes with 
the restoration of grazing-banned grassland via negative edge effects.
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