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The application of orthopedic implants for bone tissue reconstruction and 
functional restoration is crucial for patients with severe bone fractures 
and defects. However, the abiotic nature of orthopedic implants allows 
bacterial adhesion and colonization, leading to the formation of bacterial 
biofilms on the implant surface. This can result in implant failure and severe 
complications such as osteomyelitis and septic arthritis. The emergence of 
antibiotic-resistant bacteria and the limited efficacy of drugs against biofilms 
have increased the risk of orthopedic implant-associated infections (OIAI), 
necessitating the development of alternative therapeutics. In this regard, 
antibacterial hydrogels based on bacteria repelling, contact killing, drug 
delivery, or external assistance strategies have been extensively investigated 
for coating orthopedic implants through surface modification, offering 
a promising approach to target biofilm formation and prevent OIAI. This 
review provides an overview of recent advancements in the application 
of antibacterial hydrogel coatings for preventing OIAI by targeting biofilm 
formation. The topics covered include: (1) the mechanisms underlying OIAI 
occurrence and the role of biofilms in exacerbating OIAI development; (2) 
current strategies to impart anti-biofilm properties to hydrogel coatings and 
the mechanisms involved in treating OIAI. This article aims to summarize the 
progress in antibacterial hydrogel coatings for OIAI prevention, providing 
valuable insights and facilitating the development of prognostic markers for 
the design of effective antibacterial orthopedic implants.
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1 Introduction

Orthopedic implants are widely used for non-union repair, long 
bone fracture fixation, joint replacement, and joint arthrodesis 
(Goodman et al., 2013; Zhou et al., 2016; Wang et al., 2021b,c). These 
implants can be classified into permanent and temporary orthopedic 
implants (Jin and Chu, 2019). Permanent implants encompass joint 
replacements, whereas temporary implants comprise plates, screws, 
pins, wires, and intramedullary nails (Park and Lakes, 2007). However, 
the abiotic nature of these implants and inadequate aseptic practices 
during surgery can lead to bacterial adhesion and colonization, 
causing both in situ and exogenous infections (Ercan et al., 2011). 
These infections trigger the host’s innate immune system, resulting in 
immediate inflammatory and antimicrobial responses and the 
production of various effector molecules, such as cytokines, 
chemokines, and antimicrobial proteins, to combat the invading 
bacteria (Jo, 2019). Unfortunately, severe orthopedic implant-
associated infections (OIAI) can have devastating consequences and 
incur substantial costs (Darouiche, 2004; Gallo et al., 2014). These 
include impaired integration of the implant with surrounding tissues, 
leading to implant loosening (Costerton et al., 1999), the development 
of complications such as osteomyelitis, septic arthritis, or prosthetic 
joint infections (Ribeiro et al., 2012), and in severe cases, amputation 
and mortality (Ercan et al., 2011). Common approaches for OIAI 
treatment involve antibiotic therapy, revision, and debridement 
accompanied by long-term antimicrobial therapy through surgical 
procedures and administration of antibiotics (Moran et al., 2010), 
while the treatment effect is limited (Malahias et  al., 2020). It is 
important to note that these methods are only effective in inhibiting 
bacterial growth or killing bacteria before biofilm formation. Once 
biofilm has formed on the implant surface, bacteria undergo 
significant metabolic changes, resulting in biofilm thickening and 
protection against the host immune response and antimicrobial agents 
(Ji et  al., 2021; Kragh and Richter, 2022). This allows bacteria to 
proliferate in organized and structured communities, leading to 
nutrient deprivation and entry into a metabolically inactive dormant 
state (Bocci et  al., 2018). Therefore, the development of a novel 
strategy to target biofilm formation is necessary for effective clinical 
prevention of OIAI.

Traditional strategies to prevent bacteria-induced clinical 
infections mainly include debridement, therapeutic cleansing, and 
administration of antimicrobials (Kaiser et  al., 2021). However, 
systemic antibiotics often require high doses that can lead to side 
effects (e.g., cytotoxicity) and bacterial drug resistance (Uddin et al., 
2021). To address infections caused by drug-resistant bacteria, various 
antimicrobial materials [such as hydrogels (Dou et al., 2023; Zhang 
D. et  al., 2023), and surface coatings (Wei et  al., 2022)], and 
antimicrobial molecules [such as antibacterial peptides (Costa et al., 
2021) and amphiphiles (Ye et al., 2022)] have been developed. While 
progress has been made in post-infection treatment, interventions for 
biofilm prevention have been increasing dramatically (Connaughton 
et al., 2014). Inspired by the philosophy that prevention is better than 
cure, how to prevent the occurrence of bacterial infection effectively 
rather than post-infection treatment has become an important 
research hotspot nowadays. Recent developments greatly enrich our 
knowledge that bacteria can adhere to implant surfaces through forces 
like Van der Waals, Coulomb, and hydrogen bonding, it is crucial to 
develop strategies that interfere with bacteria-implant surface 

interactions for effective prevention of OIAI (Zimmerli, 2014). Surface 
modification with antimicrobial coatings has gained significant 
attention as it can improve the biocompatibility and control 
inflammation responses of implants (Kumar et al., 2021; Bohara and 
Suthakorn, 2022; Chen et  al., 2023). Hydrogels, which mimic the 
three-dimensional network of polymer chains (Ahmed, 2015), have 
been used as biomimetic materials and drug delivery systems to 
enhance antibacterial performance and reduce drug resistance (Li and 
Mooney, 2016; Mei et  al., 2022; Hao et  al., 2022a,b). The surface 
modification of antibacterial hydrogels to prevent OIAI by targeting 
biofilm formation has become a focus of research. Besides drug 
loading platform, the hydrogel can also be  designed as biosensor 
(Wang et al., 2021a) and drug evaluation system (Song T. et al., 2023), 
with great translational medicine application potential.

This review provides an overview of the research progress and 
clinical potential of surface-modification strategies using antibacterial 
hydrogel coatings to prevent OIAI. The review is divided into two 
main sections: (1) the mechanisms underlying the occurrence of OIAI 
and the role of biofilms in exacerbating OIAI development; and (2) 
current strategies to impart anti-biofilm properties to hydrogel 
coatings and the mechanisms involved in treating OIAI. Given the 
high severity of clinical infections associated with orthopedic 
implants, it is crucial to develop suitable antimicrobial materials that 
exhibit high-efficiency antibacterial effects, long-term efficacy, 
biocompatibility, and the ability to target bacterial biofilms for surface 
modification of orthopedic implants. Therefore, this review highlights 
recent advancements in selective and effective surface modification 
strategies using antibacterial hydrogels and provides insights into the 
design of antimicrobial orthopedic implants for effective 
infection prevention.

2 Orthopedic implant-associated 
infections

2.1 Occurrence mechanisms of OIAI

2.1.1 Causes of OIAI
With the development of the orthopedic medical device industry, 

the frequency of indwelling medical devices (e.g., implantable 
orthopedic medical devices) has greatly increased (Graf et al., 2019). 
Most orthopedic surgeries require implants, and the application of 
implants creates opportunities and increases the chances of OIAI 
(Figure 1; Darouiche, 2004). Traumatic bone tissue releases inducing 
factors such as magnesium ions to create a biofilm microenvironment 
(Kragh and Richter, 2022). When the sterile surgical environment is 
not guaranteed or the blood source of bacteria is transmitted to the 
surgical site, bacteria can secrete and accumulate various metabolic 
wastes such as nucleic acids, proteins, and extracellular 
polysaccharides, inhibit the immune function of host T/B 
lymphocytes, and promote the formation of biofilm on the surface of 
bone implants (Bocci et al., 2018). With further biofilm formation, the 
surface bacteria partially shed into the blood circulation, disseminated 
to various parts of the body and triggered OIAI (Masters et al., 2019). 
The formation of bacterial biofilm and hematogenous dissemination 
leads to poor efficacy of antibiotics and other drugs, persistent 
infection, and even the risk of secondary surgery to remove the 
implant (Zimmerli and Sendi, 2017). Table 1 is the current common 
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classification of OIAI (Zimmerli, 2014), and based on the frequent and 
urgent medical background of OIAI, we will gradually explore the 
pathogenic causes and treatment strategies of OIAI and put forward 
our insights.

Compared with the spine and trauma fields, elderly patients have 
a higher incidence of osteoarthritis, osteonecrosis of the femoral head, 
and other joint orthopedic diseases and face more application of bone 
implantation. Moreover, due to the age of the patients, the body’s 
resistance and tolerance are weaker than in young people (Leung et al., 
2022), and the risk of postoperative OIAI is higher. Orthopedic 
surgery strictly requires the sterility of implants and environment. The 

positive pressure environment of the operating room can also greatly 
reduce the risk of bacterial contamination of the surgical site (Tarun 
et  al., 2021). However, if the aseptic operation is not performed 
properly, bacteria will directly accumulate on the surface of the 
implant through the surgical wound or the air during the operation. 
Bacteria can be transmitted through the blood source from urinary 
tract infection, skin infection, and other infection routes, and enter 
the surgical site in the form of suspension, biofilm, or invasive cells 
(McConoughey et  al., 2014). However, suspension and invasive 
bacteria are easily cleared by the host immune system or antibiotics 
and do not cause further infection, so bacterial biofilms become the 

FIGURE 1

Occurrence mechanisms of OIAI: ① Implants release metal ions to form a bacterium-preferred environment; ② Surgical and blood-derived bacteria 
invade the wound and adhere to the surface of bone implants; ③ Bacteria secrete exopolysaccharides, nucleic acids, proteins, and other metabolites; ④ 
The accumulation of metabolites reduces the immune clearance of bacteria; ⑤ Bacterial biofilm initially forms on the implant surface; ⑥ Biofilm 
increases the drug resistance mutations in bacteria; ⑦ The formation of mature bacterial biofilms; ⑧ Bacteria in the biofilm shed and spread throughout 
the body in the bloodstream, causing OIAI.

TABLE 1 The classification of orthopedic implant-associated infections (Zimmerli, 2014).

Orthopedic 
implant-
associated 
infection

Common 
pathogenic 
bacteria

Classification Clinical symptoms

Internal fixation-

associated infection

Staphylococci, 

β-lactam-resistant 

gram-negative bacilli

Early postoperative 

infection (<3 weeks)
Erythema, local hyperthermia, protracted wound healing, and a secreting wet wound

Delayed infections (3–

10 weeks) Persistent pain and/or signs of local inflammation, such as erythema, swelling, or intermittent 

drainage of pusChronic 

infections(>10 weeks)

Periprosthetic joint 

infections (PJIs)

S. aureus

Coagulase-negative 

staphylococci

Streptococci

Acute hematogenous Sepsis, skin and soft-tissue infection, pneumonia, or enterocolitis

Early postinterventional Wound infection and pain

Chronic
Chronic joint effusion, pain due to inflammation or implant loosening, local erythema, and 

hyperthermia, and occasionally by recurrent or permanent sinus tracts
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main cause of OIAI (McConoughey et al., 2014; Davidson et al., 2019). 
The persistence and complications of bacterial infection after bone 
injury are also closely related to the formation and progression of 
bacterial biofilm (Krukiewicz et al., 2022). Therefore, the intractable 
nature of OIAI can be ascribed to the formation of bacterial biofilms 
on the surface of bone implants (Blanchette and Wenke, 2018).

2.1.2 Currently developed strategies for 
combating OIAI

One crucial cause of OIAI is the susceptibility of traditional 
implant materials to bacterial biofilm adhesion and colonization on 
their surfaces (Gallo et al., 2014). Currently, systemic drug therapy is 
the primary treatment strategy for OIAIs (Figure 2; Inoue et al., 2017; 
Ishihama et al., 2021). Following surgical debridement, intravenous 
rifampicin is administered to rapidly control the bacterial load, 
followed by the application of orally administered drugs with 
improved bioavailability to inhibit systemic infection (Davidson et al., 
2019; Guo et al., 2022). In cases of low systemic exposure, local drug 
therapy can be combined, and materials such as bone cement and 
calcium sulfate can be utilized as carriers for penicillin, cephalosporins, 
aminoglycosides, and quinolones to fill local bone defects (Lamret 
et al., 2020). These methods primarily focus on inhibiting bacterial 
growth or accelerating the death of free bacteria. However, the 
persistence and complications of bacterial infections after injured 
bone repair are closely associated with the formation and progression 
of bacterial biofilms (Krukiewicz et al., 2022). Once biofilms form on 
the implant surface, they become difficult to identify and eradicate, 
leading to hematogenous spread of infection caused by bacterial 
shedding and migration (Tsang et  al., 2018). Moreover, severe 
infections resulting from bacterial biofilms often require implant 
removal through reoperation and may even involve the establishment 
of fistulas or amputation. This not only exacerbates physical trauma 
but also increases healthcare costs (Liu et al., 2019; Zhang et al., 2021). 
Consequently, the development of an effective therapeutic strategy to 
reduce bacterial adhesion and inhibit biofilm formation on bone 
implant surfaces, effectively decreasing OIAI incidence and improving 
the orthopedic surgery success rate, is a developing research trend in 
the antibacterial implant coatings field (Inoue et al., 2017; Ishihama 
et al., 2021).

2.2 Role of biofilm in aggravating the 
development of OIAI

2.2.1 Definition, formation, and characteristics of 
biofilm

The concept of “biofilm” was first proposed by Bill Casterton in 
1978 and was later defined in 2002 as a sessile community of microbial 
origin (Tarun et  al., 2021). It has been confirmed that biofilm 
formation is a cooperative group behavior in which bacterial 
populations live embedded in a self-generated polymer extracellular 
matrix. This process is considered one of the most common 
cooperative behaviors exhibited by bacteria (Brao et al., 2021; Gao 
et al., 2023; Jiang et al., 2023; Liu et al., 2023). The biofilm primarily 
consists of sessile cell populations derived from microorganisms and 
quorum-sensing systems that serve as a cell–cell communication 
mechanism (Tsang et al., 2018). The quorum sensing (QS) systems 
synchronize gene expression in response to population cell density 

and coordinate the maturation, disassembly, and dispersion of the 
biofilm (Brao et al., 2021). Accumulating evidence demonstrates that 
bacteria within the biofilm can effectively grow while being protected 
from environmental stresses, such as immune system attacks and 
antimicrobial agents (Frieri et al., 2017). When nutrients or other 
resources become limited, biofilm dispersion occurs, allowing bacteria 
to escape and colonize new niches. Therefore, inhibiting biofilm 
formation is considered an effective strategy to prevent the exacerbated 
development of OIAIs (Qu et  al., 2020). This necessitates a deep 
understanding of biofilm maturation progression and the unique 
characteristics of the formed biofilm (Brao et al., 2021).

The entire process of biofilm formation on the surface of 
orthopedic implants primarily consists of three sequential stages 
(Figure  3): (1) irreversible adhesion to the surface, (2) bacterial 
division and extracellular matrix production, and (3) matrix 
disassembly and bacterial dispersion (Qu et al., 2020). The occurrence 
of OIAI is attributed to the abiotic surface of orthopedic implants, 
which provides an ideal interface for biofilm maturation 
(McConoughey et al., 2014; Davidson et al., 2019; Masters et al., 2019). 
Additionally, these implant surfaces exhibit poor immunosuppression 
and resistance to infection (Krukiewicz et al., 2022). Free bacteria can 
easily adhere to the implant surface through non-covalent bonds, such 
as electrostatic interactions and van der Waals forces, and accelerate 
biofilm formation by producing matrices such as water, extracellular 
polysaccharides, and extracellular DNA (Fany et  al., 2017; Ghosh 
et al., 2020). If under unfavorable environmental conditions, bacterial 
autolysis, characterized by the lysis and release of extracellular DNA, 
can further enhance bacterial adhesion to the implant surface and 
stabilize the mature biofilm structure (Sabaté Brescó et  al., 2017; 
Seebach and Kubatzky, 2019). Indeed, the initial adhesion step appears 
to be insufficient for the accumulation of quorum signals as bacteria 
are initially swimming freely in the media (Krukiewicz et al., 2022). 
However, as the attached bacteria divide and form microcolonies 

FIGURE 2

Currently developed strategies for combating OIAI: systemic 
therapies (e.g., intravenous fluids and oral medications of drugs) and 
local therapies (e.g., drug loading to inhibit bacteria growth and 
induce bacteria death, and preventive measures to inhibit bacterial 
adhesion and biofilm formation).
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during the late stage, the increased population density improves 
quorum signals to sufficient levels, thereby coordinating the activation 
of biofilm maturation and disassembly (Qu et al., 2020).

After bacterial biofilm formation, changes in cell metabolism 
occur, either through chromosomal mutations or horizontal transfer 
of drug-resistance genes, to increase tolerance and resistance to 
antibiotics (Guo et al., 2022). This thickens the biofilms and further 
enhances bacterial resistance to host defenses and antibiotics (Donlan 
and Costerton, 2002). Moreover, the high cell density and closed 
matrix structure facilitate close communication between bacteria 
through chemical or electronic signals during biofilm maturation (Qu 
et  al., 2020). This promotes horizontal gene transfer, sharing of 
virulence genes, and exchange of resistance genes (Masters et  al., 
2019). Such growth patterns can even give rise to the emergence of 
multi-drug-resistant bacteria (Frieri et  al., 2017). Notably, the 
organized and structured bacterial communities within biofilms 
consume large amounts of nutrients at the periphery, resulting in 
central bacteria experiencing nutrient deprivation and entering a 
metabolically inactive dormant state (Bocci et al., 2018). Similarly, the 
dormant state of bacterial biofilms confers resistance to host immunity 
and inherent tolerance to antibiotics, leading to chronic infections and 
antibiotic overuse (Tsang et  al., 2018; Lamret et  al., 2020). 
Furthermore, bacteria trapped within mature biofilms can settle on 
new surfaces in search of new nutrient supplies, thereby promoting 
the spread and transfer of infection (Fany et al., 2017; Taha et al., 
2018). For instance, osteomyelitis, a severe complication of bone 
implant infection, is closely associated with biofilm formation 
(Krukiewicz et al., 2022). During biofilm maturation, cell exfoliation 
leads to the detachment of bacterial debris, which can then attach to 
distant sites and contribute to the inflammatory response in bone 
infections (Mouzopoulos et al., 2011; Masters et al., 2019; Seebach and 
Kubatzky, 2019).

2.2.2 Species of bacteria that hinder the curative 
effect of orthopedic implants

The bacteria associated with OIAI mainly include Staphylococcus 
aureus, Enterococcus faecalis, Klebsiella pneumoniae, Acinetobacter 
baumannii, and Pseudomonas aeruginosa, which can be categorized 

into two groups: Gram-positive and Gram-negative bacteria (Liu 
et al., 2019). Due to significant differences in structure and properties, 
these two groups of bacteria exhibit varying levels of pathogenicity 
during the OIAI process (Liu et al., 2019). For instance, Staphylococcus 
aureus, a highly virulent Gram-positive bacterium (Graf et al., 2019), 
is the primary pathogen responsible for OIAI (Gatti et  al., 2022), 
accounting for approximately one-third of bone implant infections, 
including artificial joints and bone fixation devices (Muthukrishnan 
et al., 2019). With increasing multidrug resistance, Staphylococcus 
aureus has become more resistant to antibiotics and can cause 
persistent chronic infections in tissues and organs. Previous studies 
have demonstrated the high adaptability of Staphylococcus aureus to 
the human environment (Arciola et al., 2018). Additionally, it employs 
alternative resistance mechanisms, such as the formation of dormant 
subpopulations and complex biological communities, to evade the 
host immune system and environmental stressors (Flemming and 
Wingender, 2010; Guo et al., 2022), thereby leading to severe local 
infections or osteomyelitis (Masters et al., 2019; Muthukrishnan et al., 
2019; Guo et al., 2022).

For the mechanisms involved in bacteria that hinder the curative 
effect of orthopedic implants, accumulating evidence suggests that 
when orthopedic implants become contaminated with bacteria, the 
adhered bacteria tend to activate the host’s immune system (Costerton 
et al., 1999). This activation leads to the recruitment of immune cells 
to the site of infection, which in turn release pro-inflammatory factors, 
creating an inflammatory microenvironment to combat the bacteria 
(Arciola et al., 2018). However, as bacteria grow and form biofilms on 
the implant surface, they become resistant to engulfment by immune 
cells (Guo et al., 2022). These bacteria not only continue to stimulate 
immune cells to produce more pro-inflammatory mediators but also 
activate macrophages and neutrophils to release cytotoxic substances 
that damage surrounding tissues (Qu et al., 2020). Consequently, the 
sustained local inflammatory response to infection disrupts the 
homeostasis of osteogenesis, resulting in bone resorption and leading 
to tissue degradation and osteolysis (Krukiewicz et  al., 2022). 
Moreover, OIAI interferes with the host’s bone healing process, 
perpetuating bone resorption and ultimately resulting in septic 
loosening of bone implants and transplant failure (Bocci et al., 2018).

FIGURE 3

Biofilm formation process on the surface of orthopedic implants.
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2.2.3 Main mechanisms involved in inhibiting/
destroying biofilm for OIAI treatment

The formation of bacterial biofilms is a dynamic process that can 
be divided into several stages, including reversible bacterial adhesion 
and colonization, irreversible bacterial adhesion and colonization, 
biofilm maturation, and bacterial shedding and re-adhesion (Kragh 
and Richter, 2022). The initial adhesion of free bacteria to the surface 
of bone implant materials is crucial for initiating biofilm formation 
(Costerton et  al., 1999), which is influenced by various factors, 
including the properties of the implant material surface, bacterial 
properties, and other factors (McConoughey et al., 2014). Once free 
bacteria adhere to the surface of orthopedic implants, they secrete 
quorum-sensing signaling molecules to monitor changes in the 
surrounding environment, regulate the expression of related genes, 
and produce a significant amount of extracellular polymers to fill the 
intercellular space and enhance mechanical strength (Subramani and 
Jayaprakashvel, 2019). The presence of such a QS system is not only 
crucial for biofilm formation but also for drug resistance and 
pathogenicity (Inoue et al., 2017).

In the context of OIAI treatment, inhibition of QS therefore is 
considered one of the main mechanisms by which orthopedic 
implants inhibit or destroy biofilms. This involves blocking bacterial 
communication signals to prevent bacterial aggregation and biofilm 
formation (Subramani and Jayaprakashvel, 2019). Additionally, 
inhibiting bacterial adhesion and colonization on the implant surface 
is also a critical mechanism for OIAI treatment, as bacterial adhesion 
is a key event preceding biofilm formation. For instance, antimicrobial 
peptides (AMPs) or other substances can act on both Gram-positive 
and Gram-negative bacteria to inhibit the adhesion process by 
promoting fimbria synthesis, interfering with QS between bacteria, 
clearing and destroying extracellular polymers between bacteria, and 
penetrating the lipid bilayer for sterilization using their amphiphilic 
properties (Ghosh et al., 2020). As such, modifying the surface of 
implants with antibacterial substances is considered an effective 
strategy for OIAI treatment (Xv et al., 2019; Ishihama et al., 2021). 
Directly killing bacteria is another effective approach to inhibit biofilm 
formation. For example, non-biodegradable nano-drug delivery 
systems can disrupt the normal structure of bacteria (Ercan et al., 
2011; Slavin et  al., 2017), while lipid nano-systems can fuse with 
bacterial cell membranes to release drugs into the bacteria (Sani and 
Separovic, 2016), both playing important roles in OIAI treatment. 
Once the biofilm has reached the mature or later stages, the 
destruction of the tight extracellular polymer structure between 
bacteria using drugs (e.g., dispersants or deoxyribonucleases) can 
be considered another critical mechanism in destroying established 
biofilms (Ghosh et al., 2020). To reduce biofilm resistance and increase 
the likelihood of biofilm destruction, metabolic promoters can be used 
as a combined mechanism to awaken dormant bacteria in biofilms 
and inhibit drug efflux pumps on bacterial biofilms (Bocci et al., 2018; 
Graf et al., 2019).

3 Development of antibacterial 
hydrogel coating to prevent OIAI by 
inhibiting biofilm formation

The biofilm formation process contains irreversible adhesion, 
extracellular matrix synthesis, colony formation, and maturation 

(Erathodiyil et al., 2020). Thus, to inhibit OIAI development, it is 
necessary to modify orthopedic implants with antibacterial materials 
to prevent bacterial attachment and biofilm formation. To date, 
various types of antibacterial hydrogels have been investigated, 
including those based on antifouling polymers (Erathodiyil et  al., 
2020), AMPs (Lin et al., 2020), cationic materials (Zhao et al., 2022), 
and photodynamic/photothermal agents (Ma et al., 2022; Figure 4). In 
this section, we primarily focus on the development of strategies for 
endowing hydrogel coating with anti-biofilm properties for 
OIAI prevention.

3.1 Construction of bacteria-repelling 
hydrogel coating

After drug-resistant bacteria attach to the surface of orthopedic 
implants, the failure of antibiotic treatment often leads to the formation 
of dangerous bacterial biofilms on the implant surface (Zhu et al., 2022). 
This situation creates an urgent need to develop effective strategies to 
enhance the antibacterial properties of orthopedic implants. Recent 
evidence has shown that nonspecific protein adsorption, which is a 
recognized challenge for orthopedic implants, can interact with the cell 
surface of bacteria and initiate downstream bacterial adhesion-related 
signaling pathways (Figure 5A; Erathodiyil et al., 2020). Once bacterial 
adhesion is complete, bacteria mature, form microbial colonies, and 
generate biofilms on the implant surface. This means that bacteria can 
adhere to the surface due to nonspecific protein adsorption, regardless 
of whether the implant surface is modified with functional molecules 
or not. To address this problem, extensive efforts have been made to 
develop antifouling and bacteria-repelling hydrogel surfaces using 
various hydrophilic polymers, including poly (ethylene glycol) (PEG)-
based (Lundberg et al., 2010), zwitterionic polymer-based (Leigh et al., 
2019), and poly(N-vinylpyrrolidone)-based (Guo et al., 2019) hydrogels. 
These hydrogels create a tightly bound hydration layer at the interface, 
which acts as a physical barrier that proteins and bacteria find 
thermodynamically unfavorable to overcome (Figure 5B). As a result, 
non-specific protein adsorption and bacterial adhesion on coated 
implants are inhibited (Chen et al., 2021).

The bacteria-repelling property is primarily influenced by 
parameters such as chain length (Chen et  al., 2019) and grafting 
density of antifouling molecules (Sun et  al., 2014). Therefore, 
controlling the chain segments allows for optimal inhibition of 
bacteria adhesion (Figure  5C). In addition to their antifouling 
properties, surface modifications driven by polyphenols have recently 
garnered attention for site-specific and prolonged elimination of 
bacteria adhesion and OIAI. This is due to the active functional groups 
present in polyphenols, such as dihydroxyphenyl and 
trihydroxyphenyl, which can also act as natural reducing/exfoliating 
agents (Zhou et al., 2020). Incorporating various bioactive molecules 
into advanced implants can be achieved using these functional groups. 
For instance, tannic acid exhibits notable antiviral, antibacterial, and 
antioxidant properties due to its pyrogallol and catechol groups 
(Kaczmarek-Szczepańska et  al., 2023), which can interact with 
biomolecules and metal ions in bacteria. This interaction increases cell 
membrane permeability and disrupts cell membrane stability. The 
excessive phenolic functional groups of tannic acid also offer good 
coordination sites for the post-modification of bone-inducing 
biomolecules, promoting biocompatible bone adhesives and guiding 
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bone regeneration (Bai et al., 2020). Similarly, polydopamine-modified 
hydrogels have gained significant interest for improving the bacteria-
repelling ability of orthopedic implants. Additionally, polydopamine 
can act as a reductant to introduce metal ions, thereby enhancing bone 
regeneration (Xia et al., 2022; Shen et al., 2024).

3.2 Endowing hydrogel coatings with 
contact-killing property

Biofilm formation necessitates the initial adhesion of bacteria to 
the surface of orthopedic implants. Consequently, developing an 
effective strategy to eradicate bacteria after adhesion is considered 
another crucial step in preventing OIAI. Contact-killing hydrogel 
coatings, which involve the irreversible anchoring of bactericidal 
agents onto the surface through non-leaching mechanisms, present a 
promising solution to this problem (Figure 6A). In contrast to the 
passive action of bacteria-repelling hydrogels, these bactericidal 
coatings actively work to eliminate bacteria upon their adhesion. The 
contact-killing behavior of these coatings is attributed to their ability 
to disrupt bacterial membranes and inhibit bacterial growth, 
ultimately leading to the death of pathogens (Costerton et al., 1999; 
Hao et al., 2022a,b). Considering the negative charge of bacteria, the 

commonly used biomaterials for contact-killing hydrogel coatings 
typically incorporate cationic groups and hydrophobic moieties (Lu 
et al., 2015). This choice is based on two main factors (Figure 6B): 
cationic surfaces can capture bacteria and disrupt the integrity of the 
bacterial membrane through electrostatic interactions, leading to 
leakage of cellular contents and subsequent bacterial death (Tischer 
et  al., 2012); and hydrophobic surfaces facilitate the insertion of 
antibacterial molecules into the lipid composition of the bacterial 
membrane (Kopiasz et al., 2021). The widely investigated biocides that 
impart contact-active bactericidal activity to hydrogel surfaces include 
quaternary ammonium compounds (QACs) and AMPs.

QACs are highly efficient in exhibiting contact-killing activity 
against both Gram-positive and Gram-negative bacteria due to their 
typical structure, featuring four alkyl groups covalently attached to a 
central nitrogen atom. The cationic charge of QACs contributes to 
their bactericidal properties, while the hydrophobicity of the long 
alkyl chains also exhibits excellent antibacterial activity. Incorporating 
QACs into hydrogels has been identified as a simple and effective 
approach to confer bactericidal characteristics to implants, with an 
almost 100% killing efficiency against E. coli. (Li et al., 2009). However, 
this killing effect is non-specific.

AMPs, which serve as the first line of defense against invading 
pathogens in various organisms, display strong contact-active 

FIGURE 4

Strategies to endow hydrogel coating with anti-biofilm properties for OIAI prevention.
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bactericidal activity against a broad spectrum of bacteria, including 
drug-resistant strains (Zhang and Gallo, 2016). They exert an 
antibacterial effect mainly through membrane disruption, 
macromolecule synthesis inhibition, and intracellular dysfunction 
(Michael and Nannette, 2003). This activity is attributed to their 

abundant cationic charge derived from arginine and lysine residues, 
as well as a high proportion of hydrophobic amino acids. The 
improved antibacterial activity of AMPs is further enhanced by their 
secondary structures resulting from their amphipathic features (Bahar 
and Ren, 2013). Additionally, AMPs can enter bacteria and interfere 

FIGURE 5

Antifouling and bacteria-repelling hydrogel surfaces: (A) Nonspecific protein adhesion promotes bacterial adhesion; (B) Antifouling surfaces create a 
tightly bound hydration layer at the interface to inhibit proteins and bacteria adhesion; (C) Bacteria-repelling property is influenced by chain length and 
grafting density of antifouling molecules.

FIGURE 6

Contact-killing hydrogel surfaces: (A) Strategies for the contact-killing property; (B) Mechanisms involved in the contact-killing behavior of cationic 
and hydrophobic surfaces.
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with nucleic acid metabolism (Batoni et  al., 2016). Compared to 
traditional antibiotics, AMPs exhibit strong antibacterial activity 
against a wide range of microorganisms, including Gram-positive and 
Gram-negative bacteria, fungi, and even viruses (Aoki et al., 2012). 
Thus, they are considered promising alternatives to antibiotics. To 
construct a contact-killing surface, AMPs can be covalently reacted 
with the hydrogel network (Zhu et al., 2019) or self-assembled into 
physically crosslinked hydrogels possibly for surface modification of 
orthopedic implants (Guo et  al., 2021). However, the presence of 
nonspecific protein absorption on the implant surface may block the 
active moieties of these antibacterial materials, thereby impairing their 
antibacterial efficacy (Wang et  al., 2016, 2017). Additionally, the 
accumulation of dead cell and autolytic bacteria on the implant 
surface can assist in the formation of biofilms (Arciola et al., 2018). 
Therefore, for optimal coating performance, the contact-killing 
strategy is often combined with other approaches, such as the bacteria-
repellent method.

3.3 Development of hydrogel-assisted 
delivery of non-antibiotic therapeutics

The emergence of antibiotic-resistant bacteria and the limited 
efficacy of antibiotics against biofilms have highlighted the need for 
the development of biomaterial-assisted delivery of non-antibiotic 
therapeutics for the treatment of OIAI. Hydrogel, a water-rich 
polymer network, offers remarkable versatility in encapsulating and 
delivering drugs (Dreiss, 2020; Yang, 2022). Novel hydrogel systems 
have been developed to load various biocides, including metal 
nanoparticles and AMPs. These systems enable controlled delivery of 
antimicrobial agents, reducing potential systemic adverse effects, 
while also achieving sustained release at the infection site to enhance 
the treatment of antibiotic-resistant and recurring infections. Unlike 
bacteria-repelling coatings, such release-killing surfaces may allow 
initial bacterial attachment (Figure  7). However, the diffusion of 
antimicrobial agents from these surfaces kills the attached bacteria 
and even eliminates surrounding bacteria in adjacent tissues. 
Nonetheless, it is crucial to ensure sufficient loading capacity and 
localized release of antimicrobials to effectively mitigate bacterial 
infections and avoid systemic adverse effects associated with 
antimicrobial coatings.

Metal materials, such as silver, copper, and zinc oxide (Leng et al., 
2021) et al., have garnered significant attention due to their unique 
optical and electronic properties, as well as their excellent 
antimicrobial activity (Zhou et al., 2017, 2018; Liu et al., 2020; Yu et al., 
2020; Yang et al., 2021). For example, silver nanoparticles exert their 
bactericidal effects by damaging the bacterial outer membrane and 
generating reactive oxygen species, which leads to oxidative damage 
to cellular structures. Silver nanoparticles release Ag+ ions that interact 
with the bacterial cell membrane, causing rupture and subsequent 
leakage of cellular contents. The released Ag+ ions can also penetrate 
bacterial cells and inhibit DNA replication. In addition to metal 
nanoparticles, AMPs are commonly incorporated into the network 
structure of hydrogel coatings. For instance, the antimicrobial peptide 
KRWWKWWRR (HHC-36) and osteoconductive silicate 
nanoparticles were encapsulated into gelatin methacryloyl hydrogel 
coatings modified with catechol motifs to prevent biofilm formation 
and promote osteogenesis on the surface of titanium implants (Cheng 

et al., 2017). Despite the success achieved in hydrogel-assisted delivery 
of non-antibiotic therapeutics, the antimicrobial activity of these 
systems is often short-term, and the burst release of antibacterial 
agents can lead to adverse side effects. Hence, the development of 
stimuli-responsive hydrogel coatings that enable sustainable and 
on-demand release of antimicrobial agents is necessary to mitigate 
adverse effects and premature depletion of the drug reservoir. In 
response to multiple responses, the hydrogel system can be suitable 
for more application situations (Li et  al., 2022). Furthermore, the 
integration of two or more different agents in hydrogel-assisted 
delivery can be  designed to produce synergistic effects, thereby 
enabling diverse functionalities for the prevention of OIAI and 
promotion of osteogenesis.

3.4 Endowing hydrogel coating with 
photodynamic or photothermal conversion 
effect

Though many contact or release-killing surfaces have been 
reported to inhibit bacterial growth on orthopedic implants, their 
limited efficacy in preventing biofilm formation and potential 
adverse side effects of drugs necessitates the exploration of 
alternative therapeutic strategies. Furthermore, the presence of 
dead bacteria on the surface triggers undesirable immune and 
inflammatory responses. Photodynamic therapy (PDT) and 
photothermal therapy (PTT) emerge as promising approaches 
(Figure  8), especially PTT for minimally invasive nature, 
non-surgical application, and deep tissue penetration (Chen et al., 
2020; Song et al., 2022; Song W. et al., 2023). Many metal oxides 
possess the phototherapy ability (Wu et al., 2022; Zhang W. et al., 
2023), and can play a role as enzymes to perform two functions 
(Wang et al., 2021; Shen et al., 2023). Meanwhile, this system can 
specifically respond to an inflammatory environment (Cui et al., 

FIGURE 7

Schematic diagram of hydrogel-assisted drug delivery for OIAI 
treatment.
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2023). These systems achieve anti-biofilm and anti-inflammatory 
effects through photothermal therapy, combined with antioxidant 
activity, or recyclable reactive oxygen species scavenging ability 
(Cui et al., 2023; Ding et al., 2023). For example, antibacterial PDT 
utilizes laser irradiation and molecular oxygen to damage bacteria, 
including multidrug-resistant strains (Jia et al., 2019). This approach 
can be  applied without causing immunosuppressive or 
myelosuppressive effects (Misra et  al., 2010). Accumulating 
evidence supports the efficacy of PDT in killing bacteria through 
the production of singlet oxygen (1O2) and the generation of other 
reactive oxygen species (Misba et al., 2018). PTT has also garnered 
significant attention as a potent tool against bacterial infections due 
to its broad-spectrum bactericidal effect, in contrast with 
chemotherapy. The induced heat by photothermal agents leads to 
bacterial protein denaturation and cell death (Wickramasinghe 
et al., 2020). Various functional materials, including polydopamine 
(Yuan et al., 2019), have been utilized as photothermal agents to 
combat bacterial infections. Interestingly, some microalgae as a 
biomaterial can also function in the PDT field (Zhong et al., 2021). 
And some functional organic dyes are multifunctional materials, 
which can perform various functions including phototherapy 
(Cheng et al., 2020).

Overall, each strategy offers distinct advantages and limitations. 
The selection of an appropriate coating to modify implants should 
be based on clinical requirements. For instance, the bacteria-repelling 
strategy may not be suitable for patients with chronic diseases due to 
its limited bioactivity. Likewise, light-responsive therapy may 
be constrained in the applications in deep tissue. Furthermore, to 

achieve optimal results, a combination of both strategies can 
be employed to achieve synergistic bactericidal efficacy.

4 Conclusion and future perspectives

Because of the abiotic nature of orthopedic implants that allows 
bacterial adhesion and biofilm formation on the implant surface, 
orthopedic implant-associated infections have been developed as a 
significant concern in clinical practice. With the emergence of 
antibiotic-resistant bacteria and the limited efficacy of drugs, 
alternative therapeutics based on antibacterial hydrogels have been 
extensively investigated to coat orthopedic implants, offering a 
promising approach to target biofilm formation and prevent OIAI. To 
date, numerous antibacterial hydrogel coatings involved in bacteria-
repelling properties, contact-killing ability, hydrogel-assisted delivery 
system, or photodynamic/photothermal conversion effect have been 
reported, providing powerful tools for combating bacterial infections. 
Hence, this review focuses on providing an overview of recent 
advancements in the application of these antibacterial hydrogel 
coatings for preventing OIAI by targeting biofilm formation.

Although great advancements in antibacterial hydrogel coatings 
have been achieved in preventing OIAI, these strategies generally 
neglect the influence of microenvironment changes (e.g., 
inflammatory response), which need to be considered in future design 
of antibacterial hydrogel coatings. Besides, as the aging population 
and increased bacterial drug resistance contribute to an increased 
incidence of inflection-related diseases, developing a novel 

FIGURE 8

(A) Schematic diagram of PDT and PTT strategies for OIAI treatment. (B) PDT and PTT bactericidal mechanism.
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anti-infection strategy to design effective antibacterial hydrogel 
coatings are highly desirable to treat OIAI and mitigate severe 
complication. Additionally, in the future development of hydrogel 
coatings, emphasis should be placed on the integration of multiple 
functions, such as promoting osteogenesis, inhibiting scar formation, 
and inducing angiogenesis. To note, the application of hydrogel 
coating often restricts the direct integration of implants with tissue, 
while the gradual degradation of hydrogel can impede the interface 
conjunction necessary for bone healing. Therefore, the design of an 
antibacterial hydrogel coating with the ability to promote bone healing 
and reconstruction is speculated. Alternatively, a more effective 
approach would be to directly incorporate antibacterial properties into 
the implant rather than relying on the application of an antibacterial 
hydrogel coating. Considering the presence of cytotoxicity and 
non-degradability in the currently designed hydrogel coatings, 
optimizing the biological characteristics of hydrogel systems can 
further improve the efficacy of these local administration systems.
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