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Bacillus cereus sensu lato (Bcsl) strains are widely explored due to their capacity to 
antagonize a broad range of plant pathogens. These include B. cereus sp. UW85, 
whose antagonistic capacity is attributed to the secondary metabolite Zwittermicin 
A (ZwA). We recently isolated four soil and root-associated Bcsl strains (MO2, S−10, 
S-25, LSTW-24) that displayed different growth profiles and in-vitro antagonistic 
effects against three soilborne plant pathogens models: Pythium aphanidermatum 
(oomycete) Rhizoctonia solani (basidiomycete), and Fusarium oxysporum 
(ascomycete). To identify genetic mechanisms potentially responsible for the 
differences in growth and antagonistic phenotypes of these Bcsl strains, we sequenced 
and compared their genomes, and that of strain UW85 using a hybrid sequencing 
pipeline. Despite similarities, specific Bcsl strains had unique secondary metabolite 
and chitinase-encoding genes that could potentially explain observed differences in 
in-vitro chitinolytic potential and anti-fungal activity. Strains UW85, S-10 and S-25 
contained a (~500 Kbp) mega-plasmid that harbored the ZwA biosynthetic gene 
cluster. The UW85 mega-plasmid contained more ABC transporters than the other 
two strains, whereas the S-25 mega-plasmid carried a unique cluster containing 
cellulose and chitin degrading genes. Collectively, comparative genomics revealed 
several mechanisms that can potentially explain differences in in-vitro antagonism of 
Bcsl strains toward fungal plant pathogens.
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1. Introduction

The ban on many chemical pesticides has facilitated interest in discovery and application of 
bacteria (termed biocontrol agents) that antagonize soilborne plant pathogens. These bacteria 
protect plants from pathogens through a variety mechanisms that include niche exclusion (Wang 
et al., 2021), metabolic competition (Spadaro et al., 2010), production of siderophores (Yu et al., 
2010; Li et al., 2014), secretion of chitinases that target the chitin components of fungal cell walls 
(Veliz et al., 2017), antibacterial and antifungal compounds (Raaijmakers et al., 2002; Ongena and 
Jacques, 2008), and induction of plant resistance (Pieterse et al., 2014). Secondary metabolites (SM), 
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which include siderophores and antibiotics play a pivotal role in the 
antagonistic capacities of biocontrol agents, but the scope and the 
specific role of these compounds in different strains are not well 
understood (Braga et al., 2016).

Bacillus cereus sensu lato (Bcsl) is a phylogenetically related group 
that includes the well-studied member’s B. cereus sensu stricto (s.s.), 
B. anthracis, and B. thuringiensis (Stenfors Arnesen et al., 2008; Ehling-
Schulz et al., 2019; Bianco et al., 2021; Carroll et al., 2021). Several of 
these strains produce a variety of biologically active plant-pathogen 
antagonizing molecules, and have thus been explored as potential 
biocontrol agents (Silo-Suh et al., 1994; Kumar et al., 2014a). Bacillus 
cereus s.l. strain UW85 (ATCC 53522) has been extensively explored as 
a biocontrol agent due to its in-vitro and in-planta capacity to antagonize 
various fungal and oomycetes pathogens, which is at least partially 
facilitated by the antimicrobials ZwA and kanosamine (Silo-Suh 
et al., 1994).

Bcsl strains frequently harbor multiple plasmids, including mega-
plasmids larger than 100 kb (Zheng et al., 2013). These mega-plasmids 
have been primarily explored in obligatory and opportunistic 
B. anthracis and other B. cereus s.l. strains that carry genes and operons 
encoding for virulence factors (i.e., cya, lef, pagA, haemolysin BL, 
capABCDE and cesABCD; Okinaka et al., 1999; Hoton et al., 2005). In 
addition, certain B. thuringiensis strains harbor mega-plasmids with 
genes encoding insecticidal (Cry and Cyt) toxins that are used 
commercially to control different insect pests (Gillis et  al., 2018). 
Recently, whole-genome sequencing revealed that the biosynthetic gene 
cluster encoding ZwA and Kanosamine in certain Bcsl strains is also 
situated on a mega-plasmid (Kevany et al., 2009; Lozano et al., 2016; 
Lechuga et al., 2020), suggesting that Bcsl strain mega-plasmids play a 
role in ecological adaptation and antagonism of plant pathogens.

The objective of this study was to identify Bcsl strain mechanisms 
potentially involved in antagonizing soilborne phytopathogens and 
pinpoint specific mechanisms that are unique to individual strains 
that may explain differences in their in-vitro antagonistic capacity. 
This was achieved by combining long-and short-read (i.e., Oxford 
Nanopore Minion and Illumina) whole genome sequencing, which 
enables assembly of complete chromosomes and plasmids 
(Arredondo-Alonso et al., 2017; George et al., 2017). Concomitant to 
whole genome sequencing, the five Bcsl strains (four isolated in our 
lab from different soils around Israel, and B. cereus strain UW85) 
were screened against the soilborne pathogens Pythium 
aphanidermatum (oomycetes), Rhizoctonia solani (basidiomycetes) 
and Fusarium oxysporum (ascomycetes) using both whole cell and cell 
extract antagonistic assays.

2. Materials and methods

2.1. Bacterial and fungal strains and growth 
conditions

Bacillus cereus s.l. UW85 (coined UW85), originally isolated 
from alfalfa roots in Wisconsin, USA, was purchased from the 
American Type Culture Collection (serial number ATCC 53522). 
Bacillus cereus s.l. S-25 (coined S-25) and B. cereus s.l. S-10 (coined 
S-10) were isolated from a clay-rich wheat field soil, and B. cereus 
s.l. MO2 (coined MO2) was isolated from the roots of a Moringa 
oleifera tree within the Volcani Institute campus of the Agricultural 
Research Organization (ARO) in Rishon Lezion, Israel. Bacillus 

cereus s.l. LSTW-24 (coined LSTW-24) was isolated from a sandy 
soil from the coastal plain of Israel. The studied Bcsl strains were 
grown on Luria-Bertani (LB) broth or agar and incubated at 30°C 
overnight, with or without shaking at 180 rpm. Their antagonistic 
effects was tested against three model soilborne pathogens: R. solani 
anastomosis group AG4, isolated from a tomato plant in the Western 
Negev, Israel, whereas P. aphanidermatum strain P88 and 
F. oxysporum f.sp. radicis cucumerinum strain Hazera were isolated 
from cucumber plants in the Hefer Valley, Israel. The three model 
pathogens were routinely grown on Potato Dextrose Agar (PDA, 
DIFCO, France), which was amended with 250 mg/l chloramphenicol 
(PDA+, Sigma, Israel) for growth of R. solani and F. oxysporum.

2.2. Evaluation of in-vitro antifungal activity

The in-vitro antagonistic activity of the five Bcsl group strains 
against the three model soilborne phytopathogens was evaluated using 
a standard dual culture assay. Briefly, we streaked an overnight bacterial 
suspension in the middle of a 9 cm Petri dish containing 50% LB agar, 
and incubated it at 30°C for 3 days in a temperature controlled incubator 
(Tuttnauer, Israel). Subsequently, a 5 mm diameter mycelial disk from 
the actively growing margin of one of the three pathogens described 
above was placed on opposite sides of the Petri dish and further 
incubated at 25°C. The inhibition zone between the bacteria and the 
pathogen, and the area of the pathogen mycelium were measured daily 
for 3 to 14 days after initial inoculation, depending on the rate of 
pathogen growth. Two criteria were considered when evaluating the 
in-vitro antagonistic capacity:

(1) Mycelia area  - calculated as the proximal area of an ellipse 
according to the following formula:
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where D1 is the long diameter and D2 is the short diameter.
(2) Inhibition zone - calculated as the minimal distance between the 

pathogen and the bacteria. A schematic diagram of both criteria is 
shown in Supplementary Figure S1.

2.3. Evaluation of in-vitro cell free 
supernatant antifungal activity

The five Bcsl strains were inoculated in 100 mL of 50% LB medium 
in 250 mL Erlenmeyer flasks and incubated at 30°C with shaking at 
130 rpm for 6 days in a Witeg model WIS-30R shaking incubator (Witeg 
Labortechnik GMBH, Germany). Starting from the third day, 1 mL of 
culture from each flask was centrifuged and filtered through 0.22 µm, 
22mm membranes and the cell-free supernatants (CFS) were stored at 
4°C. PDA plates were inoculated with 4 mm diameter agar plugs 
containing one of the three model pathogens, and 50 μL of CFS (or 50% 
LB medium used as a control) was pipeted into aseptically created holes 
in the agar placed at a distance of 0.5 cm from F. oxysporum plug, 1 cm 
from R. solani plug and 1.5 cm from P. aphanidermatum plug. The plates 
were incubated at 25°C and inhibition was inspected after 1–3 days, 
depending on the pathogen growth rate. The experiment was conducted 
three times.
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2.4. Evaluation of in-vitro chitinase and 
cellulase activities and genome screening 
for associated genes

Approximately 15 μL of an overnight culture of the five Bcsl strains 
was pipetted onto agar plates containing M9 minimal medium mixed 
with 0.4% colloidal chitin as a sole carbon source (Kuddus and Ahmad, 
2013), and subsequently incubated for 20 days at 30°C. Chitinase activity 
was estimated by measuring the clearing zone around the bacterial 
colonies, calculated by subtracting the halo area from the area of the 
bacterial colony.

In tandem, we mined the five Bcsl genomes for genes associated 
with chitin metabolism (chitinases and chitin binding proteins) using 
RAST and BLASTX together with the web server dbCAN2, for 
carbohydrate-active enzyme (CAZyme) annotation (Zhang et al., 2018; 
Drula et al., 2022). The chitinase-associated genes sequences of the five 
Bcsl strains are shown in Supplementary Table S3.

The cellulose-degrading capacity of the five Bcsl strains was 
estimated by plating the strains on cellulose-amended Congo-Red agar 
media composed of: KH2PO4 0.5 g, MgSO4 0.25 g, cellulose 2 g, agar 15 g, 
Congo-Red 0.2 g, and gelatin 2 g, distilled water 1 l and at pH 6.8–7.2 
(Gupta et  al., 2011). Approximately 15 μL of an overnight culture 
normalized to 0.5 O.D. of the five Bcsl strains were pipetted onto the 
cellulose Congo-Red agar and incubated for 6 days at 30°C. Cellulytic 
activity was calculated by measuring the clearing zone around the 
bacterial colonies (Supplementary Figure S5). In addition, we mined the 
five Bcsl genomes for genes encoding for celluloses enzymes using RAST 
and the web server dbCAN.

2.5. DNA extraction and genome sequencing

Bcsl strains were inoculated in LB medium and incubated overnight 
at 30°C with shaking at 180 rpm. The overnight culture was diluted and 
incubated for an additional 3 h before harvesting 2 mL for genomic DNA 
(gDNA) isolation using the Wizard Genomic DNA Purification Kit 
(Promega, Madison, WI) according to the manufacturer’s instructions 
with slight modifications to minimize pipetting and vortex steps. gDNA 
yield and quality was examined using a Qubit flurometer (Thermo 
Fisher Scientific Inc., Waltham, MA) and a Nanodrop ND1000 
spectrophotometer (NanoDrop Technologies, Wilmington, DE), and its 
integrity was verified by gel electrophoresis (1% agarose w/v). The 
gDNA was sequenced using short (Illumina MiSeq) and long (Oxford 
Nanopore Minion) read sequencing technologies at Genotypic 
Technologies, (Bengaluru, India) as described below.

A volume of 1 μg of DNA from each isolate was used for Nextra XT 
DNA library preparation using the manufacturers protocol (Cat#FC-
131-1,024), and libraries were sequenced on an Illumina HiSeq X Ten 
sequencer (Illumina, San Diego, USA). In tandem, sequencing was 
performed on an Oxford Nanopore GridON X5 sequencing (Oxford, 
UK) using a SpotON flow cell R9.4 (FLO-MIN106) in a 48 h sequencing 
protocol. The quality of the genomes was analyzed using BUSCO 
(Manni et al., 2021).

2.6. Genome assembly and annotation

Trimmomatic software version 0.39 (Bolger et al., 2014) was used for 
removal of adaptors and low quality sequences using the following 

parameters: ILLUMINACLIP:adapters.fa:2:30:10 LEADING:3 
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. Subsequently, 
Unicycler version 0.4.8 (Wick et al., 2017) was used for hybrid assembly 
of the trimmed Illumina paired-end and Nanopore reads using defaults 
parameters. The RAST server version 2 (Aziz et al., 2008; Overbeek et al., 
2014; Brettin et al., 2015) was applied for the annotation of the assembled 
genomes using default parameters. OAT software was applied for 
genome comparisons of the five Bcsl strains and representative reference 
strains from the Bacillus group (B. pumilus NCTC10337, B. velezensis 
FZB42 and B. subtilis HJ5), based on OrthoANI (Average Nucleotide 
Identity) values (Lee et al., 2015). The online service OrthoVenn2 was 
used for genome wide comparisons and visualization of orthologous 
clusters based on protein sequences generated by RAST annotation tool 
(Xu et al., 2019). The pantoate-b-alanine ligase gene (panC) was used to 
identify the Bcsl strains lineage within the group (Guinebretière et al., 
2008) using MEGA11 alignment of the five Bcsl strains and representative 
reference strains from the B. cereus group (B. cereus ATCC 14579 T, 
B. thuringiensis CIP 53137 T and B. weihenstephanensis INRA1). The 
B. subtilis-associated strain NYG5 was included as an outlier for rooting 
the tree (Supplementary Figure S3). The JSpeciesWS tool was used for 
calculating identity using tetra correlation of our five Bcsl strains against 
an updated published genome reference database (Richter et al., 2015).

The webserver antiSMASH (RRID:SCR_022060) version 5.1.2 (Blin 
et al., 2019) was applied for identification and annotation of secondary 
metabolite encoding biosynthetic gene clusters (BGC) using the default 
parameters. Comparative analysis of ZwA BGCs was performed and 
visualized with EasyFig (Sullivan et al., 2011), using the UW85 ZwA 
BGC as a template. The extrachromosomal plasmids were visualized 
using BLAST Ring Image Generator (BRIG) version 0.95 (Alikhan 
et al., 2011).

3. Results

3.1. Colony expansion and in-vitro 
antagonism of model phytopathogens by 
Bcsl strains

Dual culture assays revealed substantial differences in colony 
expansion and in-vitro mycelial growth inhibition by the five tested Bcsl 
isolates (Figure 1; Supplementary Figures S1, S2). S-10 spread rapidly 
and covered approximately two-thirds of the agar (resulting in 
substantial inhibition of F. oxysporum, P. aphanidermatum and R. solani 
mycelial expansion), whereas the other Bcsl strains grew much slower. 
Strain LSTW-24 did not inhibit P. aphanidermatum but moderately 
inhibited R. solani (~67% mycelial inhibition), while MO2 strongly 
inhibited R. solani (~92%), and moderately inhibited P. aphanidermatum 
(~54%). S-25 did not substantially inhibit P. aphanidermatum (~47%) 
and R. solani (~58%) mycelial growth, but caused a clear inhibition zone 
in dual culture assays with P. aphanidermatum and R. solani (0.5 and 
0.8 cm, respectively).

3.2. Effect of Bcsl strain cell-free 
supernatant on model phytopathogen 
mycelial growth

We tested the antagonistic effect of cell-free supernatants (CFS) of 
the five Bcsl strains against the three model pathogens (Figure  2). 
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A B

FIGURE 2

Antagonistic effect of cell-free supernatant (CFS) of the five Bcsl strains against the three model phytopathogens. Images showing antagonistic effect on 
mycelial growth of the three phytopathogen, F. oxysporum, R. solani, and P. aphanidermatum inoculated in the center of 9 cm PDA plates, mediated by CFS 
of 5 days old Bcsl strains grown on 50% LB medium (A); Inhibition zone measurments of R. solani and P. aphanidermatum mycelia by the CFS of the five 
Bcsl strains (B). The graph represents data from three independent experiments, and the vertical line shows standard deviations between replicates.

FIGURE 1

Dual culture inhibition assay of the five Bcsl strains against soilborne phytopathogens. Images of dual culture experiments (A); and inhibition zones 
measurements in dual cultures of 3 days old Bcsl strains with Pythium aphanidermatum (B); Rhizoctonia solani (C); and Fusarium oxysporum (D) on 50% LB 
agar at 25°C. Images are shown following 3 days of incubation for P. aphanidermatum and R. solani and 16 days of incubation for F. oxysporum. Box plots 
represent data from three independent experiments with five replicates each. The lines in the box plot represent the median while the x symbols represent 
the mean. Different letters indicate statistically significant differences (p < 0.05) based on the ANOVA Tukey–Kramer post hoc test (α = 0.05).
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The  CFS from S-25 had a clear inhibitory effect against 
P. aphanidermatum and R. solani mycelia (suggesting that it secretes 
compounds that antagonize these phytopathogens), but not against 
F. oxysporum. In contrast, the other four strains did not show a 
clear  antagonistic phenotype against any of the screened 
model phytopathogens.

3.3. Comparative genomic analysis of Bcsl 
strains

Genome characteristics and sequencing metadata are summarized 
in Table 1. The genome sizes ranged from 5.3 to 6.3 Mbp with a mean 
GC-content of 35%, which is typical for members of the Bcsl group. 
Collectively, the genome size of Bcsl strains is larger than genomes of 
other Bacillus species used for biocontrol such as B. Pumilus, B. velezensis 
and B. subtilis (Shafi et al., 2017), whose average genome size is 3.7 Mbp, 
4 Mbp and 4.1 Mbp, respectively. The total number of Open Reading 
Frames (ORFs) varied from 5,755 to 6,564, and the number of identified 
RNA genes from 107 to 138. Except for LSTW-24, all the sequenced Bcsl 
strains contained plasmids.

Average Nucleotide Identity (ANI) comparisons revealed a high 
level of similarity (>95%) between the Bcsl strains, with the exception 
of MO2 (91%, Figure 3A). Nevertheless, phylogenetic characterization 
of the strains based on the panC housekeeping gene (involved in 
pantothenate biosynthesis), which has been used for phylogenetic 
characterization of B. cereus strains (Guinebretière et  al., 2008), 
indicated that MO2 is a closely related lineage within the Bcsl group 
(Supplementary Figure S3). Furthermore, comparing MO2 tetra-
nucleotide signatures (Tetra) to those of Bcsl strains from a large and 
continuously updated genome reference database using the 
JSpeciesWS tool, revealed a high level of identity with a correlation 
coefficient above 0.99. The pangenome comparisons of the five Bcsl 
strains identify 4,257 shared clusters out of 6,195, with 2, 17, 17, 35, 
and 26 clusters that were unique to LSTW-24, S-25, S-10, UW85 and 
MO2, respectively (Figure  3B). UW85 and MO2 accessory genes 
included: i) ABC transporter encoding genes, ii) genes encoding toxin 
and antibiotic synthesis; iii) genes linked to quorum sensing and 
biofilm formation, iv) genes encoding for siderophores and 
surfactants; v) genes encoding for carbohydrate and phosphate 
metabolism; and vi) genes associated with utilization of sulfur and 
nitrogen (Supplementary Table S1).

TABLE 1 Characteristics of the five Bcsl strain genomes used in this study.

Isolate 
name

Genome 
size (Mbp)

Total 
number of 

contigsa

Genome quality 
(% of 

completeness)

GC 
content 

(%)

N50b Total open 
reading 
frames 
(ORFsc)

RNA 
genes

Plasmids 
detected

LSTW-24 5.3 46 (14) 98.7 35.2 1,355,660 5809 107 0

MO2 5.7 6 (6) 99.8 35.2 5,250,910 5755 134 5

S-25 5.9 20 (4) 99.6 35.0 5,281,513 5795 138 2

S-10 6.0 3 (3) 99.8 34.9 5,391,120 5894 134 1

UW-85 6.3 23 (6) 99.1 34.8 2,521,153 6564 129 3

aBrackets show number of contigs larger than 2,500 bp.
bSequence length of the shortest contig at 50% of the total genome length.
cORFs predicted by Prodigal software.

A B

FIGURE 3

Heatmap and phylogenomic tree (A) showing similarity of the five-targeted Bcsl strain genomes relative to other species of Bacillus, based on average 
nucleotide identity (ANI) values, calculated using the Orthologous Average Nucleotide Identity Tool (OAT); Venn diagrams constructed using the OrthoVenn 
2 online service displaying the distribution of shared and unique orthologous clusters among the five Bcsl strains (B).
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3.4. Evaluation of chitonolytic and cellulytic 
activity and associated metabolic genes in 
the Bcsl strains

We mined the five genomes for genes associated with chitin 
metabolism concomitant to evaluation of extracellular in-vitro 
chitinolytic activity. Two chitinase encoding genes were identified in 
S-25, S-10 and MO2, three in strain UW85, and four in strain LSTW-24. 
Furthermore, three chitin binding protein (CBP) encoding genes were 
detected in the five Bcsl, an additional CBP was found in S-25, LSTW-24, 
and MO2, whereas four additional CBP encoding genes were detected 
in UW85. A single endoglucanase gene potentially involved in chitin/
cellulose degradation was also detected in S-25 but not in the other four 
Bcsl genomes. Based on blastx, each of the five isolates harbor chitinase 
genes belonging to subfamily A (ChiA) and subfamily B (ChiB) of the 
glycoside hydrolase GH18 family while only strains LSTW-24 and 
UW85 harbored additional chitinase genes. ChiA and ChiB were also 
ubiquitous in 20 additional Bcsl genomes that we screened. More than 
that, while additional genes associated with chitin degradation were only 
detected in some of the strains, the chitinases and CBPs genes found in 
LSTW-24 and UW85 strains were not detected in any of the other 20 
analyzed Bcsl genomes (Supplementary Figure S4). The extracellular 
chitinolytic activity was generally proportional to the scope of genes 
associated with chitin degradation, with UW85 and LSTW-24 showing 
higher chitinolytic activity than the three other strains and S-25 showing 
the lowest activity (Figure 4). Similarly, we tested the five Bcsl strains for 
their in vitro cellulose-degrading capacity on cellulose-amended Congo 
Red agar plates (Supplementary Figure S5). Two strains (UW85 and 
LSTW-24) showed slightly higher cellulolytic activity than the three 
other strains, while MO2 showed the lowest activity. Nevertheless, 
despite the differences in the cellulolytic activity, we could not detect any 
correlation between the cellulolytic activity and the in vitro antagonistic 
activity against the oomycetes P. aphanidermatum, whose cell wall is 
composed of cellulose instead of chitin.

Screening the five Bcsl genomes did not reveal significant 
differences in genes encoding for cellulolytic enzymes that could 
explain the variances in in-vitro cellulolytic activity. We identified a 
gene encoding for 6-phospho-beta-glucosidase (EC:3.2.1.86), and the 

PTS transporter homologs CelC, CelB, and CelA in all of the strains. 
An additional gene encoding for beta-glucosidase (EC:3.2.1.21) was 
only identified in strains S-25, UW85 and LSTW-24. We  did not 
identify genes encoding for endoglucanase (EC:3.2.1.4) in any of the 
strains except for a putative endoglucanase detected in the plasmid of 
the S-25 strain.

3.5. Annotation and comparative analysis of 
secondary metabolite encoding genes in 
Bcsl strains

The Bcsl genomes were screened for documented and potentially 
novel secondary metabolite encoding BGCs using Antismash (Medema 
et al., 2011), which ranks gene clusters by similarity to a queried gene 
cluster of known function, presenting the percentage of genes in the 
queried cluster that show similarity to the known BGC (Figure 5). All 
five genomes harbored BGCs encoding for the catecholate siderophores 
petrobactin and bacillibactin (100 and 46% similarity, respectively) 
(Lee et al., 2011). LSTW-24 harbored an additional BGC with 55% 
similarity to the siderophore fuscachelin. All genomes harbored a BGC 
with 40% similarity to fengycin, a biologically active lipopeptide 
produced by several B. subtilis strains known to antagonize filamentous 
fungi (Deleu et al., 2008). A BGC similar to Locillomycin was detected 
in UW85 (21%) and two such clusters (28 and 42% identity, 
respectively) were identified in LSTW-24. Another BGC similar to the 
lipopeptide Puwainaphycin was detected in UW85 (50% identity) and 
S-10 (60% identity). Each of the five genomes contained unique 
secondary metabolite encoding BGCs. For example, S-25 carried a 
lassopeptide-encoding BGC, MO2 harbored a BGC encoding for a 
sophorolipid (100% identity), a group of amphiphilic biosurfactants, 
and UW85 carried a BGC predicted to encode for an unknown 
cyclodipeptide. In addition, S-25 and S-10 harbored BGCs putatively 
encoding for the hybrid NRPS/PKS metabolite ZwA (81 and 100% 
similarity, respectively), which was first characterized in UW85 (Silo-
Suh et  al., 1994). This metabolite has been extensively explored in 
UW85 and other prospective Bcsl biocontrol strains, due to its 
antagonistic effect against oomycetes and other soilborne pathogens 

FIGURE 4

Chitinolitic activity of five Bcsl strains. Area of clearing zones indicating the different chitinolytic activity of the five Bcsl strains on M9 minimal medium 
containing colloidal chitin as a sole carbon source. The graph showing the mean and standard deviations of 10 independent measurements (left); and 
image illustrating the extracellular chitinolytic activity of the five isolates (right). Different letters indicate statistically significant differences (p < 0.05) based on 
the ANOVA Tukey-HSD test (α = 0.05).
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(Raffel et al., 1996; Silo-Suh et al., 1998; Broderick et al., 2000; Zhao 
et al., 2007).

3.6. Comparative analysis of ZmA harboring 
mega-plasmids

We compared the mega-plasmid harboring the ZmA encoding BGC 
in UW85 to its two homologs in S-25 and S-10. The UW85, S-25 and 
S-10 mega-plasmids were 578,721, 436,050, and 588,156 bp, encoding 
for 636, 404 and 530 genes, respectively. The GC content of all of the 
plasmids was approximately 32%, which was slightly lower than that of 
the chromosomes. A total of 257, 196 and 217 genes, respectively, were 
functionally annotated by RAST, almost half (92) of whom were shared 
between the three strains (Figure 6A).

Approximately 12% of the annotated mega-plasmid genes (16% of 
shared genes) were predicted to be part of the ZwA BGC (Figure 6B). 
Common annotated genes found on the plasmid that were not part of 
the ZmA BGC included genes encoding for putative virulence factors 
and pathogenesis factors (i.e., microbial collagenase, hemolysin B, 
reticulocyte binding protein, and type II secretion systems), ABC 
transporters, tetracycline and β-lactam resistance and quorum sensing 
and chemotaxis mechanisms (Figure 6B). In addition, 89, 53, and 64 
of the annotated genes were unique in the UW85, S-25, and S-10 
mega-plasmids, respectively, representing over 50% of the unique 
genes reported above. The UW85 mega-plasmid contained nine genes 
encoding for ABC transporters that were absent in the other two 
strains (Supplementary Table S2). The S-25 mega-plasmid contained 
genes encoding for chitin binding proteins and a predicted 
endoglucanase, potentially involved in antifungal activity, which were 

absent in the other two strains. (Supplementary Figure S6; 
Supplementary Table S2).

3.7. Comparative analysis of ZmA BGCs

Gene synteny comparisons between UW85 ZmA BGCs and 
homologs from S-25 and S-10 revealed high similarity between the 
clusters (Figure 7), except for a group of genes predicted to encode for 
the antibiotic kanosamine situated within the ZmA BGCs of UW85 and 
S-10, but absent in the S-25 BGC. In contrast, the ZmA encoding BGC 
of S-25 contained genes predicted to encode for a β-lactone containing 
protease inhibitor located proximal to the ZmaA BGC, which was 
absent in the other two strains. In addition, two hypothetical protein-
encoding genes were identified in the ZmA-encoding BGC of S-25, 
whereas a mobile element sequence proximal to the kanosamine 
encoding gene was detected in S-10.

4. Discussion

The five analyzed Bcsl strains described in this study displayed 
unique in-vitro antagonistic profiles against fungal and fungal-like (i.e., 
Ascomycota, Basidiomycota, and Oomycetes) plant pathogens as 
previously demonstrated for other Bcsl strains (Silo-Suh et al., 1994; Xu 
et al., 2014; Kumar et al., 2014b). We therefore mined their genomes to 
pinpoint genes and gene clusters encoding potential antifungal factors 
associated with the observed antagonism and performed comparative 
genomic analysis to identify specific factors that might explain 
differences in their in-vitro antagonistic phenotypes.

FIGURE 5

Occurrence of secondary metabolite encoding biosynthetic gene clusters with putative antifungal activity in the five analyzed Bcsl strains based on 
Antismash predictions. Heatmap shades represent the percentage of genes in the queried cluster that are similar to the known BGC. The darker the color 
the higher the percentage of similar genes in the cluster to the known BGC. aCDPS: cyclic dipeptides. bRiPPs: Ribosomally synthesized and post-
translationally modified peptides.
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Collectively, more unique genes were detected in UW85 and MO2 
relative to the three other Bcsl strains. This increased diversity may 
be explained by the fact that they were isolated from plant roots in 
contrast to the other three strains, which were isolated from bulk soil, 
although it is sometimes difficult to differentiate between these two 

niches. Root ecosystems are considered to be more competitive than 
bulk soil, necessitating genes encoding specific characteristics to ensure 
survival (Lugtenberg and Dekkers, 1999; Zhang et al., 2016; Ling et al., 
2022). An example are genes encoding for transporters which facilitate 
the uptake of root-associated nutrients and essential molecules, or 

A B

FIGURE 6

Comparative analysis of plasmids containing ZwA BGC homologues in Bacillus cereus spp. UW85, S-10 and S-25. (A) Venn-diagram showing similar and 
unique RAST annotated genes in the three plasmids. (B) Genetic map of the S-10 (green) and S-25 (blue) plasmids aligned against the UW85 reference 
plasmid (red) using the BRIG software package. The annotations of relevant encoded proteins from three sequenced plasmids appear in the outer black 
ring, and the GC content of the reference plasmid is displayed between the inner black and red rings.

FIGURE 7

Synteny of ZmA homolog BGCs. The reference ZwA BGC of UW-85 (middle), is flanked by S-10 (top), and S-25 (bottom) homologues. The annotations of 
relevant encoded proteins from three BGCs are indicated by arrows. ZmA BGC genes are shown in black capital letters A–V, and kanosamine encoding 
genes in red capital letters. The figure was generated using Easyfig software with a cut-off of 90% gene identity.
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remove antibiotics or other toxic compounds produced by competitors 
in the root environment from the cell (Rees et  al., 2009). The 
involvement of ABC transporters in biocontrol and rhizosphere 
competence is well established. For example, the ABC transporter 
abcG5 in the fungal biocontrol agent Clonostachys rosea was recently 
found to be essential for biocontrol activity against F. graminearium-
facilitated foot rot disease (Dubey et al., 2014), and a gene encoding for 
a putative ABC transporter from Erwinia chrysanthemi was found to 
play a role in in planta fitness of the bacterium (Llama-Palacios et al., 
2002). It is possible that the presence of additional ABC transporter 
encoding genes on the UW85 ZwA mega-plasmid may contributes to 
UW85 capacity to colonize and persist in the rhizosphere and therefore 
potentially enhances its biocontrol activity.

The presence of unique genes involved in carbohydrate and phosphate 
metabolism in the UW85 and MO2 genomes may also contribute to the 
capacity of these strains to survive in the copiotrophic plant root ecosystem. 
This is supported by a comparative genomic analysis of plant associated vs. 
non-plant-associated B. amyloliquefaciens and B. subtilis strains, which 
showed that plant-associated strains possess additional genes involved in 
utilizing plant-derived substrates, seemingly acquired through horizontal 
gene transfer (HGT; Zhang et al., 2016). UW85 and MO2 also contained 
more transposase genes, which may indicate higher occurrence of HGT 
events that can facilitate the acquisition of genes associated with 
environmental adaptation (Aminov, 2011; Raymond and Bonsall, 2013).

4.1. Linking chitinolytic activity and chitin 
degrading genes in Bcsl strains

Bacterial chitinases that degrade α-1,3-glucans, and β-1,3-glucans 
(the major components of fungal cell walls) can play a fundamental role 
in fungal antagonism by biocontrol strains (Swiontek Brzezinska et al., 
2014). For example, chiA encoded chitinases in Serratia marcescens and 
S. plymuthica were linked to biological control of plant diseases caused 
by phytopathogenic fungi (Chernin et al., 1997; Downing and Thomson, 
2000), and B. thuringiensis isolates from tomato roots only exhibited 
in-vitro antifungal activity against Verticillium spp. when harboring one 
or two putative chitinases (Hollensteiner et al., 2016; Veliz et al., 2017). 
Interestingly, the chitinolytic activity of the five Bcsl isolates investigated 
in this study correlated to their genetic potential, with higher activity 
documented in UW85 (which harbored almost twice as many CBPs as 
the other strains) and LSTW-24 (which contained more chitinases than 
the other strains). Previous reports have explored the genetic context of 
chitinase genes (Yan and Fong, 2015), the association between molecular 
structure, substrate specificity, the catalytic mechanisms that facilitate 
chitinase activity (Hamid et al., 2013), and the synergistic activity of 
different chitinases (Suzuki et  al., 2002). The linkage between the 
quantity of chitin degrading genes and the chitinolytic activity of strains 
UW85 and LSTW-24 documented here is supported by previous studies 
suggesting that synergistic interactions between CBP and chitinases 
enhance the capacity of biocontrol agents to metabolize chitin 
(Purushotham et al., 2012; Manjeet et al., 2013; Veliz et al., 2017).

S-25 harbors a unique gene encoding a probable endoglucanase on 
its mega-plasmid. Previous studies demonstrated that endoglucanase 
activity antagonized P. aphanidermatum (Natarajan et al., 2013) and 
reduced disease incidence by Pythium on cucumber seedlings (Chet 
et al., 1998). Other studies reported that a b-1,3-glucanase facilitated 
morphological changes and growth inhibition of R. solani and Fusarium 
sp. (Benitez et al., 1998; Bhat, 2000). In view of these findings, we suggest 

further examination of this endoglucanase gene, and specifically 
examination of its involvement of S-25 antagonism of P. aphanidermatum 
and R. solani. The proximity between this endoglucanase gene and three 
CBPs genes may imply combined antifungal activity of these genes.

While our analyses revealed strong correlations between chitinase 
activity and the abundance of chitinase encoding genes, there was no 
correlation between extracellular chitinolitic activity, and the antifungal 
activity of the CFS, suggesting that either particular chitinases may 
be more active against specific fungi or that additional antagonistic 
mechanisms are also required.

4.2. Presence of secondary metabolite 
encoding BGCs in Bcsl strains with putative 
antifungal activity

Secondary metabolites play a critical role in the antagonism of 
phytopathogens by bacterial biocontrol agents (Vizcaino et al., 2014) 
and many secondary metabolites with antifungal activity have been 
detected in Bacillus spp. (Shahid et al., 2021). We therefore screened the 
five Bcsl genomes for secondary metabolite encoding genes and 
performed comparative genomic analyses to uncover the genetic basis 
of the observed differences in their in-vitro antagonistic capacity.

Shared BGCs, common to all of the five analyzed strains and having 
putative antifungal activity, included clusters encoding for catecholate 
siderophores similar to petrobactin and bacillibactin, which were 
previously shown to play vital roles in the antagonistic capacity of various 
bacterial biocontrol agents against phytopathogens (Prema and Selvarani, 
2012; Li et al., 2014; Patil et al., 2014; Miljakovic et al., 2020; Sheng et al., 
2020). Another shared genes cluster is similar to the antifungal lipopeptide 
fengycin, which was shown to inhibit R. solani (Guo et al., 2013) and other 
fungal pathogens (Ongena et al., 2005; Deleu et al., 2008; Kulimushi et al., 
2017). In contrast, several unique clusters, which may contribute to the 
specific antifungal activity of each Bcsl strain, were also detected. These 
include a BGC, only detected in the UW85 and LSTW-24 genomes, having 
similarity (21%–42%) for the NRPs-PKs hybrid locillomycin, reported to 
antagonize R. solani and F. oxysporum (Luo, 2015) and a BGC found in 
S-10 and UW85 genomes with similarity (50–60%) to a puwainaphycin 
lipopeptide, which was previously shown to possess antifungal activity 
against members of the Ascomycota phylum (Mares et al., 2019; Hajek 
et al., 2021). Interestingly, in our research we did not observe inhibition of 
F. oxysporum which represent the Ascomycetes soilborne pathogen, but 
this predicted gene cluster similar to puwainaphycin need to be further 
explored for its role in the inhibition activity of these two strains against 
R. solani and P. aphanidermatum. Sophorolipid, only detected in MO2, is 
an extracellular bio-surfactant reported to inhibit mycelial growth of 
R. solani (64.3%) and P. ultimum (95%; de OCaretta et  al., 2021), in 
addition to other fungal phytopathogens in both in vitro and in planta 
experiments (Yoo et al., 2005; Sen et al., 2017; Haque et al., 2019; Chen 
et al., 2020; de OCaretta et  al., 2021). The presence of this antifungal 
encoding BGC in MO2 genome may contribute to its observed antagonistic 
activity against R. solani and P. aphanidermatum. In addition, S-25 carried 
unique BGC encoding for a lassopeptide, a group of natural products 
previously shown to have therapeutic effects on fungal infections, as 
demonstrated for the class I lassopeptide humidimycin from Streptomyces 
humidus. This compound expedited activity of fungal cell wall inhibitors 
that antagonized Candida albicans and Aspergillus fumigatus (Valiante 
et al., 2015). The different profiles of secondary metabolite encoding genes 
between the five Bcsl strains may partially explain their different antifungal 
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phenotypes against the three soilborne pathogens, but additional work is 
required to clarify their exact role in the observed antagonistic activity.

4.3. Comparative analysis of ZwA BGC and 
the ZwA harboring plasmid

S-25 and S-10 harbored homologs of the well-established antifungal 
hybrid NRP/PK zwittwrmicin A, a linear aminopolyol antibiotic originally 
isolated from UW85 (Kevany et al., 2009). ZwA has been previously shown 
to supress alfalfa seedlings damping off caused by the oomycete P. medicaginis 
(Handelsman et al., 1990), it has been indicated in inhibition of other fungal 
and bacterial growth (Silo-Suh et al., 1998) and has been shown to enhance 
insecticidal activity of Cry toxins in B. thuringiensis (Broderick et al., 2003). 
The expression and activity of ZwA might likely be different in the three 
strains, because S-25 BGC lacked the five flanking kab (kabA-kabD; kabR) 
genes that encode for the antifungal element kanosamine (Janiak and 
Milewski, 2001), and S-25 contained a flanking gene encoding for a beta-
lactone containing protease inhibitor that was absent in S-10 and UW85. The 
contribution of flanking genes to zwittermicin activity is supported by Luo 
et al., who identified zmaWXY downstream of ZmA that functioned as a 
resistance conferring in addition to the previously characterized zmaR gene, 
and was found to increase the yield of ZmA (Luo et al., 2011).

The antagonistic capacity of ZwA, and the documented role of 
plasmids in environmental adaptation (Heuer and Smalla, 2012; Adams 
et al., 2014; Patino-Navarrete and Sanchis, 2016; Lechuga et al., 2020), 
led us to further explore the composition of the ZmA-harboring 
plasmids. We detected several genes on the three plasmids with putative 
roles in environmental adaptation. These include as methyl-accepting 
chemotaxis protein (MCP) which has been previously shown to 
be involved in chemical sensing (Salah Ud-Din and Roujeinikova, 2017), 
biofilm formation (Hickman et  al., 2005) and production of toxins 
(Harkey et al., 1994), and the two-component system sensor histidine 
kinase. These sensory mechanisms and response regulators are believed 
to enhance fitness in bacteria from unstable and low nutrient 
environments with multiple interactions like soil (Ashby, 2004). Each of 
the plasmids had its own set of unique genes, which may also have an 
impact on the biocontrol potential of the isolate. These included 
increased abundance of ABC transporters on the UW85 mega-plasmid, 
and the presence of chitin (CBPs) and cellulose (endoglucanase) 
metabolizing enzyme encoding genes gathered in S-25 mega-plasmid.

Collectively, we  identified both common and unique BGCs 
encoding for metabolites with putative antifungal activity in the five Bcsl 
strains, as well as chitinases with potential antifungal activity. 
Nonetheless, the potential link between these factors and the observed 
in-vitro antifungal capacity of the Bcsl strains that harbor them, needs 
to be experimentally validated by knockout (Guo et al., 2013) and/or 
heterologous expression (Luo et al., 2011), demonstrated for fengycin 
and zwittermicin, respectively. Experiments should also be conducted 
to determine the expression of candidate genes and BGCs following 
exposure to pathogens, or under different environmental conditions, as 
previously described for lipopeptides and bacilibactin (Li et al., 2014).

In summary, comparative genomics provided important insights into 
similarities and differences of mechanisms potentially linked to the 
antifungal activity of the five strains. Although there are several potential 
candidates, we were not able to specifically link genotypes to phenotypes, 
or pinpoint genetic factors that explain the elevated activity of the S-25 
cell-free supernatant relative to the other strains. Future studies will need 
to follow up on these candidates in order to validate their antifungal capacity.
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